COMP1521 25173

Week 7 Lecture 2

File Systems

COMP1521 25T3

Announcements

Test 5 and Test 6: due tomorrow

Assignment 2:
o Released today
o Walkthrough video coming Thu

o Mini assignment hackathon Friday 9am-11am
= CSE Help (K17 G05)

s Hosted by: Jennifer Yu, Alex Blackmore, Alex Kroh

COMP1521 25T3

Today's Lecture

e Recap
e File Operations

o Filesystems
e File metadata
e Permissions
e 'stat’ system call
e Hard Links and Symbolic Links
e Working with directories

COMP1521 25T3

Recap Files

Question 1: What is better to use to read in a file? fgetc or fgets or fscanf?

Question 2: If | successfully open a file using FILE *f = fopen("data","w");
A. What will happen if the file already exists? What if it doesn’t?
B. What is the difference between mode “a” and “w”

Question 3: How many bytes would the following print to the file f:
A. fprintf(f,"%d", 255);
B. fputc(f, 255);

“"_n

COMP1521 25T3

Recap: dup?2

// What will be printed to terminal?
// What will be inside data.txt?
int main(void) {
FILE* fp = fopen("data.txt", "a");
int fd = fileno(fp); // Retrieve file descriptor from FILE*
close(STDOUT_FILENO);
dup2(fd, STDOUT FILENO);

printf("Hello!\n");

return 9;
}

COMP1521 25T3

Filesystems

COMP1521 25T3

File Systems

File systems manage stored data (e.g. on disk, SSD)
File = named sequence of bytes stored on device
Directory = named set of files or Directories

« File system maps name to location(s) on device

« File system maintains meta-data (e.g. permissions, timestamps)

COMP1521 25T3

Unix/Linux File System

Unix/Linux file system is tree-like
symlinks actually make it a graph
when traversing you may find infinite loops

COMP1521 25T3

Unix-like File Names

Sequences of 1 or more bytes
- filenames can contain any byte except
- 0x00 bytes (ASCII '\0') used to terminate filenames
- 0x2F bytes (ASCII'/') used to separate components of pathnames.
- maximum filename length, depends on file system, typically 255

Two filenames have a special meaning:
- . current directory

- .. parent directory

Some programs (shell, Is) treat filenames starting with . specially.

COMP1521 25T3

Paths and directories

Absolute pathnames start with a leading / and give full path from root e.g.
/usr/include/stdio.h

Relative pathnames do not start with a leading / e.g.

-/../another/path/prog.c SPECIFYING FILE PATHS IN

Ja.out
main.c

COMP1521 25T3

Current Working Directory

Every process (running program) has a current working directory (CWD)
- This is an absolute pathname
- This is the directory from where the process was run from
- Shell command pwd prints the CWD

Relative pathnames appended to CWD of process e.g.
- If CWD is /home/z5555555/1ab07/
- And relative path is main.c
- Absolute path would be /home/z5555555/lab07/main.c

COMP1521 25T3

11

Everything is a file

o Originally, files only managed data stored on a magnetic disk
e Unix philosophy: Everything is a file
o File systems used to access

o Files

o Directories

o Devices

o System information

o Other filesystems

COMP1521 25T3

12

Unix-like File Metadata

Metadata for file system objects is stored in inodes within the file system.
They hold:

« Thelocation of file contents in the filesystem

« File type (regular file, directory, ...)

 File size in bytes

« File ownership

« File access permissions - who can read, write, execute the file

. Timestamps - times of file was created, last accessed, last updated

File system implementations often add complexity to improve performance
« e.g. data of small files might be stored in the inode itself.

COMP1521 25T3

13

Inodes

Files system has large table of inodes containing metadata

- inode number is the inodes id
- Unique to file system (like student id within UNSW)
- Other file systems may use same inode id to identify a different file
(At another university, your student id would refer to another student)

Directories are effectively a collection of (name, inode-number) pairs
- 1ls -i prints inode-numbers

COMP1521 25T3 14

Filesystem layout

—> Reserved
—> Bad blocks

{cat.png, 4}

{dogs/, 3}

file data

L)

COMP1521 25T3

: Disk Bytes

inode entry stores file metadata
and location of file data on disk

Directory entry data maps file
name to file inode number.
Special files . and .. not shown.

