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Andrew Taylor  and John Shepherd’s slides
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Test 5 and Test 6 are due Thursday 9pm

Assignment 1 

● Automarking available soon

● Tutor marking ASAP

Assignment 2: coming out later this week!

Announcements
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Today’s Lecture

● Recap and code demos:

○ syscall, libc wrappers, stdio

● File Operations

○ open, close, read, write, seek
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syscall function

● Not usually used in practice 

● Syscalls vary between operating system -- code is less portable

● Hard to understand

Libc syscall wrapper: 

● More meaningful names: open(...), read(...), write(...)

● Does syscall for you and helps with error checking

● More portable than syscall but still not portable

○ Some work on POSIX compliant systems

(e.g. Linux and MacOS)

Recap: System Calls in Linux
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stdio.h provides higher-level library functions:

● fopen(...), fgets(...), fputc(...)

● Calls syscall wrapper for you

● Portable

● You have been using these to indirectly do your system 

calls the whole time!

● Sometimes we need lower-level non-portable functions

● e.g. Database software needs precise control over I/O

Recap: System Calls in Linux
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Important file related system calls

Recap: System Calls to Manipulate Files

Id Name Function

0 read read some bytes from a file descriptor

1 write write some bytes to a file descriptor

2 open open a file system object, returning a file descriptor

3 close close a file descriptor

4 stat get file system metadata for a pathname

8 lseek move file descriptor to a specified offset within a file
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Every process starts with the 3 

standard streams, 0, 1, 2.

When a file is opened a new file 

descriptor is added to the table.

When a file is closed the file 

descriptor is removed

When a file is read to or written 

from, the offset is updated

Reca: File Descriptors

File descriptor

Table 

0 (stdin)

1 (stdout)

2 (stderr)

3 

4

File Table

Offset 42, read, etc

Offset 0, write, etc
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syscall : make a system call without writing assembler code

● not usually used by programmers

● use to experiment and learn

System call to print a message to stdout

Source code for hello_syscalls.c

char bytes[13] = "Hello, Zac!\n";

// argument 1 to syscall is the system call number, 1 is write

// remaining arguments are specific to each system call

// write system call takes 3 arguments:

//   1) file descriptor, 1 == stdout

//   2) memory address of first byte to write

//   3) number of bytes to write

syscall(1, 1, bytes, 12); // prints Hello, Zac! on stdout
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Libc wrapper to print message to stdout

Source code for hello_libc.c

char bytes[13] = "Hello, Zac!\n";

// write takes 3 arguments:

//   1) file descriptor, 1 == stdout

//   2) memory address of first byte to write

//   3) number of bytes to write

write(1, bytes, 12); // prints Hello, Zac! on stdout
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● C library has an interesting  way of returning error information

○ functions typically return -1 to indicate error

○ and set errno to integer value indicating reason for error

○ you can think of errno as a global integer variable

● These integer values are #define-d in errno.h

○ see man errno for more information

○ perror() looks at errno and prints message with reason

○ strerror() converts errno to string describing reason for error

● To see all error codes type errno -l on command line

Recap: errno
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Implement linux cp command

1. byte at a time stdio.h

2. using fgets and fprintf/fputs - what is the problem with this approach?

We also have implementations using syscall and  libc

Which is the best approach?

Exercise
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open()

read()

write()

close()

libc Code Demo
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$ clang -O3 cp_x.c -o cp_x
$ dd bs=1M count=10 < /dev/urandom > random_file
10485760 bytes (10 MB, 10 MiB) copied, 0.183075 s, 57.3 MB/s
$ time ./cp_x random_file random_file_copy

IO Performance libc

13



COMP1521 25T2

fopen()

fgetc(), fread()

fputc(), fwrite()

fclose()

stdio Code Demo
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Let’s compare our implementations of cp!

$ clang -O3 cp_x.c -o cp_x
$ dd bs=1M count=10 < /dev/urandom > random_file
10485760 bytes (10 MB, 10 MiB) copied, 0.183075 s, 57.3 MB/s
$ time ./cp_x random_file random_file_copy

Can we get any insights from strace?

$strace ./cp_x random_file random_file_copy

Compare:

Linux cp command,  cp_fgetc_one_byte.c, cp_libc_one_byte.c, cp_libc.c

IO Performance & Buffering libc vs stdio
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● Goal: reduce number of system calls (expensive)

● Reading:

○ Uses a read system call to fill whole buffer

○ subsequent reads get bytes from the buffer

○ does not do another read system call till it runs out of data in the buffer

● Writing:

○ Delays calls to write system call by storing data in buffer (array) instead

○ calls write system call only when 

■ buffer is full, 

■ file is closed, 

■ fflush is called

■ a newline is encountered for output to terminal

stdio.h buffering for efficiency

16



COMP1521 25T2

You can manually flush stdio buffers by using:  

int fflush(FILE *stream); 

For example 

● this would force a write system call to stdout and empty the output buffer

fflush(stdout);
● Can also be used for files that have been opened for writing.

