
COMP1521 25T1

COMP1521 25T1

File Systems

Week 7 Lecture 2

Adapted from Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Test05 and test06 due tomorrow
Assignment 1 automarks are available
Marked assignments ready by Monday

Assignment 2 out today: bitwise operations and files!
Assignment 2 runthrough video coming by Sunday

Announcements

COMP1521 25T1

Today’s Lecture
● Recap

○ System Calls
○ File Operations
○ Fseek

● Fseek Examples
● File metadata

○ Permissions
○ system call stat

● Hard Links and Symbolic Links
● Working with directories

3

COMP1521 25T1

Question 1: What is better to use to read in a file? fgetc or fgets or fscanf?
Question 2: If I successfully open a file using FILE *f = fopen(“data”,”w”);

A. What will happen if the file already exists? What if it doesn’t?
B. What is the difference between mode “a” and “w”

Question 3: How many bytes would the following print to the file f:

A. fprintf(f,“%d”, 255);
B. fputc(f, 255);

Recap Files

COMP1521 25T1

off_t lseek(int fd, off_t offset, int whence);
- change the current position in given stream
- offset is in bytes, and can be negative
- whence can be one of
 - SEEK_SET : set offset from start of file

 - SEEK_CUR: set file offset from current position
 - SEEK_END: set file offset from end of file
- seeking beyond end of file leaves a gap which reads as 0's
- seeking back beyond start of file sets position to start of file

`

Seeking with libc system call wrapper

COMP1521 25T1

int fseek(FILE *stream, long offset, int whence);
- is stdio equivalent to lseek() except:

- requires a FILE * input instead of int file descriptor
 - influences stdio buffers
 - returns 0 or -1 for error

fseek(stream, 42, SEEK_SET); // move to after 42nd byte
fseek(stream, 58, SEEK_CUR); // 58 bytes forward from current position
fseek(stream, -7, SEEK_CUR); // 7 bytes backward from current position
fseek(stream, -1, SEEK_END); // move to before last byte in file

long ftell(FILE *stream); //return current file position
Demo code fseek.c and fuzz.c and advanced example: create_gigantic_file.c

Seeking with stdio.h

COMP1521 25T1

File systems manage stored data (e.g. on disk, SSD)

File = named sequence of bytes, stored on device

- file system maps name to location on device
- file system maintains meta-data (e.g. permissions, time stamps)

Directory = sets of files or directories

File Systems

COMP1521 25T1

Unix/Linux file system is tree-like
- symlinks actually make it into a graph
- if traversing you may infinitely loop if following them

Unix/Linux File System

COMP1521 25T1

Sequences of 1 or more bytes
 - filenames can contain any byte except
 - 0x00 bytes (ASCII '\0') used to terminate filenames
 - 0x2F bytes (ASCII '/') used to separate components of pathnames.
 - maximum filename length, depends on file system, typically 255

Two filenames have a special meaning:
 - . current directory
 - .. parent directory

Some programs (shell, ls) treat filenames starting with . specially.

Unix-like File Names

COMP1521 25T1

Absolute pathnames start with a leading / and give full path from root e.g.
 - /usr/include/stdio.h

Relative pathnames do not start with a leading / e.g.
- ../../another/path/prog.c
- ./a.out
- main.c

Paths and directories

COMP1521 25T1

Every process (running program) has a current working directory (CWD)
 - this is an absolute pathname
 - this is the directory from where the process was run from
 - shell command pwd prints the CWD

Relative pathnames appended to CWD of process e.g.
 - if CWD is /home/z5555555/lab07/
 - and relative path is main.c
 - absolute path would be /home/z5555555/lab07/main.c

Current Working Directory

COMP1521 25T1

Metadata for file system objects is stored in inodes, which hold
- location of file contents in file systems
- file type (regular file, directory, ...)
- file size in bytes
- file ownership
- file access permissions - who can read, write, execute the file
- timestamps - times of file was created, last accessed, last updated

Unix-like File Metadata

COMP1521 25T1

Files system has large table of inodes containing metadata
- Inode-number is the inodes id

- Unique for file system like zid within UNSW

Directories are effectively a collection of (name, inode-number) pairs
 - ls -i prints inode-numbers

Inodes

COMP1521 25T1

Access to files by name proceeds (roughly) as...
- open directory and scan for name

- if not found, "No such file or directory"
- if found as (name,inumber), access inode table inodes[inumber]
- collect file metadata and...

 - check file access permissions given current user/group
 - if don't have required access, "Permission denied"
 - update access timestamp

- use data in inode (size location) to access file contents

File Access: Behind the scenes

COMP1521 25T1

Every file and directory in linux has read, write and execute
permissions (access rights) for each of the following user groups:
- user: the file’s owner
- group: the members of the file's group
- other: everyone else
- type ls -l on command line to see

File Permissions

COMP1521 25T1

File Permissions: read, write, execute

Read Write Execute

File View contents of file Modify file Run as executable

Directory View names of file
e.g. use ls

Create, delete,
rename files

Can cd into it. Also
needed to access
(read, write,
execute) items in
directory

COMP1521 25T1

You can think of permissions as a set of bits and then each 3 bits as
an octal digit. e.g.
 rwx r-x r-x
 111 101 101
 7 5 5

You can use the chmod command to set the permissions of a file or
directory using the desired 3 digit octal code. e.g.

