COMP1521 25T1

Week 5 Lecture 1

Bitwise Operators and Floating Point

Adapted from Hammond Pearce, Andrew Taylor and John Shepherd's slides

COMP1521 25T1

Assignment 1 is due Friday 6pm

Week 4: test: due thursday 9pm (MIPS basics, control, arrays)

Week 6 Flexibility Week

Week 6 (next week) is flexibility week so nothing is due then!

Week 5 lab: due monday midday week 7 Week 5 test: due thursday 9pm week 7 (MIPS strings) Week 6 test: due thursday 9pm week 7 (bitwise operators C)

Today's Lecture

- Bitwise Operators
 - Recap
 - MIPS examples
 - C Coding examples
- Floating Point Representation

Recap Demo: bitwise.c

\$ dcc bitwise.c print_bits.c -o bitwise \$./bitwise Enter a: 23032 Enter b: 12345 Enter c: 3 a = 0101100111111000 = 0x59f8 = 23032 $b = 0011000000111001 = 0 \times 3039 = 12345$ $\sim a = 1010011000000111 = 0 \times a607 = 42503$ $a \& b = 000100000111000 = 0 \times 1038 = 4152$ a | b = 0111100111111001 = 0x79f9 = 31225 $a \wedge b = 0110100111000001 = 0x69c1 = 27073$ a >> c = 0000101100111111 = 0x0b3f = 2879a << c = 1100111111000000 = 0xcfc0 = 53184

Exercise 1

Given the following declarations:

```
// a signed 8-bit value
    uint8_t x = 0x55;
    uint8_t y = 0xAA;
```

What is the value of each of these expressions?

uint8_t $a = x \& y;$	uint8_t $e = x >> 1;$
uint8_t b = $x \wedge y$;	<pre>uint8_t f = y >> 2;</pre>
uint8_t $c = x y;$	<pre>uint8_t g = y << 2;</pre>
uint8 + d = xx	

MIPS - Bit manipulation instructions

assembly	meaning	bit pattern
and r_d , r_s , r_t	r_d = r_s & r_t	000000ssssstttttddddd00000100100
or r_d , r_s , r_t	r_d = $r_s \mathrm{l} r_t$	000000ssssstttttddddd00000100101
xor r_d , r_s , r_t	r_d = $r_s \wedge r_t$	000000ssssstttttddddd00000100110
nor r_d , r_s , r_t	$r_d = \sim (r_s \mid r_t)$	000000ssssstttttddddd00000100111
and i r_t, r_s, I	r_t = r_s & I	001100ssssstttttIIIIIIIIIIIIIII
ori r_t, r_s, I	r_t = r_s l I	001101ssssstttttIIIIIIIIIIIIIII
xori r_t, r_s, I	r_t = r_s ^ I	001110ssssstttttIIIIIIIIIIIIIIII
${\rm not} r_d \text{, } r_s$	r_d = ~ r_s	pseudo-instruction

MIPS - Shift instructions

assembly	meaning	bit pattern
sllv r_d , r_t , r_s	r_d = $r_t \ll r_s$	000000ssssstttttddddd0000000100
$\operatorname{srlv} r_d \text{,} r_t \text{,} r_s$	r_d = $r_t \gg r_s$	000000ssssstttttddddd0000000110
srav r_d , r_t , r_s	r_d = $r_t \gg r_s$	000000ssssstttttddddd0000000111
$\mathbf{sll} r_d \text{, } r_t \text{, } \mathbf{I}$	r_d = $r_t \ll {\tt I}$	00000000000tttttdddddIIIII000000
$\operatorname{srl} r_d \text{, } r_t \text{, I}$	r_d = r_t » I	00000000000tttttdddddIIIII000010
$\operatorname{\mathbf{sra}} r_d \text{, } r_t \text{, } \mathbf{I}$	r_d = r_t » I	00000000000tttttdddddIIIII000011

