
COMP1521 25T2

COMP1521 25T2

Floating Point, Operating Systems and
File Systems

Week 5 Lecture 2

Adapted from Angela Finlayson, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

1

COMP1521 25T2

Assignment 1 is due Friday 6pm

Week 4: test: due tomorrow 9pm (MIPS basics, control, arrays)

2

COMP1521 25T2

No lectures, tutorials or labs. Nothing due!

Lab 5 will be due in week 7.

Test 5 will be due in week 7.

Test 6 will be due in week 7

There is no lab 6

Help sessions will still be on

Flex week next week!

3

COMP1521 25T2

Today’s Lecture

● Floating Point Recap

● Operating Systems

● File Systems

○ System Calls

4

COMP1521 25T2

IEEE 754 Standard

Note: the fraction part is often called the mantissa

Note:
float in C is
represented in this
single precision
format.
double in C is
represented in this
double precision
format

5

COMP1521 25T2

150.75 = 10010110.11
// normalise fraction, compute exponent

= 1.001011011 × 27

// determine sign bit,

// map fraction to 24 bits, (don’t store the leading 1)

// map exponent to 8 bits after adding on the bias of 127

= 01000011000101101100000000000000

where red is sign bit, green is exponent, blue is fraction

Note: B=127, e=27, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

IEEE 754 Example

6

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html

COMP1521 25T2

Floating Point Recap Exercise

Keep in mind 10000000 = 27 = 128

Convert -42.5 to IEEE 754 float?

Convert to decimal from IEEE 754 float

00111110100000000000000000000000

7

COMP1521 25T2

IEEE 754 Standard: Special Cases

Value Exponent Fraction Example

0 (+ve or -ve) all 0’s all 0’s

inf (∞ and -∞) all 1’s all 0’s 1.0/0

nan all 1’s Not all 0’s 0.0/0

8

COMP1521 25T2

Representation of +- infinity : propagates sensibly through calculations

IEEE 754 infinity.c

9

COMP1521 25T2

Representation for invalid results NaN (not a number)

● ensures errors propagates sensibly through calculations

IEEE 754 nan.c

10

COMP1521 25T2

integers ... subset (range) of the mathematical integers

● can represent all integer values in that subset

● each integer is 1 away from the next one and previous one

● all integers are represented accurately

Distribution of Floating Point Numbers

11

COMP1521 25T2

floating point ... subset of the mathematical real numbers

● floating point numbers not evenly distributed

○ numbers closer to 0 have higher precision which is good

○ representations get further apart as values get bigger

○ this works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

12

COMP1521 25T2

A 64-bit double uses 52 bits for the fraction (mantissa).
● Between 2n and 2n+1 there are 252 doubles evenly spaced

○ e.g. in the interval 2-42 and 2-43 there are 252 doubles

○ and in the interval between 1 and 2 there are 252 doubles

○ and in the interval between 242 and 243 there are 252 doubles

● near 0.001 - doubles are about 0.0000000000000000002 apart

● near 1000 - doubles are about 0.0000000000002 apart

● near 1000000000000000 - doubles are about 0.25 apart

● above 253 - doubles are more than 1 apart

Distribution of Floating Point Numbers

13

COMP1521 25T2

Operating Systems and File Systems

14

COMP1521 25T2

● This course is a great way to see different areas in computing to

○ See what electives you might be interested in!!

○ See what area you might want to work in!!

● Question 1: What is YOUR favourite operating system?

○ Write in the chat

● Question 2: What do operating systems do?

○ Write in the chat

Operating Systems

15

COMP1521 25T2

● Manually Boot Your Computer

○ No OS means no automatic booting into a familiar environment.

● Write your own file system

○ No folders, no directories, your hard drive is just raw data

● Run Programs… If You Can

○ Multi-tasking?? Good luck.

● Security?

○ Your dodgy game can steal your passwords you typed into your

online banking… if you could connect to the internet… because…

● Why won’t my mouse, printer, usb port, internet connection work??

