
COMP1521 25T3

COMP1521 25T3

File Systems

Week  7 Lecture 2

1



COMP1521 25T3

Test 5 and Test 6: due tomorrow

Assignment 2:

○ Released today

○ Walkthrough video coming Thu

○ Mini assignment hackathon Friday 9am-11am

■ CSE Help (K17 G05)

■ Hosted by: Jennifer Yu, Alex Blackmore, Alex Kroh

Announcements

2



COMP1521 25T3

Today’s Lecture

● Recap 

● File Operations

● Filesystems

● File metadata

● Permissions

● "stat" system call

● Hard Links and Symbolic Links

● Working with directories

3



COMP1521 25T3

Question 1: What is better to use to read in a file? fgetc or fgets or fscanf?

Question 2: If I successfully open a file using FILE *f = fopen("data","w");
A. What will happen if the file already exists? What if it doesn’t?

B. What is the difference between mode “a” and “w” 

Question 3: How many bytes would the following print to the file f:

A. fprintf(f,"%d", 255);
B. fputc(f, 255); 

Recap Files

4



COMP1521 25T3

// What will be printed to terminal?

// What will be inside data.txt?

int main(void) {

FILE* fp = fopen("data.txt", "a");

int fd = fileno(fp); // Retrieve file descriptor from FILE*

close(STDOUT_FILENO);

dup2(fd, STDOUT_FILENO);

printf("Hello!\n");

return 0;

}

Recap: dup2

5



COMP1521 25T3

Filesystems

6



COMP1521 25T3

File systems manage stored data (e.g. on disk, SSD)

File = named sequence of bytes stored on device

Directory = named set of files or Directories

● File system maps name to location(s) on device

● File system maintains meta-data (e.g. permissions, timestamps)

File Systems

7



COMP1521 25T3

Unix/Linux file system is tree-like

- symlinks actually make it a graph

- when traversing you may find infinite loops

Unix/Linux File System

8



COMP1521 25T3

Sequences of 1 or more bytes

- filenames can contain any byte except  

- 0x00 bytes (ASCII '\0') used to terminate filenames

- 0x2F bytes (ASCII '/') used to separate components of pathnames.

- maximum filename length, depends on file system,  typically 255

Two filenames have a special meaning:

- . current directory

- .. parent directory

Some programs (shell, ls) treat filenames starting with . specially.

Unix-like File Names

9

Demo .bashrc



COMP1521 25T3

Absolute pathnames start with a leading  / and give full path from root e.g.

/usr/include/stdio.h

Relative pathnames do not start with a leading  / e.g.

../../another/path/prog.c 

./a.out

main.c

Paths and directories

10

Demo a.out; ./a.out



COMP1521 25T3

Every process (running program) has a current working directory (CWD) 

- This is an absolute pathname

- This is the directory from where the process was run from

- Shell command pwd prints the CWD

Relative pathnames appended to CWD of process e.g.

- If CWD is /home/z5555555/lab07/

- And relative path is main.c

- Absolute path would be /home/z5555555/lab07/main.c

Current Working Directory

11



COMP1521 25T3

● Originally, files only managed data stored on a magnetic disk

● Unix philosophy: Everything is a file

● File systems used to access

○ Files

○ Directories

○ Devices

○ System information

○ Other filesystems

Everything is a file

12

Demo: everything is a file



COMP1521 25T3

Metadata for file system objects is stored in inodes within the file system.

They hold:

● The location of file contents in the filesystem

● File type (regular file, directory, ...)

● File size in bytes

● File ownership

● File access permissions - who can read, write, execute the file

● Timestamps - times of file was created, last accessed, last updated

File system implementations often add complexity to improve performance

● e.g. data of small files might be stored in the inode itself.

Unix-like File Metadata

13



COMP1521 25T3

Files system has large table of inodes containing metadata

- inode number is the inodes id

- Unique to file system (like student id within UNSW)

- Other file systems may use same inode id to identify a different file

(At another university, your student id would refer to another student)

Directories are effectively a collection of (name, inode-number) pairs

- ls -i prints inode-numbers

Inodes

14



COMP1521 25T3

Filesystem layout

15

Reserved
Bad blocks

inode 0

{cat.png, 4}

file data

inode 1
inode 2

inode 3
inode 4
inode ...