- **srl** and **srlv** shift zeroes into most-significant bit
 - This matches shift in C of unsigned values
- **sra** and **srav** propagate most-significant bit
 - This ensures the sign is maintained

MIPS Code Demos

- odd_even.s
- mips_bits.s
- mips_negative_shifts.s

Code Demos

- XOr.C
- pokemon.c
- set_low_bits0.c
- set_low_bits.c
- set_bits_in_range.c
- extract_bits_in_range.c
- bitset.c

Demo: pokemon.c

\$ dcc pokemon.c print_bits.c -o pokemon \$./pokemon 000001000000000 BUG_TYPE 000000000000000 POISON_TYPE 100000000000000 FAIRY_TYPE 1000010000010000 our_pokemon type (1)

Poisonous 100101000000000 our_pokemon type (2)

Scary

Demo: pokemon.c

#define FIRE_TYPE 0x0001 #define FIGHTING_TYPE 0x0002 #define WATER_TYPE 0x0004 #define FLYING_TYPE 0x0008 #define POISON TYPE 0x0010 #define ELECTRIC_TYPE 0x0020 #define GROUND_TYPE 0x0040 #define PSYCHIC_TYPE 0x0080 #define ROCK_TYPE 0x0100 #define ICE TYPE 0x0200 #define BUG_TYPE 0x0400 #define DRAGON_TYPE 0x0800 #define GHOST_TYPE 0x1000 #define DARK_TYPE 0x2000 #define STEEL TYPE 0x4000 #define FAIRY_TYPE 0x8000

Demo: pokemon.c

\$ dcc pokemon.c print_bits.c -o pokemon \$./pokemon 000001000000000 BUG_TYPE 000000000000000 POISON_TYPE 100000000000000 FAIRY_TYPE 1000010000010000 our_pokemon type (1)

Poisonous 100101000000000 our_pokemon type (2)

Scary

Demo: set_low_bits.c

\$ dcc set_low_bits.c print_bits.c -o set_low_bits
\$./set_low_bits 3

```
The bottom 3 bits of 7 are ones:
000000000000000000000000000000111
$ ./set_low_bits 19
```

```
The bottom 19 bits of 524287 are ones:
0000000000001111111111111111
$ ./set_low_bits 29
```

Demo: set_bit_range.c

\$ dcc set_bit_range.c print_bits.c -o set_bit_range \$./set_bit_range 0 7

Bits 0 to 7 of 255 are ones: 0000000000000000000000000001111111 \$./set_bit_range 8 15

Bits 8 to 15 of 65280 are ones: 0000000000000000111111100000000 \$./set_bit_range 8 23

Bits 8 to 23 of 16776960 are ones: 000000001111111111111100000000 \$./set_bit_range 1 30

Bits 1 to 30 of 2147483646 are ones: 01111111111111111111111111111

Demo: extract_bit_range.c

\$ dcc extract_bit_range.c print_bits.c -o extract_bit_range \$./extract_bit_range 4 7 42

Bits 4 to 7 of 42 are: 0010 \$./extract_bit_range 10 20 123456789

Value 123456789 in binary is: 00000111010110111100110100010101

Bits 10 to 20 of 123456789 are: 11011110011

Demo: bitset.c

```
$ dcc bitset.c print_bits.c -o bitset
$ ./bitset
```

Set members can be 0-63, negative number to finish

```
Enter set a: 1 2 4 8 16 32 -1
```

```
Enter set b: 5 4 3 33 -1
```

```
a = {1,2,4,8,16,32}
b = {3,4,5,33}
a union b = {1,2,3,4,5,8,16,32,33}
a intersection b = {4}
cardinality(a) = 6
is_member(42, a) = 0
```

IEEE 754 Floating Point Representation

- The industry standard
 - Used by almost all computers
- Crucial to understand when working with numeric computations
- Understand precision and accuracy limitations
 - Why using them for finance is unwise
 - Why sometimes

