
COMP1521 25T1

COMP1521 25T1

Bitwise Operators and Floating Point

Week 5 Lecture 1

Adapted from Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Assignment 1 is due Friday 6pm

 Week 4: test: due thursday 9pm (MIPS basics, control, arrays)

2

COMP1521 25T1

Week 6 Flexibility Week

3

Week 6 (next week)is flexibility week so nothing is due then!

Week 5 lab: due monday midday week 7
Week 5 test: due thursday 9pm week 7 (MIPS strings)
Week 6 test: due thursday 9pm week 7 (bitwise operators C)

COMP1521 25T1

Today’s Lecture
● Bitwise Operators

○ Recap
○ MIPS examples
○ C Coding examples

● Floating Point Representation

4

COMP1521 25T1

Recap Demo: bitwise.c
$ dcc bitwise.c print_bits.c -o bitwise
$./bitwise
Enter a: 23032
Enter b: 12345
Enter c: 3
 a = 0101100111111000 = 0x59f8 = 23032
 b = 0011000000111001 = 0x3039 = 12345
 ~a = 1010011000000111 = 0xa607 = 42503
 a & b = 0001000000111000 = 0x1038 = 4152
 a | b = 0111100111111001 = 0x79f9 = 31225
 a ^ b = 0110100111000001 = 0x69c1 = 27073
a >> c = 0000101100111111 = 0x0b3f = 2879
a << c = 1100111111000000 = 0xcfc0 = 53184

COMP1521 25T1

Given the following declarations:

What is the value of each of these expressions?

Exercise 1

6

// a signed 8-bit value

 uint8_t x = 0x55;

 uint8_t y = 0xAA;

 uint8_t a = x & y;

 uint8_t b = x ^ y;

 uint8_t c = x | y;

 uint8_t d = ~x

 uint8_t e = x >> 1;

 uint8_t f = y >> 2;

 uint8_t g = y << 2;

COMP1521 25T1

MIPS - Bit manipulation instructions

COMP1521 25T1

MIPS - Shift instructions

● srl and srlv shift zeroes into most-significant bit

○ This matches shift in C of unsigned values
● sra and srav propagate most-significant bit

○ This ensures the sign is maintained

COMP1521 25T1

● odd_even.s
● mips_bits.s
● mips_negative_shifts.s

MIPS Code Demos

9

COMP1521 25T1

● xor.c
● pokemon.c
● set_low_bits0.c
● set_low_bits.c
● set_bits_in_range.c
● extract_bits_in_range.c
● bitset.c

Code Demos

10

COMP1521 25T1

Demo: pokemon.c
$ dcc pokemon.c print_bits.c -o pokemon
$./pokemon
0000010000000000 BUG_TYPE
0000000000010000 POISON_TYPE
1000000000000000 FAIRY_TYPE
1000010000010000 our_pokemon type (1)

Poisonous
1001010000000000 our_pokemon type (2)

Scary

COMP1521 25T1

Demo: pokemon.c

#define FIRE_TYPE 0x0001
#define FIGHTING_TYPE 0x0002
#define WATER_TYPE 0x0004
#define FLYING_TYPE 0x0008
#define POISON_TYPE 0x0010
#define ELECTRIC_TYPE 0x0020
#define GROUND_TYPE 0x0040
#define PSYCHIC_TYPE 0x0080
#define ROCK_TYPE 0x0100
#define ICE_TYPE 0x0200
#define BUG_TYPE 0x0400
#define DRAGON_TYPE 0x0800
#define GHOST_TYPE 0x1000
#define DARK_TYPE 0x2000
#define STEEL_TYPE 0x4000
#define FAIRY_TYPE 0x8000

COMP1521 25T1

Demo: pokemon.c
$ dcc pokemon.c print_bits.c -o pokemon
$./pokemon
0000010000000000 BUG_TYPE
0000000000010000 POISON_TYPE
1000000000000000 FAIRY_TYPE
1000010000010000 our_pokemon type (1)

Poisonous
1001010000000000 our_pokemon type (2)

Scary

COMP1521 25T1

Demo: set_low_bits.c
$ dcc set_low_bits.c print_bits.c -o set_low_bits
$./set_low_bits 3

The bottom 3 bits of 7 are ones:
00000000000000000000000000000111
$./set_low_bits 19

The bottom 19 bits of 524287 are ones:
00000000000001111111111111111111
$./set_low_bits 29

The bottom 29 bits of 536870911 are ones:
00011111111111111111111111111111

COMP1521 25T1

Demo: set_bit_range.c
$ dcc set_bit_range.c print_bits.c -o set_bit_range
$./set_bit_range 0 7

Bits 0 to 7 of 255 are ones:
00000000000000000000000011111111
$./set_bit_range 8 15

