
COMP1521 25T2

COMP1521 25T2

File Systems

Week 7 Lecture 1

Adapted from Angela Finlayson, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

1

COMP1521 25T2

Test 5 and Test 6 are due Thursday 9pm

Assignment 1

● Automarking available soon

● Tutor marking ASAP

Assignment 2: coming out later this week!

Announcements

2

COMP1521 25T2

Today’s Lecture

● Recap and code demos:

○ syscall, libc wrappers, stdio

● File Operations

○ open, close, read, write, seek

3

COMP1521 25T2

syscall function

● Not usually used in practice

● Syscalls vary between operating system -- code is less portable

● Hard to understand

Libc syscall wrapper:

● More meaningful names: open(...), read(...), write(...)

● Does syscall for you and helps with error checking

● More portable than syscall but still not portable

○ Some work on POSIX compliant systems

(e.g. Linux and MacOS)

Recap: System Calls in Linux

4

COMP1521 25T2

stdio.h provides higher-level library functions:

● fopen(...), fgets(...), fputc(...)

● Calls syscall wrapper for you

● Portable

● You have been using these to indirectly do your system

calls the whole time!

● Sometimes we need lower-level non-portable functions

● e.g. Database software needs precise control over I/O

Recap: System Calls in Linux

5

COMP1521 25T2

Important file related system calls

Recap: System Calls to Manipulate Files

Id Name Function

0 read read some bytes from a file descriptor

1 write write some bytes to a file descriptor

2 open open a file system object, returning a file descriptor

3 close close a file descriptor

4 stat get file system metadata for a pathname

8 lseek move file descriptor to a specified offset within a file

6

COMP1521 25T2

Every process starts with the 3

standard streams, 0, 1, 2.

When a file is opened a new file

descriptor is added to the table.

When a file is closed the file

descriptor is removed

When a file is read to or written

from, the offset is updated

Reca: File Descriptors

File descriptor

Table

0 (stdin)

1 (stdout)

2 (stderr)

3

4

File Table

Offset 42, read, etc

Offset 0, write, etc

7

COMP1521 25T2

syscall : make a system call without writing assembler code

● not usually used by programmers

● use to experiment and learn

System call to print a message to stdout

Source code for hello_syscalls.c

char bytes[13] = "Hello, Zac!\n";

// argument 1 to syscall is the system call number, 1 is write

// remaining arguments are specific to each system call

// write system call takes 3 arguments:

// 1) file descriptor, 1 == stdout

// 2) memory address of first byte to write

// 3) number of bytes to write

syscall(1, 1, bytes, 12); // prints Hello, Zac! on stdout

8

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/files/code/hello_syscalls.c

COMP1521 25T2

Libc wrapper to print message to stdout

Source code for hello_libc.c

char bytes[13] = "Hello, Zac!\n";

// write takes 3 arguments:

// 1) file descriptor, 1 == stdout

// 2) memory address of first byte to write

// 3) number of bytes to write

write(1, bytes, 12); // prints Hello, Zac! on stdout

9

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/files/code/hello_libc.c

COMP1521 25T2

● C library has an interesting way of returning error information

○ functions typically return -1 to indicate error

○ and set errno to integer value indicating reason for error

○ you can think of errno as a global integer variable

● These integer values are #define-d in errno.h

○ see man errno for more information

○ perror() looks at errno and prints message with reason

○ strerror() converts errno to string describing reason for error

● To see all error codes type errno -l on command line

Recap: errno

10

COMP1521 25T2

Implement linux cp command

1. byte at a time stdio.h

2. using fgets and fprintf/fputs - what is the problem with this approach?

We also have implementations using syscall and libc

Which is the best approach?

Exercise

11

COMP1521 25T2

open()

read()

write()

close()

libc Code Demo

12

COMP1521 25T2

$ clang -O3 cp_x.c -o cp_x
$ dd bs=1M count=10 < /dev/urandom > random_file
10485760 bytes (10 MB, 10 MiB) copied, 0.183075 s, 57.3 MB/s
$ time ./cp_x random_file random_file_copy

IO Performance libc

13

COMP1521 25T2

fopen()

fgetc(), fread()

fputc(), fwrite()

fclose()

stdio Code Demo

14

COMP1521 25T2

Let’s compare our implementations of cp!

$ clang -O3 cp_x.c -o cp_x
$ dd bs=1M count=10 < /dev/urandom > random_file
10485760 bytes (10 MB, 10 MiB) copied, 0.183075 s, 57.3 MB/s
$ time ./cp_x random_file random_file_copy

Can we get any insights from strace?

$strace ./cp_x random_file random_file_copy

Compare:

Linux cp command, cp_fgetc_one_byte.c, cp_libc_one_byte.c, cp_libc.c

IO Performance & Buffering libc vs stdio

15

COMP1521 25T2

● Goal: reduce number of system calls (expensive)

● Reading:

○ Uses a read system call to fill whole buffer

○ subsequent reads get bytes from the buffer

○ does not do another read system call till it runs out of data in the buffer

● Writing:

○ Delays calls to write system call by storing data in buffer (array) instead

○ calls write system call only when

■ buffer is full,

■ file is closed,

■ fflush is called

■ a newline is encountered for output to terminal

stdio.h buffering for efficiency

16

COMP1521 25T2

You can manually flush stdio buffers by using:

int fflush(FILE *stream);

For example

● this would force a write system call to stdout and empty the output buffer

fflush(stdout);
● Can also be used for files that have been opened for writing.