○ No OS = No drivers. Every program must talk directly to the hardware

A World without Operating Systems

16

COMP1521 25T2

● You would need to learn to do this for every specific computer

unless it happened to have the same exact configuration of

hardware

○ You would not be too keen to use a different device

○ Or get an upgrade would you??

● You would need to write different code for all different

configurations of hardware!

A World without Operating Systems

17

COMP1521 25T2

We want to generalise computers and provide functionality so:

● Users can easily use different machines with different

configurations of hardware

● We can write code that can target lots of computers regardless

of their hardware

○ Abstraction: We can write higher level code where we don’t have

to understand the exact hardware specs, or voltages etc.

○ Portable code: We can write code that runs on other machines!

A world with Operating Systems

18

COMP1521 25T2

● Operating system (OS) sits between the user and the hardware

● The OS effectively provides a virtual machine to each user.

○ much easier for user to write code and use machine

○ difficult (bug-prone) code implemented by operating system

○ coordinates access to resources e.g. file systems, multiple

processes

○ The virtual machine interface can stay the same across different

hardware making it easier for user to write portable code

Operating Systems

19

COMP1521 25T2

● Needs hardware to provide a privileged mode

○ OS kernel runs in this mode

○ Code can access all hardware, memory and CPU instructions

● Needs hardware to provide a non-privileged mode, in which:

○ Code can not access hardware directly

○ Code can only access the memory it was allocated

○ User code (e.g. your code) runs in this mode

Operating Systems: Privileged Mode

20

COMP1521 25T2

● System calls allow user level code to request hardware

operations

● System calls transfer execution to OS kernel code in privileged

mode

○ includes arguments specifying details of request being made

○ OS carefully checks operation is valid & permitted

○ OS carries out operation

○ transfers execution back to user code in non-privileged mode

Operating Systems: System Calls

21

COMP1521 25T2

● Different operating system have different system calls

○ Linux system calls are very different to Windows system calls

○ Linux provides 400+ system calls. Type man syscalls to find out

more

● Examples of operations that might be provided by system call

○ read or write bytes to a file

○ create a process (run a program) or terminate a process

○ send information over the network

System Calls

22

COMP1521 25T2

● mipsy provides a virtual machine which can execute MIPS programs

● mipsy also provides a tiny operating system

● mipsy system calls

● syscall instruction

○ Small number of very specific system calls

○ Designed for students writing small programs with no library functions

○ MIPS programs running on real hardware and real OS also use syscall

Mipsy System Calls

23

COMP1521 25T2

● Linux system calls also have a number

○ e.g system call 1 is write bytes to a file

● Linux provides 400+ system calls

Linux System Calls

$ cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h
...
#define __NR_read 0
#define __NR_write 1
#define __NR_open 2
#define __NR_close 3
...
#define __NR_set_mempolicy_home_node 450

24

COMP1521 25T2

The linux manual (man) is divided into sections.

Important sections for this course include:

1. Executable programs eg. ls, cp

2. System calls

- we will be looking at many of these in the coming weeks

3. Library calls eg. strcpy, scanf

And other sections that you can find out about by using the command man man
Advice: man will be available in the exam. Get used to using it!

Reminder: Linux Manual

25

COMP1521 25T2

Important file related system calls

System Calls to Manipulate Files

Id Name Function

0 read read some bytes from a file descriptor

1 write write some bytes to a file descriptor

2 open open a file system object, returning a file descriptor

3 close close a file descriptor

4 stat get file system metadata for a pathname

8 lseek move file descriptor to a specified offset within a file

26

COMP1521 25T2

syscall function

● Not usually used in practice

● Syscalls vary between operating system -- code is less portable

● Hard to understand

Libc syscall wrapper:

● More meaningful names: open(...), read(...), write(...)

● Does syscall for you and helps with error checking

● More portable than syscall but still not portable

○ Some work on POSIX compliant systems

(e.g. Linux and MacOS)

System Calls in Linux

27

COMP1521 25T2

stdio.h provides higher-level library functions:

● fopen(...), fgets(...), fputc(...)