- File bytes

15

File Access: Behind the scenes

Access to files by name proceeds (roughly) as...
- Open directory and scan for name
- if not found, "No such file or directory"
- If found as {name, inumber}, access inode table: inodes[inumber]
- Collect file metadata and...
- Check file access permissions given current user/group
- If don't have required access, "Permission denied"
- Update access timestamp
- Use data in inode (size, location of bytes) to access file contents

COMP1521 25T3

16

File Permissions

Every file and directory in linux has read, write and execute

permissions (access rights) for each of the following user groups:

- user: the file's owner

- group: the members of the file's group

- other: everyone else

- type 1s -1 on command line to see

- r'WX

| |

"" Indicates a file Read, write, and
d” indicates directory execute permissions
for the owner of the

file

COMP1521 25T3

r__

|

Read, write, and
execute permissions
for members of the

group owning the file

r__

|

Read, write, and
execute permissions
for other users

17

File Permissions: read, write, execute

e.g. usels

rename files

Read Write Execute
File | View contents of file | Modify file Run as executable
Directory | View names of file Create, delete, | Can cd into it. Also needed to

access (read, write, execute)
items in directory

COMP1521 25T3

18

Modifying Permissions

You can think of permissions as a set of bits and then each 3 bits as
an octal digit. e.g.

rwx r-x r-x
111 101 101
/7 5 5

You can use the chmod command to set the permissions of a file or
directory using the desired 3 digit octal code. e.g.

S chmod 755 f.txt

COMP1521 25T3

19

Hard Links and Symbolic Links

File system links allow multiple paths to access the same file

- Hard links
- Multiple names referencing the same inode number (file)
- Hard links must be on the same filesystem (inodes unique to filesystem)
- Can not create a [extra] hard link to directories
- All hard links to a file have equal status (metadata stored in inode)
- File destroyed when last hard link removed (link count stored in inode)

Assuming fileA'" already exists, this creates a hard link named 'fileB’
1ln fileA fileB

COMP1521 25T3 20

Hard Links and Symbolic Links

File system links allow multiple paths to access the same file

- Symbolic links (symlinks)
- Point to another path name
- Accessing the symlink (by default) accesses the file being pointed to
- Symbolic link can point to a directory
- Symbolic link can point to a pathname on another filesystems
- Symbolic links don't have permissions (not needed - they are just a pointer)

Assuming fileA' already exists, this creates a symbolic link named fileB'
ln -s fileA fileB

COMP1521 25T3 21

Show me the code!

#include<stdio.h>
{

int main(void)

{
— // Print a message
printf("Hello,world!
\n");

I_)

COMP1521 25T3

C library wrapper for stat system call

int stat(const char *pathname, struct stat *statbuf);

- Returns metadata associated with pathname in statbuf
- Metadata returned includes:

- inode number

- type (file, directory, symbolic link, device)

- size of file in bytes (if it is a file)

- permissions (read, write, execute)

- times of last access/modification/status-change

- returns -1 and sets errno if metadata not accessible

COMP1521 25T3

23

C library wrapper for stat system call

int lstat(const char *pathname, struct stat *statbuf);

O same as stat() but doesn't follow symbolic links
m in other words gives you metadata about the symbolic link

s and not the file it links to

m important not to get stuck in infinite loops

int fstat(int fd, struct stat *statbuf);

O same as stat() but gets data via an open file descriptor

See man 2 stat # For stat syscall with example
man 3 stat # For struct stat

man 7 inode # For masks and macros and inodes in general
COMP1521 25T3 24

definition of struct stat

man 3 stat

struct stat {

dev_t
ino_t
mode_t
nlink_t
uid_t
gid_t
dev_t
off_t

s

COMP1521 25T3

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;
st_size;

[*
[*
[*
[*
[*
[*
[*
[*

ID of device containing file =*/
Inode number */

File type and mode */

Number of hard links =*/

User ID of owner x*/

Group ID of owner =*/

Device ID (if special file) */
Total size, in bytes =*/

25

st_mode field of struct stat

man 7 inode
st_mode is a bitwise-or of these values (and others):

S_IFLNK 0120000 symbolic link

S_IFREG 0100000 regular file

S_IFDIR 0040000 directory

S_IRUSR 0000400 owner has read permission
S_IWUSR 0000200 owner has write permission
S_IXUSR 0000100 owner has execute permission
S_IRGRP 0000040 group has read permission
S_IWGRP 0000020 group has write permission
S_IXGRP 0000010 group has execute permission
S_IROTH 000004 others have read permission
S_IWOTH 0000002 others have write permission
S_IXOTH 0000001 others have execute permission