■ a + 1 == a

- Why code like
 - if (x == y) is not a good idea

When your mom calls you by your full name

Floating Point Numbers

- C has 3 floating point types
 - **float** ... typically 32-bit quantity (lower precision, narrower range)
 - **double** ... typically 64-bit quantity (higher precision, wider range)
 - long double ... typically 128-bit quantity (but maybe only 80 bits used)
- Literal floating point values by default are **double**: 3.14159, 1.0/3, 1.0e-9
- Reminder: division of 2 ints gives an int e.g. 1 / 2 == 0

Code demo: double_output.c

Range of Floating Point Types

How do floating types have such a large range?

float	4 bytes	min=1.17549e-38	max=3.40282e+38
double	8 bytes	min=2.22507e-308	max=1.79769e+308

With the same number of bytes compare:

unsigned int 4 bytes min=0 max= 4294967295 (4.29497e+09) unsigned long 8 bytes min=0 max= (1.84467e+19)

Code demo: Floating_types.c

Fractions in different bases

The decimal fraction 0.75 means

- $7*10^{-1} + 5*10^{-2} = 0.7 + 0.05 = 0.75$
- or equivalently $75/10^2 = 75/100 = 0.75$

Similarly 0.11_2 means

- $1*2^{-1} + 1*2^{-2} = 0.5 + 0.25 = 0.75$
- or equivalently $3/2^2 = 3/4 = 0.75$

Similarly 0.C₁₆ would means

- 12*16⁻¹ = 0.75
- or equivalently 12/16¹ = 3/4 = 0.75

Note: We call the . a radix point rather than a decimal point when we are dealing with other bases.

Converting fractions to other bases

- The algorithm to convert a decimal fraction to another base is
 - Take the decimal (fractional) part of the number and multiply it by the base you are converting to.
 - The whole number part of the result becomes the next digit after the radix point in the converted number.
 - Repeat the process with the remaining fractional part.
 - Continue until the fractional part becomes zero or you have enough digits for the desired accuracy.

Note: This process does not always terminate because some fractions have repeating representations in certain bases.

Example: Converting Fractions

For example if we want to convert 0.3125 to base 2

- 0.3125 * 2 = **0**.625
- 0.625 * 2 **= 1**.25
- 0.25 * 2 = **0**.5
- 0.5 * 2 = **1**.0

Therefore $0.3125 = 0.0101_2$

Floating Point Exercise 1:

Convert the following decimal values into binary

- 12.625
- 0.1

Code Demos

double_imprecision.c

Floating Point Representation Issues

Representing floating point numbers with a fixed small number of bits means:

- a finite number of bit patterns
- can only represent a finite subset of reals
 - almost all real values will have no exact representation
 - value of arithmetic operations may be real with no exact representation
- we must use **closest value** which can be exactly represented
 - this approximation introduces an error into our calculations
 - o often, does not matter
 - sometimes ... can be disastrous
 - eg pacemakers, finance

Fixed Point Representation

- A simple trick to represent fractional numbers as integers
 - every value is multiplied by a particular constant and stored as an integer
 - e.g. if constant is 1000 then 56125 represents 56.125
 - we could not represent 3.141592
- Used on small embedded processors without floating point hardware
- Major limitation is range:
 - 16 bits used for integer part and 16 bits for fraction (equivalent to a scale factor of 2¹⁶)
 - minimum $2^{-16} \approx 0.000015$
 - maximum $2^{15} \approx 32768$

IEEE Standard: Exponential Representation

Idea: use scientific notation

• e.g 6.0221515 * 10²³

But in binary:

- 10.6875 = 1010.1011
 - $= 1.0101011 * 2^{3}$

Allows a much bigger range of values to be represented than fixed point

- 8 bits for the exponent can represent numbers from 10⁻³⁸.. 10³⁸
- 11 bits for the exponent can represent numbers from 10^{-308} .. 10^{308}

IEEE 754 Standard

Note: the fraction part is often called the mantissa

IEEE 754 Standard: Sign and Fraction

Sign bit: 0 for positive, 1 for negative

Fraction:

We don't want multiple representations of the same number so we **normalise** it

- Use representation with exactly 1 digit in front of the radix point
 (i.e. 1.1001×2³ rather than 1100.1×2⁰ or 11.001×2²)
- better to have only one representation (one bit pattern) representing a value
 multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it

- as we long we have a special representation for zero
- To represent 1.1001×2^3 we would store 100100000... for the fraction.