Bits 8 to 15 of 65280 are ones:
00000000000000001111111100000000
$./set_bit_range 8 23

Bits 8 to 23 of 16776960 are ones:
00000000111111111111111100000000
$./set_bit_range 1 30

Bits 1 to 30 of 2147483646 are ones:
01111111111111111111111111111110

COMP1521 25T1

Demo: extract_bit_range.c
$ dcc extract_bit_range.c print_bits.c -o extract_bit_range
$./extract_bit_range 4 7 42

Value 42 in binary is:
00000000000000000000000000101010

Bits 4 to 7 of 42 are:
0010
$./extract_bit_range 10 20 123456789

Value 123456789 in binary is:
00000111010110111100110100010101

Bits 10 to 20 of 123456789 are:
11011110011

COMP1521 25T1

Demo: bitset.c
$ dcc bitset.c print_bits.c -o bitset
$./bitset

Set members can be 0-63, negative number to finish

Enter set a: 1 2 4 8 16 32 -1

Enter set b: 5 4 3 33 -1
a = 0000000000000000000000000000000100000000000000010000000100010110 = 0x100010116 =
4295033110
b = 0000000000000000000000000000001000000000000000000000000000111000 = 0x200000038 =
8589934648
a = {1,2,4,8,16,32}
b = {3,4,5,33}
a union b = {1,2,3,4,5,8,16,32,33}
a intersection b = {4}
cardinality(a) = 6
is_member(42, a) = 0

COMP1521 25T1

● The industry standard
○ Used by almost all computers

● Crucial to understand when working with
numeric computations

● Understand precision and accuracy
limitations
○ Why using them for finance is unwise
○ Why sometimes

■ a + 1 == a
○ Why code like

■ if (x == y) is not a good idea

IEEE 754 Floating Point Representation

18

Uh Oh!

COMP1521 25T1

● C has 3 floating point types
○ float ... typically 32-bit quantity (lower precision, narrower range)
○ double ... typically 64-bit quantity (higher precision, wider range)
○ long double … typically 128-bit quantity (but maybe only 80 bits

used)
● Literal floating point values by default are double: 3.14159,

1.0/3, 1.0e-9
● Reminder: division of 2 ints gives an int e.g. 1 / 2 == 0

Code demo: double_output.c

Floating Point Numbers

19

COMP1521 25T1

How do floating types have such a large range?

float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308

With the same number of bytes compare:

unsigned int 4 bytes min=0 max= 4294967295 (4.29497e+09)
unsigned long 8 bytes min=0 max= (1.84467e+19)

Code demo: Floating_types.c

Range of Floating Point Types

COMP1521 25T1

The decimal fraction 0.75 means

● 7*10-1 + 5*10-2 = 0.7 + 0.05 = 0.75
● or equivalently 75/102 = 75/100 = 0.75

Similarly 0.112 means

● 1*2-1 + 1*2-2 = 0.5 + 0.25 = 0.75
● or equivalently 3/22 = 3/4 = 0.75

Similarly 0.C16 would means

● 12*16-1 = 0.75
● or equivalently 12/161 = 3/4 = 0.75

Fractions in different bases
Note: We call the . a radix
point rather than a decimal
point when we are dealing
with other bases.

COMP1521 25T1

● The algorithm to convert a decimal fraction to another base is
○ Take the decimal (fractional) part of the number and multiply it by the

base you are converting to.
○ The whole number part of the result becomes the next digit after the

radix point in the converted number.
○ Repeat the process with the remaining fractional part.
○ Continue until the fractional part becomes zero or you have enough digits

for the desired accuracy.

Note: This process does not always terminate because some fractions have
repeating representations in certain bases.

Converting fractions to other bases

COMP1521 25T1

For example if we want to convert 0.3125 to base 2

● 0.3125 * 2 = 0.625
● 0.625 * 2 = 1.25
● 0.25 * 2 = 0.5
● 0.5 * 2 = 1.0

Therefore 0.3125 = 0.01012

Example: Converting Fractions

COMP1521 25T1

Convert the following decimal values into binary
● 12.625
● 0.1

Floating Point Exercise 1:

COMP1521 25T1

double_imprecision.c

Code Demos

COMP1521 25T1

Representing floating point numbers with a fixed small number of bits
means:
● a finite number of bit patterns
● can only represent a finite subset of reals

○ almost all real values will have no exact representation
○ value of arithmetic operations may be real with no exact representation

● we must use closest value which can be exactly represented
○ this approximation introduces an error into our calculations
○ often, does not matter
○ sometimes ... can be disastrous

■ eg pacemakers, finance

Floating Point Representation Issues

COMP1521 25T1

● A simple trick to represent fractional numbers as integers
○ every value is multiplied by a particular constant and stored as an integer