● Calls syscall wrapper for you

● Portable

● You have been using these to indirectly do your system

calls the whole time!

● Sometimes we need lower-level non-portable functions

● e.g. Database software needs precise control over I/O

System Calls in Linux

28

COMP1521 25T2

● On Unix-like systems a file is sequence/stream of zero or more bytes

○ File metadata doesn't record that it is e.g. ASCII, MP4, JPG, …

○ File extensions are just hints

Demo: Different File formats on Linux

Unix Files

29

COMP1521 25T2

● Files typically live on a mechanical or solid state hard drive

○ To interact with their data - they need to be read into RAM

○ We need to use system calls to do this!

■ A system call to open the file

■ System calls to read or write bytes from/to the file

■ A system call to close the file when we finish

● File Systems provide a mapping from the file name to where the files

are stored on the drive.

Files and File Systems

30

COMP1521 25T2

● file descriptors are small integers

○ Uniquely identify a stream/file that is open within a process

○ Are indexes into a per process OS file descriptor table

● OS stores info for each file descriptor such as:

○ File offset: current position in the file

○ File status: read-only, write-only etc

○ Information to locate the actual bytes related to the file/stream

File Descriptors

31

COMP1521 25T2

Every process starts with the 3

standard streams, 0, 1, 2.

When a file is opened a new file

descriptor is added to the table.

When a file is closed the file

descriptor is removed

When a file is read to or written

from, the offset is updated

File Descriptors

File descriptor

Table

0 (stdin)

1 (stdout)

2 (stderr)

3

4

File Table

Offset 42, read, etc

Offset 0, write, etc

32

COMP1521 25T2

● There are 3 standard streams in linux

○ stdin (0), stdout (1), stderr (2)

● They are treated like they are files in linux

○ They are a sequence of bytes like a file is

● By default

○ stdin : connected to keyboard

○ stdout: connected to terminal

○ stderr: connected to terminal

What on earth is stderr?

33

COMP1521 25T2

● The user can use redirection to send stdout and stderr to different places to

separate the output from the error messages

○ ./prog > output #redirects stdout to a file

○ ./prog 2> error_msgs #redirects stderr to a file

What on earth is stderr?

34

COMP1521 25T2

syscall : make a system call without writing assembler code

● Not usually used by programmers

● Use to experiment and learn

System call to print a message to stdout

char bytes[13] = "Hello, Zac!\n";

// argument 1 to syscall is the system call number, 1 is write

// remaining arguments are specific to each system call

// write system call takes 3 arguments:

// 1) file descriptor, 1 == stdout

// 2) memory address of first byte to write

// 3) number of bytes to write

syscall(1, 1, bytes, 12); // prints Hello, Zac! on stdout

35

COMP1521 25T2

● Unix-like systems have C library wrapper functions corresponding to

most system calls

○ e.g. open, read, write, close

○ Not portable

○ Typically return -1 on error and set the error code errno

○ Better to use library functions (eg stdio.h functions) where

possible.

Unix C Library Wrappers for System Calls

36

COMP1521 25T2

● C library has an interesting way of returning error information

○ functions typically return -1 to indicate error

○ and set errno to integer value indicating reason for error

○ you can think of errno as a global integer variable

● These integer values are #define-d in errno.h

○ see man errno for more information

○ perror() looks at errno and prints message with reason

○ strerror() converts errno to string describing reason for error

● To see all error codes type errno -l on command line

errno

37

COMP1521 25T2

Libc wrapper to print message to stdout

char bytes[13] = "Hello, Zac!\n";

// write takes 3 arguments:

// 1) file descriptor, 1 == stdout

// 2) memory address of first byte to write

// 3) number of bytes to write

write(1, bytes, 12); // prints Hello, Zac! on stdout

38

COMP1521 25T2

● stdio.h provides a portable higher-level API to manipulate files.