● Should not be used for stdin or files opened for read only.

fflush stdio buffers

17

COMP1521 25T2

● To make a buggy version:

○ Use char instead of int for fgetc (this creates bugs with getchar too)

● Reminder: getchar and fgetc return int

○ Legal values they can return -1..255. (257 possible values)

○ This can’t fit in signed char or unsigned char!

● signed char (or char on our system) can store -1 and detect EOF,

○ but valid byte value 0xFF gets mistaken for EOF

● unsigned char can’t store -1 and can’t detect EOF

Demo: fgetc return type bug

18

COMP1521 25T2

char *fputs(char *s, FILE *stream); // write a string

char *fgets(char *s, int size, FILE *stream); // read a line

//formatted input/output

int fscanf(FILE *stream, const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

stdio.h reading and writing text only

19

COMP1521 25T2

char *fputs(char *s, FILE *stream); // write a string

char *fgets(char *s, int size, FILE *stream); // read a line

//formatted input/output

int fscanf(FILE *stream, const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

These functions can not be used for binary data as they may contain 0x00 bytes

- can use to read text (ASCII/Unicode)

- can not use to read a *jpg* for example

stdio.h reading and writing text only

20

COMP1521 25T2

● Using fgets and fprintf to copy a file

Demo: cp using fgets and fprintf

21

COMP1521 25T2

● Using fgets and fprintf to copy a file

● Seems to work fine when copying text files BUT

○ Breaks for binary files with 0x00 bytes

○ They are interpreted as end of string ‘\0’ character

Reminder: only use fgets, fprintf, fscanf, or fputs for text

Demo: cp using fgets and fprintf

22

COMP1521 25T2

To read/write to stdin/stdout

int getchar(void); // fgetc(stdin)

int putchar(int c); // fputc(c, stdout)

int puts(char *s); // fputs(s, stdout)

int scanf(char *format, ...); // fscanf(stdin, format, ...)

int printf(char *format, ...); // fprintf(stdout, format, ...)

These should never be used: security vulnerability, buffer overflow

char *gets(char *s); // Ok in general.

scanf("%s", array); // Don’t use with %s

Recap: stdio.h convenience functions

23

COMP1521 25T2

stdio.h provides useful functions which operate on strings

// like scanf, but input comes from char array str
int sscanf(const char *str, const char *format, ...);

// like printf, but output goes to char array str
// handy for creating strings passed to other functions

// size contains size of str

// Do not use similar function sprintf as it is a security vulnerability

int snprintf(char *str, size_t size, const char *format, ...);

stdio.h - IO to strings

24

COMP1521 25T2

● So I can now read and write files sequentially... But

○ How do I know which position in the file I am at?

○ How can I skip to the end of the file?

○ How can I go back and read earlier data again?

seeking

25

COMP1521 25T2

off_t lseek(int fd, off_t offset, int whence);
- change the current position in given stream

- offset is in bytes, and can be negative

- whence can be one of

- SEEK_SET : set offset from start of file

- SEEK_CUR: set file offset from current position

- SEEK_END: set file offset from end of file

- seeking beyond end of file leaves a gap which reads as 0's

- seeking back beyond start of file sets position to start of file

`

Seeking with libc system call wrapper

26

COMP1521 25T2

int fseek(FILE *stream, long offset, int whence);
- is stdio equivalent to lseek() except:

- requires a FILE * input instead of int file descriptor

- influences stdio buffers

- returns 0 or -1 for error

fseek(stream, 42, SEEK_SET); // move to after 42nd byte

fseek(stream, 58, SEEK_CUR); // 58 bytes forward from current position

fseek(stream, -7, SEEK_CUR); // 7 bytes backward from current position

fseek(stream, -1, SEEK_END); // move to before last byte in file

long ftell(FILE *stream); //return current file position

Demo code fseek.c and fuzz.c and advanced example: create_gigantic_file.c

Seeking with stdio.h

27

COMP1521 25T2

● System calls relate to files:

○ open, close, read, write, lseek

● Equivalent stdio portable functions:

○ fopen, fclose, fgetc, fputc etc. fseek

What we learnt today

28

COMP1521 25T2

● File Systems:

○ File metadata

■ Permissions

■ system call stat

○ Hard Links and Symbolic Links

○ Working with directories

Next Lecture

29

COMP1521 25T2 30

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

31

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Announcements
	Slide 3: Today’s Lecture
	Slide 4: Recap: System Calls in Linux
	Slide 5: Recap: System Calls in Linux
	Slide 6: Recap: System Calls to Manipulate Files
	Slide 7: Reca: File Descriptors
	Slide 8: System call to print a message to stdout
	Slide 9: Libc wrapper to print message to stdout
	Slide 10: Recap: errno
	Slide 11: Exercise
	Slide 12: libc Code Demo
	Slide 13: IO Performance libc
	Slide 14: stdio Code Demo
	Slide 15: IO Performance & Buffering libc vs stdio
	Slide 16: stdio.h buffering for efficiency
	Slide 17: fflush stdio buffers
	Slide 18: Demo: fgetc return type bug
	Slide 19: stdio.h reading and writing text only
	Slide 20: stdio.h reading and writing text only
	Slide 21: Demo: cp using fgets and fprintf
	Slide 22: Demo: cp using fgets and fprintf
	Slide 23: Recap: stdio.h convenience functions
	Slide 24: stdio.h - IO to strings
	Slide 25: seeking
	Slide 26: Seeking with libc system call wrapper
	Slide 27: Seeking with stdio.h
	Slide 28: What we learnt today
	Slide 29: Next Lecture
	Slide 30: Reach Out
	Slide 31: Student Support | I Need Help With…