■ e.g. if constant is 1000 then 56125 represents 56.125
■ we could not represent 3.141592

● Used on small embedded processors without floating point hardware

● Major limitation is range:

○ 16 bits used for integer part and 16 bits for fraction (equivalent to a scale
factor of 216)

■ minimum 2-16 ≈ 0.000015

■ maximum 215 ≈ 32768

Fixed Point Representation

COMP1521 25T1

Idea: use scientific notation
● e.g 6.0221515 * 1023

But in binary:
● 10.6875 = 1010.1011

 = 1.0101011 * 23

Allows a much bigger range of values to be represented than fixed point
● 8 bits for the exponent can represent numbers from 10-38 .. 1038
● 11 bits for the exponent can represent numbers from 10-308 .. 10308

IEEE Standard: Exponential Representation

COMP1521 25T1

IEEE 754 Standard

Note: the fraction part is often called the mantissa

Note:
float in C is
represented in this
single precision
format.
double in C is
represented in this
double precision
format

COMP1521 25T1

Sign bit: 0 for positive, 1 for negative

Fraction:
We don’t want multiple representations of the same number so we normalise it
● Use representation with exactly 1 digit in front of the radix point

○ (i.e. 1.1001×23 rather than 1100.1×20 or 11.001×22)
● better to have only one representation (one bit pattern) representing a value

○ multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it
● as we long we have a special representation for zero
● To represent 1.1001×23 we would store 1001000000… for the fraction.

IEEE 754 Standard: Sign and Fraction

30

COMP1521 25T1

● represented relative to a bias value B
○ to represent exponent of x, we would store x+B
○ for floats the bias is 127

● e.g. we were representing 1.1001×23 we would store
(3+127) = 130 = 10000010 for a float

● How bias is calculated:
○ assume an 8-bit exponent, then bias B = 28-1-1 = 127
○ valid bit patterns for exponent 00000001 .. 11111110 (1..254)
○ exponent values we can represent -126 .. 127

IEEE 754 Standard: Exponent

COMP1521 25T1

 150.75 = 10010110.11
 // normalise fraction, compute exponent
 = 1.001011011 × 27

 // determine sign bit,
 // map fraction to 24 bits, (don’t store the leading 1)
 // map exponent to 8 bits after adding on the bias of 127
 = 01000011000101101100000000000000

where red is sign bit, green is exponent, blue is fraction

Note: B=127, e=27, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

IEEE 754 Example

https://www.h-schmidt.net/FloatConverter/IEEE754.html

COMP1521 25T1

Question 1: Convert the decimal numbers 1 to a floating point number in IEEE 754
single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point numbers
to decimal.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000

Exercise 2: Floating Point Conversions

COMP1521 25T1

IEEE 754 Standard: Special Cases

Value Exponent Fraction Example

0 (+ve or -ve) all 0’s all 0’s

inf (∞ and -∞) all 1’s all 0’s 1.0/0

nan all 1’s Not all 0’s 0.0/0

COMP1521 25T1

Representation of +- infinity : propagates sensibly through calculations

IEEE 754 infinity.c

COMP1521 25T1

Representation for invalid results NaN (not a number)
● ensures errors propagates sensibly through calculations

IEEE 754 nan.c

COMP1521 25T1

integers ... subset (range) of the mathematical integers

● can represent all integer values in that subset

● each integer is 1 away from the next one and previous one

● all integers are represented accurately

Distribution of Floating Point Numbers

COMP1521 25T1

floating point ... subset of the mathematical real numbers

● floating point numbers not evenly distributed

○ numbers closer to 0 have higher precision which is good

○ representations get further apart as values get bigger

○ this works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

COMP1521 25T1

A 64-bit double uses 52 bits for the fraction (mantissa).
● Between 2n and 2n+1 there are 252 doubles evenly spaced

○ e.g. in the interval 2-42 and 2-43 there are 252 doubles
○ and in the interval between 1 and 2 there are 252 doubles
○ and in the interval between 242 and 243 there are 252 doubles

● near 0.001 - doubles are about 0.0000000000000000002 apart
● near 1000 - doubles are about 0.0000000000002 apart
● near 1000000000000000 - doubles are about 0.25 apart
● above 253 - doubles are more than 1 apart

Distribution of Floating Point Numbers

COMP1521 25T1

double_disaster.c
double_catastrophe.c
explain_float_representation.c

Code Demos

COMP1521 25T1 41

● Bitwise Operators
○ Recap
○ MIPS examples
○ C Coding examples

● Floating Point Representation

Next Lecture: File Systems

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

42

https://forms.office.com/r/ptY9X4Hg0J

COMP1521 25T1 43

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

44

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