COMP1521 25T3

26

Code demos stat.c

stat.c

Another good sample program at bottom of man 2 stat

COMP1521 25T3

27

Making a directory

int mkdir(const char *pathname, mode_t mode);

o Returns 0 if successful, returns -1 and sets errno otherwise
= for example: mkdir("newDir", 0755)
- If pathnameise.g. a/b/c/d
« All of the directories "a’, ‘b and "¢’ must exist
« directory ¢ must be writable to the caller
« directory d must not already exist
o the new directory contains two initial entries
« . isareferenceto itself
« .. is areference to its parent directory

Demo: mkdir.c

COMP1521 25T3

28

Opening and Reading directories

// open a directory stream for directory name
DIR *opendir(const char *name);

// return a pointer to next directory entry
struct dirent *readdir(DIR *dirp);

// close a directory stream
int closedir(DIR *dirp);

Found in man 3
Demo list_directory.c

COMP1521 25T3

29

Useful Linux (POSIX) functions

chmod(char *pathname, mode_t mode) //change permission of file/...
unlink(char *pathname) // remove a file...

rename(char *oldpath, char *newpath) //rename a file/directory
chdir(char *path) //change current working directory

getcwd(char xbuf, size_t size) // get current working directory
link(char *oldpath, char *newpath) // create hard link to a file

symlink(char *target, char xlinkpath) //create a symbolic link

Demo: chmod.c rm.c rename.c my_cd.c getcwd.c nest_directories.c many_links.c
chain_links.c

COMP1521 25T3

30

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1521(@cse.unsw.edu.au

COMP1521 25T3

31

https://cgi.cse.unsw.edu.au/~cs1521/25T3/resources/forum.html
mailto:cs1521@cse.unsw.edu.au

Student Support | | Need Help With...

student.unsw.edu.au/counselling a In Australia Call Afterhours 1300 787 026
_ @ E'::;Z'c':ea'th Telehealth RS UNSW Mental Health Support 5pm-9am
My Feelings and Mental Line
Health q student.unsw.edu.au/mind-hub Outside Australia
Managing Low Mood, Unusual Feelings & Depression Mind Online Self-Help Resources @ Afterhours 24-hour +61 (2) 8905 0307
HUB Medibank Hotline
m Student Support — student.unsw.edu.au/advisors
' Indigenous Student
Support
Reporting Sexual Assault/Harassment Equity Diversity and Inclusion — edi.unsw.edu.au/sexual-misconduct
(EDI)
Educational Adjustments q q .
To Manage my Studies and Disability / Health Condition Equitable Learning Service — student.unsw.edu.aulels
(ELS)
Academic and Study Skills Academic Language — student.unsw.edu.au/skills
Skills
Sppeel Lencld e Special Consideration — student.unsw.edu.au/special-consideration

Because Life Impacts our Studies and Exams

COMP1521 25T3

	Slide 1: COMP1521 25T3
	Slide 2: Announcements
	Slide 3: Today’s Lecture
	Slide 4: Recap Files
	Slide 5: Recap: dup2
	Slide 6: Filesystems
	Slide 7: File Systems
	Slide 8: Unix/Linux File System
	Slide 9: Unix-like File Names
	Slide 10: Paths and directories
	Slide 11: Current Working Directory
	Slide 12: Everything is a file
	Slide 13: Unix-like File Metadata
	Slide 14: Inodes
	Slide 15: Filesystem layout
	Slide 16: File Access: Behind the scenes
	Slide 17: File Permissions
	Slide 18: File Permissions: read, write, execute
	Slide 19: Modifying Permissions
	Slide 20: Hard Links and Symbolic Links
	Slide 21: Hard Links and Symbolic Links
	Slide 22: Show me the code!
	Slide 23: C library wrapper for stat system call
	Slide 24: C library wrapper for stat system call
	Slide 25: definition of struct stat
	Slide 26: st_mode field of struct stat
	Slide 27: Code demos stat.c
	Slide 28: Making a directory
	Slide 29: Opening and Reading directories
	Slide 30: Useful Linux (POSIX) functions
	Slide 31: Reach Out
	Slide 32: Student Support | I Need Help With…