○ part of standard C library

○ available in every C implementation that can do I/O

○ functions are portable, convenient & efficient

○ on Unix-like systems they will call open()/read()/write() ... with buffering

● Use stdio.h functions for file operations unless you have a good

reason not to

○ e.g .program with special I/O requirements like a database

implementation

stdio.h - C Standard Library I/O Functions

39

COMP1521 25T2

printf will do the write system call for us!

Many examples in the code sections of the course website:

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/files/code/

stdio library to print message to stdout

40

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/files/code/

COMP1521 25T2

int open(char *pathname, int flags);

- open file at pathname, according to flags

- flags is a bit-mask defined in <fcntl.h>

int open(char *pathname, int flags, mode_t mode);

- Use this version when potentially creating a new file

- mode is an octal number representing access permissions (on POSIX

compliant systems)

If successful, they return file descriptor (small non-negative int)

If unsuccessful, they return -1 and set errno to value indicating reason

Libc wrapper to open a file

41

COMP1521 25T2

Flags can be combined e.g. (O_WRONLY|O_CREAT)

Libc wrapper to open a file

Flag Use

O_RDONLY open for reading

O_WRONLY open for writing

O_APPEND append on each write

O_RDWR open object for reading and writing

O_CREAT create file if doesn't exist

O_TRUNC truncate to size 0

42

COMP1521 25T2

int close(int fd);

- Release open file descriptor fd

- If successful, return 0

- If unsuccessful, return -1 and set errno

- Could be unsuccessful if fd was already closed

- Limited number of file open at any time, so use close()

Libc wrapper to close a file

43

COMP1521 25T2

ssize_t read(int fd, void *buf, size_t count);
- Read (up to) count bytes from fd into buf

- buf should point to array of at least count bytes

- read cannot check buf points to enough space

- If successful, number of bytes actually read is returned

- If no more bytes to read, 0 returned

- If error, -1 is returned and errno set

- File descriptor current position in file is updated

Libc library wrapper for read system call

44

COMP1521 25T2

ssize_t write(int fd, const void *buf, size_t count);
- Attempt to write count bytes from buf into stream identified by fd

- If successful, number of bytes actually written is returned

- If unsuccessful, -1 returned and errno is set

- File descriptor current position in file is updated

Libc library wrapper for read system call

45

COMP1521 25T2

FILE *fopen(const char *pathname, const char *mode);

- mode is string of 1 or more characters including:

- r open file for reading.

- w open file for writing

truncated to 0 zero length if it exists

created if does not exist

- a open file for writing

writes append to it if it exists

created if does not exist

stdio.h - fopen()

46

COMP1521 25T2

fopen returns a FILE pointer

- FILE is an opaque struct - OS dependent. We can not access fields.

- FILE stores file descriptor.

- FILE may also for efficiency -- store buffered data

FILE *

47

COMP1521 25T2

int fclose(FILE *stream);
- "Flushes" (writes) unwritten buffered data to the stream

- Closes the file

- Number of streams open at any time is limited (to maybe 1024)

stdio.h fclose()

48

COMP1521 25T2

int fgetc(FILE *stream) ; // read a byte

int fputc(int c, FILE *stream); // write a byte

// read/write array of bytes (fgetc/fputc + loop often better)

size_t fread(void *ptr, size_t size, size_t nmemb,
FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream);

stdio.h reading and writing

49

COMP1521 25T2

char *fputs(char *s, FILE *stream); // write a string

char *fgets(char *s, int size, FILE *stream); // read a line

//formatted input/output

int fscanf(FILE *stream, const char *format, ...);

int fprintf(FILE *stream, const char *format, ...);

These functions can not be used for binary data as they may contain zero bytes

- can use to read text (ASCII/Unicode)

- can not use to read a *jpg* for example

stdio.h reading and writing text only

50

COMP1521 25T2

To read/write to stdin/stdout

int getchar(void); // fgetc(stdin)

int putchar(int c); // fputc(c, stdout)

int puts(char *s); // fputs(s, stdout)

int scanf(char *format, ...); // fscanf(stdin, format, ...)

int printf(char *format, ...); // fprintf(stdout, format, ...)