● Should not be used for stdin or files opened for read only.

fflush stdio buffers
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● To make a buggy version:

○ Use char instead of int for fgetc (this creates bugs with getchar too)

● Reminder: getchar and fgetc return int

○ Legal values they can return  -1..255. (257 possible values)

○ This can’t fit in signed char or unsigned char!

● signed char (or char on our system) can store -1 and detect EOF, 

○ but valid byte value 0xFF gets mistaken for EOF

● unsigned char can’t store -1 and can’t detect EOF

Demo: fgetc return type bug

18



COMP1521 25T2

char *fputs(char *s, FILE *stream); // write a string

char *fgets(char *s, int size, FILE *stream); // read a line

//formatted input/output

int fscanf(FILE *stream, const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

stdio.h reading and writing text only
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char *fputs(char *s, FILE *stream); // write a string

char *fgets(char *s, int size, FILE *stream); // read a line

//formatted input/output

int fscanf(FILE *stream, const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

These functions can not be used for binary data as they may contain 0x00 bytes

- can use to read text (ASCII/Unicode) 

- can not use to read a *jpg* for example

stdio.h reading and writing text only
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● Using fgets and fprintf to copy a file

Demo: cp using fgets and fprintf  
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● Using fgets and fprintf to copy a file

● Seems to work fine when copying text files BUT

○ Breaks for binary files with 0x00 bytes

○ They are interpreted as end of string ‘\0’ character

Reminder: only use fgets, fprintf, fscanf, or fputs for text

Demo: cp using fgets and fprintf  
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To read/write to stdin/stdout

int getchar(void);  // fgetc(stdin)

int putchar(int c); // fputc(c, stdout)

int puts(char *s);  // fputs(s, stdout)

int scanf(char *format, ...); // fscanf(stdin, format, ...)

int printf(char *format, ...); // fprintf(stdout, format, ...)

These should never be used: security vulnerability, buffer overflow

char *gets(char *s);  // Ok in general.

scanf("%s", array);              // Don’t use with %s 

Recap: stdio.h convenience functions
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stdio.h provides useful functions which operate on strings

// like scanf, but input comes from char array str
int sscanf(const char *str, const char *format, ...);

// like printf, but output goes to char array str
// handy for creating strings passed to other functions

// size contains size of str 

// Do not use similar function sprintf as it is a security vulnerability

int snprintf(char *str, size_t size, const char *format, ...);

stdio.h - IO to strings
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● So I can now read and write files sequentially... But

○ How do I know which position in the file I am at?

○ How can I skip to the end of the file?

○ How can I go back and read earlier data again?

seeking
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off_t lseek(int fd, off_t offset, int whence);
- change the current position in given stream

- offset is in bytes, and can be negative

- whence can be one of

- SEEK_SET : set offset from start of file

- SEEK_CUR: set file offset from current position

- SEEK_END: set file offset from end of file

- seeking beyond end of file leaves a gap which reads as 0's

- seeking back beyond start of file sets position to start of file

`

Seeking with libc system call wrapper
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int fseek(FILE *stream, long offset, int whence);
- is stdio equivalent to lseek() except:

- requires a FILE * input instead of int file descriptor

- influences stdio buffers

- returns 0 or -1 for error

fseek(stream, 42, SEEK_SET); // move to after 42nd byte

fseek(stream, 58, SEEK_CUR); // 58 bytes forward from current position

fseek(stream, -7, SEEK_CUR); // 7 bytes backward from current position

fseek(stream, -1, SEEK_END); // move to before last byte in file

long ftell(FILE *stream); //return current file position

Demo code fseek.c and fuzz.c  and advanced example: create_gigantic_file.c

Seeking with stdio.h
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● System calls relate to files:

○ open, close, read, write, lseek

● Equivalent stdio portable functions:

○ fopen, fclose, fgetc, fputc etc. fseek

What we learnt today
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● File Systems:

○ File metadata

■ Permissions

■ system call stat

○ Hard Links and Symbolic Links

○ Working with directories

Next Lecture
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Content Related Questions:  

Forum

Admin related Questions email: 

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au
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Student Support | I Need Help With…
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— student.unsw.edu.au/advisorsStudent Support
Indigenous Student 

Support

Equity Diversity and Inclusion 

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service 

(ELS)

— student.unsw.edu.au/els

Academic Language 

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental 

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health 

Connect

Mind 

HUB

student.unsw.edu.au/counselling 

Telehealth

student.unsw.edu.au/mind-hub 

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support 

Line

Outside Australia 

Afterhours 24-hour 

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams
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