$ chmod 700 f.txt

Modifying Permissions

COMP1521 25T1

File system links allow multiple paths to access the same file

- Hard links
- multiple names referencing the same file (inode)
- the two entries must be on the same filesystem
- can not create a (extra) hard link to directories
- all hard links to a file have equal status
- file destroyed when last hard link removed

 - e.g. Assuming 'fileA' already exists:
 ln fileA fileB

 would create a hard link named 'fileB'

Hard Links and Symbolic Links

COMP1521 25T1

File system links allow multiple paths to access the same file

- Symbolic links (symlinks)
- point to another path name
- accessing the symlink (by default) accesses the file being pointed to
- symbolic link can point to a directory
- symbolic link can point to a pathname on another filesystems
- symbolic links don't have permissions (not needed - they are just a pointer)

 - e.g. Assuming 'fileA' already exists:
 ln -s fileA fileB

 would create a symbolic link named 'fileB'

Hard Links and Symbolic Links

COMP1521 25T1

int stat(const char *pathname, struct stat *statbuf);

- returns metadata associated with pathname in statbuf
- metadata returned includes:
 - inode number
 - type (file, directory, symbolic link, device)
 - size of file in bytes (if it is a file)
 - permissions (read, write, execute)
 - times of last access/modification/status-change
- returns -1 and sets errno if metadata not accessible

C library wrapper for stat system call

COMP1521 25T1

int lstat(const char *pathname, struct stat *statbuf);
- same as stat() but doesn't follow symbolic links

- in other words gives you metadata about the symbolic link
 and not the file it links to
- important not to get stuck in infinite loops

int fstat(int fd, struct stat *statbuf);
- same as stat() but gets data via an open file descriptor

See man 2 stat
 man 3 stat
 man 7 inode

C library wrapper for stat system call

COMP1521 25T1

man 3 stat
struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* Inode number */
 mode_t st_mode; /* File type and mode */
 nlink_t st_nlink; /* Number of hard links */
 uid_t st_uid; /* User ID of owner */
 gid_t st_gid; /* Group ID of owner */
 dev_t st_rdev; /* Device ID (if special file) */
 off_t st_size; /* Total size, in bytes */
 ...
};

};

definition of struct stat

COMP1521 25T1

man 7 inode
st_mode is a bitwise-or of these values (& others):
 S_IFLNK 0120000 symbolic link
 S_IFREG 0100000 regular file
 S_IFDIR 0040000 directory
 S_IRUSR 0000400 owner has read permission
 S_IWUSR 0000200 owner has write permission
 S_IXUSR 0000100 owner has execute permission
 S_IRGRP 0000040 group has read permission
 S_IWGRP 0000020 group has write permission
 S_IXGRP 0000010 group has execute permission
 S_IROTH 0000004 others have read permission
 S_IWOTH 0000002 others have write permission
 S_IXOTH 0000001 others have execute permission

st_mode field of struct stat

COMP1521 25T1

stat0.c
stat.c
Good sample program at bottom of man 2 stat

Code demos stat.c

COMP1521 25T1

int mkdir(const char *pathname, mode_t mode);
returns 0 if successful, returns -1 and sets `errno` otherwise
 - for example: mkdir("newDir", 0755)
if pathname is e.g. `a/b/c/d`
 - all of the directories `a`, `b` and `c` must exist
 - directory `c` must be writable to the caller
 - directory `d` must not already exist
the new directory contains two initial entries
 - `.` is a reference to itself
 - `..` is a reference to its parent directory
Demo: mkdir.c

Making a directory

COMP1521 25T1

// open a directory stream for directory name
DIR *opendir(const char *name);

// return a pointer to next directory entry
struct dirent *readdir(DIR *dirp);

// close a directory stream
int closedir(DIR *dirp);

Found in man 3
Demo list_directory.c

Opening and Reading directories

COMP1521 25T1

chmod(char *pathname, mode_t mode) // change permission of file/...

unlink(char *pathname) // remove a file...

rename(char *oldpath, char *newpath) // rename a file/directory

chdir(char *path) // change current working directory

getcwd(char *buf, size_t size) // get current working directory

link(char *oldpath, char *newpath) // create hard link to a file

symlink(char *target, char *linkpath) // create a symbolic link

Demo: chmod.c rm.c rename.c my_cd.c getcwd.c nest_directories.c many_links.c
chain_links.c

Useful Linux (POSIX) functions

COMP1521 25T1

Originally files only managed data stored on a magnetic disk.
Unix philosophy is: Everything is a File
File system used to access:
 - files
 - directories (folders)
 - storage devices (disks, SSD, ...)
 - peripherals (keyboard, mouse, USB, ...)
 - system information
 - inter-process communication
 - network

Everything is a File

COMP1521 25T1

Unicode!
Processes!

Coming up next

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

30

https://forms.office.com/r/hAWAuuhWvh

COMP1521 25T1 31

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

32

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

