
COMP1521 25T1

COMP1521 25T1

Floating Point, Operating Systems and
File Systems

Week 5 Lecture 2

Adapted from Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Assignment 1 is due Friday 6pm

 Week 4: test: due thursday 9pm (MIPS basics, control, arrays)

2

COMP1521 25T1

No lectures, tutorials or labs. Nothing due!

Lab 5 will be due in week 7. There is no lab 6.

Test 5 and Test 6 will be due in week 7

There will still be help sessions on.

There will be bitwise operators revision sessions on - stay tuned to
course forum announcements for details

Flex week next week!

COMP1521 25T1

Today’s Lecture
● Floating Point Representation
● Operating Systems
● File Systems

○ System Calls

4

COMP1521 25T1

IEEE 754 Standard

Note: the fraction part is often called the mantissa

Note:
float in C is
represented in this
single precision
format.
double in C is
represented in this
double precision
format

COMP1521 25T1

 150.75 = 10010110.11
 // normalise fraction, compute exponent
 = 1.001011011 × 27

 // determine sign bit,
 // map fraction to 24 bits, (don’t store the leading 1)
 // map exponent to 8 bits after adding on the bias of 127
 = 01000011000101101100000000000000

where red is sign bit, green is exponent, blue is fraction

Note: B=127, e=27, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

IEEE 754 Example

https://www.h-schmidt.net/FloatConverter/IEEE754.html

COMP1521 25T1

Floating Point Recap Exercise
Keep in mind 10000000 = 27 = 128

Convert -42.5 to IEEE 754 float?

Convert to decimal from IEEE 754 float
00111110100000000000000000000000

COMP1521 25T1

IEEE 754 Standard: Special Cases

Value Exponent Fraction Example

0 (+ve or -ve) all 0’s all 0’s

inf (∞ and -∞) all 1’s all 0’s 1.0/0

nan all 1’s Not all 0’s 0.0/0

COMP1521 25T1

Representation of +- infinity : propagates sensibly through calculations

IEEE 754 infinity.c

COMP1521 25T1

Representation for invalid results NaN (not a number)
● ensures errors propagates sensibly through calculations

IEEE 754 nan.c

COMP1521 25T1

integers ... subset (range) of the mathematical integers

● can represent all integer values in that subset

● each integer is 1 away from the next one and previous one

● all integers are represented accurately

Distribution of Floating Point Numbers

COMP1521 25T1

floating point ... subset of the mathematical real numbers

● floating point numbers not evenly distributed

○ numbers closer to 0 have higher precision which is good

○ representations get further apart as values get bigger

○ this works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

COMP1521 25T1

A 64-bit double uses 52 bits for the fraction (mantissa).
● Between 2n and 2n+1 there are 252 doubles evenly spaced

○ e.g. in the interval 2-42 and 2-43 there are 252 doubles
○ and in the interval between 1 and 2 there are 252 doubles
○ and in the interval between 242 and 243 there are 252 doubles

● near 0.001 - doubles are about 0.0000000000000000002 apart
● near 1000 - doubles are about 0.0000000000002 apart
● near 1000000000000000 - doubles are about 0.25 apart
● above 253 - doubles are more than 1 apart

Distribution of Floating Point Numbers

COMP1521 25T1

double_disaster.c
double_catastrophe.c
explain_float_representation.c

Code Demos

COMP1521 25T1

Operating Systems and File Systems

15

COMP1521 25T1

The linux manual (man) is divided into sections.

Important sections for this course include:

1. Executable programs eg. ls, cp
2. System calls
 - we will be looking at many of these today and in the coming weeks
3. Library calls eg. strcpy, scanf

And other sections that you can find out about by using the command man man
Advice: man will be available in the exam. Get used to using it!

Reminder: Linux Manual

COMP1521 25T1

● This course is a great way to see different areas in computing to

○ See what electives you might be interested in!!

○ See what area you might want to work in!!

● Question : What is YOUR favourite operating system?

○ Write in the chat

● Question 2: What do operating systems do?

○ Write in the chat

Operating Systems

17

COMP1521 25T1

● Manually Boot Your Computer
○ No OS means no automatic booting into a familiar environment.

● Write your own file system
○ No folders, no directories, your hard drive is just raw data

● Run Programs… If You Can
○ Multi-tasking?? Good luck.

● Security?
○ Your dodgy game can steal your passwords you typed into your

online banking… if you could connect to the internet… because…
● Why won’t my mouse, printer, usb port, internet connection work??

○ No OS = No drivers. Every program must talk directly to the hardware

A World without Operating Systems

18

COMP1521 25T1

● You would need to learn to do this for every specific computer
unless it happened to have the same exact configuration of
hardware
○ You would not be too keen to use a different device
○ Or get an upgrade would you??

● You would need to write different code for all different
configurations of hardware!