IEEE 754 Standard: Exponent

- represented relative to a bias value *B*
 - to represent exponent of x, we would store x+B
 - o for floats the **bias** is 127
- e.g. we were representing 1.1001×2³ we would store (3+127) = 130 = 10000010 for a float
- How bias is calculated:
 - assume an 8-bit exponent, then bias $B = 2^{8-1}-1 = 127$
 - valid bit patterns for exponent 00000001 .. 11111110 (1..254)
 - exponent values we can represent -126 .. 127

IEEE 754 Example

150.75 = 10010110.11

// normalise fraction, compute exponent

= 1.001011011 × 2⁷

// determine sign bit,

// map fraction to 24 bits, (don't store the leading 1)

// map exponent to 8 bits after adding on the bias of 127

where red is sign bit, green is exponent, blue is fraction

Note: *B*=127, e=2⁷, so exponent = 127+7 = 134 = **10000110**

Check using explain_float_representation.c or Floating Point Calculator

Exercise 2: Floating Point Conversions

Question 1: Convert the decimal numbers 1 to a floating point number in IEEE 754 single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point numbers to decimal.

0 1000000 11000000000000000000000

IEEE 754 Standard: Special Cases

Value	Exponent	Fraction	Example
0 (+ve or -ve)	all O's	all O's	
inf (∞ and - ∞)	all 1's	all O's	1.0/0
nan	all 1's	Not all 0's	0.0/0

IEEE 754 infinity.c

Representation of +- infinity : propagates sensibly through calculations

```
double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)</pre>
printf("%d\n", x == INFINITY); // prints 1 (true)
```

IEEE 754 nan.c

Representation for invalid results NaN (not a number)

• ensures errors propagates sensibly through calculations

```
double x = 0.0/0.0;
```

```
printf("%lf\n", x); //prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

Distribution of Floating Point Numbers

integers ... subset (range) of the mathematical integers

- can represent all integer values in that subset
- each integer is 1 away from the next one and previous one
- all integers are represented accurately

Distribution of Floating Point Numbers

floating point ... subset of the mathematical real numbers

- floating point numbers not evenly distributed
 - numbers closer to 0 have higher precision which is good
 - representations get further apart as values get bigger
 - this works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

A 64-bit **double** uses 52 bits for the fraction (mantissa).

- Between 2ⁿ and 2ⁿ⁺¹ there are 2⁵² doubles evenly spaced
 - $\circ~$ e.g. in the interval 2⁻⁴² and 2⁻⁴³ there are 2⁵² doubles
 - \circ $\,$ and in the interval between 1 and 2 there are 2^{52} doubles
 - \circ $\,$ and in the interval between 2^{42} and 2^{43} there are 2^{52} doubles
- near 0.001 doubles are about 0.000000000000000002 apart
- near 1000 doubles are about 0.000000000002 apart
- near 10000000000000 doubles are about 0.25 apart
- above 2⁵³ doubles are more than 1 apart

Code Demos

double_disaster.c double_catastrophe.c explain_float_representation.c

What did we learn today?

- Bitwise Operators
 - Recap
 - MIPS examples
 - C Coding examples
- Floating Point Representation

Next Lecture: File Systems

Feedback Please!

Your feedback is valuable!

If you have any feedback from today's lecture, please follow the link below or use the QR Code.

Please remember to keep your feedback constructive, so I can action it and improve your learning experience.

https://forms.office.com/r/ptY9X4Hg0J

Reach Out

Content Related Questions: Forum

Admin related Questions email: <u>cs1521@cse.unsw.edu.au</u>

Student Support | I Need Help With...