{dogs/, 3}

inode entry stores file metadata 

and location of file data on disk

Directory entry data maps file 

name to file inode number.

Special files . and .. not shown.

File bytes

Disk Bytes



COMP1521 25T3

Access to files by name proceeds (roughly) as... 

- Open directory and scan for name

- if not found, "No such file or directory"

- If found as {name, inumber}, access inode table: inodes[inumber]

- Collect file metadata and... 

- Check file access permissions given current user/group

- If don't have required access, "Permission denied"

- Update access timestamp

- Use data in inode (size, location of bytes) to access file contents 

File Access: Behind the scenes

16



COMP1521 25T3

Every file and directory in linux has read, write and execute

permissions (access rights) for each of the following user groups:

- user: the file’s owner

- group: the members of the file's group

- other: everyone else

- type ls -l on command line to see

File Permissions

17

Demo permissions



COMP1521 25T3

File Permissions: read, write, execute

Read Write Execute

File View contents of file Modify file Run as executable

Directory View names of file 

e.g. use ls

Create, delete, 

rename files

Can cd into it. Also needed to 

access (read, write, execute) 

items in directory

18



COMP1521 25T3

You can think of permissions as a set of bits and then each 3 bits as

an octal digit. e.g.

rwx r-x r-x
111 101 101

7   5   5

You can use the chmod command to set the permissions of a file or

directory using the desired 3 digit octal code. e.g.

$ chmod 755 f.txt

Modifying Permissions

19

Demo permissions



COMP1521 25T3

File system links allow multiple paths to access the same file

- Hard links 

- Multiple names referencing the same inode number (file)

- Hard links must be on the same filesystem (inodes unique to filesystem)

- Can not create a [extra] hard link to directories

- All hard links to a file have equal status (metadata stored in inode)

- File destroyed when last hard link removed (link count stored in inode)

Assuming 'fileA' already exists, this creates a hard link named 'fileB'

ln fileA fileB

Hard Links and Symbolic Links

20



COMP1521 25T3

File system links allow multiple paths to access the same file

- Symbolic links (symlinks)

- Point to another path name

- Accessing the symlink (by default) accesses the file being pointed to

- Symbolic link can point to a directory

- Symbolic link can point to a pathname on another filesystems

- Symbolic links don't have permissions (not needed - they are just a pointer)

Assuming 'fileA' already exists, this creates a symbolic link named 'fileB'

ln -s fileA fileB

Hard Links and Symbolic Links

21



COMP1521 25T3

Show me the code!

22



COMP1521 25T3

int stat(const char *pathname, struct stat *statbuf);

- Returns metadata associated with pathname in statbuf

- Metadata returned includes:

- inode number

- type (file, directory, symbolic link, device)

- size of file in bytes (if it is a file)

- permissions (read, write, execute)

- times of last access/modification/status-change

- returns -1 and sets errno if metadata not accessible

C library wrapper for stat system call

23



COMP1521 25T3

int lstat(const char *pathname, struct stat *statbuf);
○ same as stat() but doesn't follow symbolic links

■ in other words gives you metadata about the symbolic link 

■ and not the file it links to

■ important not to get stuck in infinite loops

int fstat(int fd, struct stat *statbuf);
○ same as stat() but gets data via an open file descriptor

See man 2 stat # For stat syscall with example

man 3 stat # For struct stat

man 7 inode # For masks and macros and inodes in general

C library wrapper for stat system call

24



COMP1521 25T3

man 3 stat

struct stat {
dev_t     st_dev;      /* ID of device containing file */
ino_t     st_ino;      /* Inode number */
mode_t    st_mode;     /* File type and mode */
nlink_t   st_nlink;    /* Number of hard links */
uid_t     st_uid;      /* User ID of owner */
gid_t     st_gid;      /* Group ID of owner */
dev_t     st_rdev;     /* Device ID (if special file) */
off_t     st_size;     /* Total size, in bytes */
...