A World without Operating Systems

19

COMP1521 25T1

We want to generalise computers and provide functionality so:
● Users can easily use different machines with different

configurations of hardware
● We can write code that can target lots of computers regardless

of their hardware
○ Abstraction: We can write higher level code where we don’t have

to understand the exact hardware specs, or voltages etc.
○ Portable code: We can write code that runs on other machines!

A world with Operating Systems

COMP1521 25T1

● Operating system (OS) sits between the user and the hardware

● The OS effectively provides a virtual machine to each user.

○ much easier for user to write code and use machine

○ difficult (bug-prone) code implemented by operating system

○ coordinates access to resources e.g. file systems, multiple

processes

○ The virtual machine interface can stay the same across different

hardware making it easier for user to write portable code

Operating Systems

21

COMP1521 25T1

● Needs hardware to provide a privileged mode

○ OS kernel runs in this mode

○ code can access all hardware, memory and CPU instructions

● Needs hardware to provide a non-privileged mode which

○ code can not access hardware directly

○ code can only access the memory it was allocated

○ user code runs in this mode

Operating Systems: Privileged Mode

22

COMP1521 25T1

● System calls allow user level code to request hardware
operations

● System calls transfer execution to OS kernel code in privileged
mode
○ includes arguments specifying details of request being made
○ OS checks operation is valid & permitted
○ OS carries out operation
○ transfers execution back to user code in non-privileged mode

Operating Systems: System Calls

23

COMP1521 25T1

● Different operating system have different system calls
○ Linux system calls are very different Windows system calls
○ Linux provides 400+ system calls
○ type man syscalls to find out more information

● Examples of operations that might be provided by system call
○ read or write bytes to a file
○ create a process (run a program) or terminate a process
○ send information over the network

System Calls

24

COMP1521 25T1

● mipsy provides a virtual machine which can execute MIPS programs

● mipsy also provides a tiny operating system

● mipsy system calls

● syscall instruction

○ small number of very specific system calls

○ designed for students writing small programs with no library functions

○ MIPS programs running on real hardware and real OS also use syscall

Mipsy System Calls

25

COMP1521 25T1

● Linux system calls also have a number

○ e.g system call 1 is write bytes to a file

● Linux provides 400+ system calls

Experimenting with Linux System Calls

$ cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h
...
#define __NR_read 0
#define __NR_write 1
#define __NR_open 2
#define __NR_close 3
...
#define __NR_set_mempolicy_home_node 450

COMP1521 25T1

syscall command
● not usually used in practice
● syscalls vary between operating system code is less portable
● hard to understand

Libc syscall wrapper:
● more meaningful names
● does syscall for you and helps with error checking
● more portable than syscall but not portable

○ some work on POSIX compliant systems (like linux and
MacOS)

System Calls in Linux

COMP1521 25T1

Higher level library functions like stdio.h:
● useful most of the time
● calls syscall wrapper for you
● portable
● does other cool stuff to make thing easier
● you have been using these to indirectly do your system calls

the whole time!

System Calls in Linux

COMP1521 25T1

Important file related system calls

System Calls to Manipulate Files

Id Name Function

0 read read some bytes from a file descriptor

1 write write some bytes to a file descriptor

2 open open a file system object, returning a file descriptor

3 close close a file descriptor

4 stat get file system metadata for a pathname

8 lseek move file descriptor to a specified offset within a file

COMP1521 25T1

● On Unix-like systems a file is sequence/stream of zero or more bytes
○ file metadata doesn't record that it is e.g. ASCII, MP4, JPG, …
○ file extensions are just hints

Demo: Different File formats on Linux

Unix Files

COMP1521 25T1

● Files typically live on a hard drive or solid state drive

○ To interact with their data - they need to be read into RAM

○ We need to use system calls to do this!

■ A system call to open the file

■ System calls to read or write bytes from/to the file

■ A system call to close the file when we finish

● File Systems provide a mapping from the file name to where the files

are stored on the drive.

Files and File Systems

COMP1521 25T1

● file descriptors are small integers
○ Uniquely identify a stream/file that is open within a process
○ Are indexes into a per process OS file descriptor table

● OS stores info for each file descriptor such as:
○ File offset: current position in the file
○ File status: read-only, write-only etc
○ Information to locate the actual bytes related to the file/stream

File Descriptors

COMP1521 25T1

Every process starts with the 3
standard streams, 0, 1, 2.

When a file is opened a new file
descriptor is added to the table.

When a file is closed the file
descriptor is removed

When a file is read to or written
from, the offset is updated

File Descriptors
File descriptor
Table

0 (stdin)

1 (stdout)

2 (stderr)

3

4

File Table

Offset 42, read, etc

Offset 0, write, etc

COMP1521 25T1

● There are 3 standard streams in linux
○ stdin (0), stdout (1), stderr (2)

● They are treated like they are files in linux
○ They are a sequence of bytes like a file is

● By default
○ stdin : connected to keyboard
○ stdout: connected to terminal
○ stderr: connected to terminal

What on earth is stderr?

34

COMP1521 25T1

● The user can use redirection to send stdout and stderr to different places to
separate the output from the error messages
○ ./prog > output #redirects stdout to a file
○ ./prog 2> error_msgs #redirects stderr to a file

● Demo: stderr_example.c

What on earth is stderr?

35

COMP1521 25T1

syscall : make a system call without writing assembler code
● not usually used by programmers
● use to experiment and learn

System call to print a message to stdout

Source code for hello_syscalls.c

char bytes[13] = "Hello, Zac!\n";

 // argument 1 to syscall is the system call number, 1 is write
 // remaining arguments are specific to each system call

 // write system call takes 3 arguments:
 // 1) file descriptor, 1 == stdout
 // 2) memory address of first byte to write
 // 3) number of bytes to write

 syscall(1, 1, bytes, 12); // prints Hello, Zac! on stdout

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/files/code/hello_syscalls.c

COMP1521 25T1

● Unix-like systems have C library wrapper functions corresponding to
most system calls
○ e.g. open, read, write, close
○ not portable

■ some are POSIX compliant and will run on some non-Unix
systems

○ typically return -1 on error and set the error code errno
○ Better to use library functions (eg stdio.h functions) when

possible.

Unix C Library Wrappers for System Calls

COMP1521 25T1

Libc wrapper to print message to stdout

Source code for hello_libc.c

 char bytes[13] = "Hello, Zac!\n";

 // write takes 3 arguments:

 // 1) file descriptor, 1 == stdout

 // 2) memory address of first byte to write

 // 3) number of bytes to write

 write(1, bytes, 12); // prints Hello, Zac! on stdout

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/files/code/hello_libc.c

COMP1521 25T1

● stdio.h provides a portable higher-level API to manipulate files.

○ part of standard C library
○ available in every C implementation that can do I/O
○ functions are portable, convenient & efficient
○ on Unix-like systems they will call open()/read()/write() ... with buffering

● Use stdio.h functions for file operations unless you have a good
reason not to
○ e.g .program with special I/O requirements like a database

implementation

stdio.h - C Standard Library I/O Functions

COMP1521 25T1

printf will do the write system call for us!

See more ways to print using stdio.h with hello_stdio.c

Source code for hello_stdio.c

stdio library to print message to stdout

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/files/code/hello_syscalls.c

COMP1521 25T1

syscall vs libc vs stdio.h

hello.c printing to stdout
read_char.c reading byte from stdin

Live Coding

COMP1521 25T1

int open(char *pathname, int flags);

- open file at pathname, according to flags

- flags is a bit-mask defined in <fcntl.h>

int open(char *pathname, int flags, mode_t mode);

- Use this version when potentially creating a new file

- mode is an octal number to give the file sensible user access

permissions

if successful they return file descriptor (small non-negative int)
if unsuccessful they return -1 and set errno to value indicating reason

Libc wrapper to open a file

COMP1521 25T1

flags can be combined e.g. (O_WRONLY|O_CREAT)

Libc wrapper to open a file
Flag Use

O_RDONLY open for reading

O_WRONLY open for writing

O_APPEND append on each write

O_RDWR open object for reading and writing

O_CREAT create file if doesn't exist

O_TRUNC truncate to size 0

COMP1521 25T1

● C library has an interesting way of returning error information
○ functions typically return -1 to indicate error
○ and set errno to integer value indicating reason for error
○ you can think of errno as a global integer variable

● These integer values are #define-d in errno.h
○ see man errno for more information
○ perror() looks at errno and prints message with reason
○ strerror() converts errno to string describing reason for error

● To see all error codes type errno -l on command line

errno

COMP1521 25T1

int close(int fd);

- release open file descriptor fd

- if successful, return 0

- if unsuccessful, return -1 and set errno

- could be unsuccessful if fd is not an open file descriptor

- e.g. if fd has already been closed

number of file descriptors may be limited (maybe to 1024)

 - limited number of file open at any time, so use close()

Libc wrapper to close a file

COMP1521 25T1

ssize_t read(int fd, void *buf, size_t count);
 - read (up to) count bytes from fd into buf
 - buf should point to array of at least count bytes
 - read cannot check buf points to enough space
 - if successful, number of bytes actually read is returned
 - if no more bytes to read, 0 returned
 - if error, -1 is returned and errno set
 - file descriptor current position in file is updated

Libc library wrapper for read system call

COMP1521 25T1

ssize_t write(int fd, const void *buf, size_t count);
 - attempt to write count bytes from buf into stream identified by fd

 - if successful, number of bytes actually written is returned
 - if unsuccessful, -1 returned and errno is set
 - file descriptor current position in file is updated

Libc library wrapper for read system call

COMP1521 25T1

open_read.c
open_write.c
open_issue.c

Code Demo

COMP1521 25T1

Working with stdio.h library and files
And much more about file systems!

Coming up after flex week

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

50

https://forms.office.com/r/hP0wEPPFPX

COMP1521 25T1 51

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

52

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