};

};

definition of struct stat

25



COMP1521 25T3

man 7 inode

st_mode is a bitwise-or of these values (and others):

S_IFLNK    0120000   symbolic link
S_IFREG    0100000   regular file
S_IFDIR    0040000   directory
S_IRUSR    0000400   owner has read permission
S_IWUSR    0000200   owner has write permission
S_IXUSR    0000100   owner has execute permission
S_IRGRP    0000040   group has read permission
S_IWGRP    0000020   group has write permission
S_IXGRP    0000010   group has execute permission
S_IROTH    0000004   others have read permission
S_IWOTH    0000002   others have write permission
S_IXOTH    0000001   others have execute permission

st_mode field of struct stat

26



COMP1521 25T3

stat.c

Another good sample program at bottom of man 2 stat

Code demos stat.c

27



COMP1521 25T3

int mkdir(const char *pathname, mode_t mode);

○ Returns 0 if successful, returns -1 and sets errno otherwise

■ for example: mkdir("newDir", 0755)

○ If  pathname is e.g. `a/b/c/d`

■ All of the directories `a`, `b` and `c` must exist

■ directory `c` must be writable to the caller

■ directory `d` must not already exist

○ the new directory contains two initial entries

■ `.` is a reference to itself

■ `..` is a reference to its parent directory

Demo: mkdir.c

Making a directory

28



COMP1521 25T3

// open a directory stream for directory name

DIR *opendir(const char *name);

// return a pointer to next directory entry

struct dirent *readdir(DIR *dirp);

// close a directory stream

int closedir(DIR *dirp);

Found in man 3

Demo list_directory.c

Opening and Reading directories

29



COMP1521 25T3

chmod(char *pathname, mode_t mode) // change permission of file/...

unlink(char *pathname) // remove a file...

rename(char *oldpath, char *newpath) // rename a file/directory

chdir(char *path) // change current working directory

getcwd(char *buf, size_t size) // get current working directory

link(char *oldpath, char *newpath) // create hard link to a file

symlink(char *target, char *linkpath) // create a symbolic link

Demo: chmod.c rm.c rename.c my_cd.c getcwd.c nest_directories.c many_links.c 

chain_links.c

Useful Linux (POSIX) functions

30



COMP1521 25T3 31

Content Related Questions:  

Forum

Admin related Questions email: 

cs1521@cse.unsw.edu.au

Reach Out

https://cgi.cse.unsw.edu.au/~cs1521/25T3/resources/forum.html
mailto:cs1521@cse.unsw.edu.au


COMP1521 25T3

Student Support | I Need Help With…

32

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student 

Support

Equity Diversity and Inclusion 

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service 

(ELS)

— student.unsw.edu.au/els

Academic Language 

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental 

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health 

Connect

Mind 

HUB

student.unsw.edu.au/counselling 

Telehealth

student.unsw.edu.au/mind-hub 

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support 

Line

Outside Australia 

Afterhours 24-hour 

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams


	Slide 1:  COMP1521 25T3
	Slide 2: Announcements
	Slide 3: Today’s Lecture
	Slide 4: Recap Files
	Slide 5: Recap: dup2
	Slide 6: Filesystems
	Slide 7: File Systems
	Slide 8: Unix/Linux File System
	Slide 9: Unix-like File Names
	Slide 10: Paths and directories
	Slide 11: Current Working Directory
	Slide 12: Everything is a file
	Slide 13: Unix-like File Metadata
	Slide 14: Inodes
	Slide 15: Filesystem layout
	Slide 16: File Access: Behind the scenes
	Slide 17: File Permissions
	Slide 18: File Permissions: read, write, execute
	Slide 19: Modifying Permissions
	Slide 20: Hard Links and Symbolic Links
	Slide 21: Hard Links and Symbolic Links
	Slide 22: Show me the code!
	Slide 23:  C library wrapper for stat system call 
	Slide 24:  C library wrapper for stat system call 
	Slide 25: definition of struct stat
	Slide 26: st_mode field of struct stat
	Slide 27: Code demos stat.c
	Slide 28: Making a directory
	Slide 29: Opening and Reading directories
	Slide 30: Useful Linux (POSIX) functions
	Slide 31: Reach Out
	Slide 32: Student Support | I Need Help With…