These should never be used: security vulnerability, buffer overflow

char *gets(char *s); // Ok in general.

scanf("%s", array); // Don’t use with %s

stdio.h convenience functions

51

COMP1521 25T2

stdio.h provides useful functions which operate on strings

// like scanf, but input comes from char array str
int sscanf(const char *str, const char *format, ...);

// like printf, but output goes to char array str
// handy for creating strings passed to other functions

// size contains size of str

// Do not use similar function sprintf as it is a security vulnerability

int snprintf(char *str, size_t size, const char *format, ...);

stdio.h - IO to strings

52

COMP1521 25T2

Implement linux cp command

1. byte at a time stdio.h

2. using fgets and fprintf/fputs - what is the problem with this approach?

We also have implementations using syscall and libc

Which is the best approach?

Exercise

53

COMP1521 25T2

● To make a buggy version:

○ Use char instead of int for fgetc (this creates bugs with getchar too)

● Reminder: getchar and fgetc return int

○ Legal values they can return -1..255. (257 possible values)

○ This can’t fit in signed char or unsigned char!

● signed char (or char on our system) can store -1 and detect EOF,

○ but valid byte value 0xFF gets mistaken for EOF

● unsigned char can’t store -1 and can’t detect EOF

Demo: fgetc return type bug

54

COMP1521 25T2

● Using fgets and fprintf to copy a file

● Seems to work fine when copying text files BUT

○ Breaks for binary files with 0x00 bytes

○ They are interpreted as end of string ‘\0’ character

Reminder: only use fgets, fprintf, fscanf, or fputs for text

Demo: cp using fgets and fprintf

55

COMP1521 25T2

● Recap of floating-point representation

● System calls!

○ Specifically: open/read/write/close

○ Portable libc equivalents: fopen/fread/fwrite/fclose

○ stdio convenience functions: Too many to list here!

■ Mainly getc/putc/getchar/putchar/scanf/printf/sscanf/snprintf

What did we learn today?

56

COMP1521 25T2

Working with stdio.h library and files

And much more about file systems!

Coming up after flex week

57

COMP1521 25T2 58

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

59

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Assignment 1 is due Friday 6pm Week 4: test: due tomorrow 9pm (MIPS basics, control, arrays)
	Slide 3: Flex week next week!
	Slide 4: Today’s Lecture
	Slide 5: IEEE 754 Standard
	Slide 6: IEEE 754 Example
	Slide 7: Floating Point Recap Exercise
	Slide 8: IEEE 754 Standard: Special Cases
	Slide 9: IEEE 754 infinity.c
	Slide 10: IEEE 754 nan.c
	Slide 11: Distribution of Floating Point Numbers
	Slide 12: Distribution of Floating Point Numbers
	Slide 13: Distribution of Floating Point Numbers
	Slide 14: Operating Systems and File Systems
	Slide 15: Operating Systems
	Slide 16: A World without Operating Systems
	Slide 17: A World without Operating Systems
	Slide 18: A world with Operating Systems
	Slide 19: Operating Systems
	Slide 20: Operating Systems: Privileged Mode
	Slide 21: Operating Systems: System Calls
	Slide 22: System Calls
	Slide 23: Mipsy System Calls
	Slide 24: Linux System Calls
	Slide 25: Reminder: Linux Manual
	Slide 26: System Calls to Manipulate Files
	Slide 27: System Calls in Linux
	Slide 28: System Calls in Linux
	Slide 29: Unix Files
	Slide 30: Files and File Systems
	Slide 31: File Descriptors
	Slide 32: File Descriptors
	Slide 33: What on earth is stderr?
	Slide 34: What on earth is stderr?
	Slide 35: System call to print a message to stdout
	Slide 36: Unix C Library Wrappers for System Calls
	Slide 37: errno
	Slide 38: Libc wrapper to print message to stdout
	Slide 39: stdio.h - C Standard Library I/O Functions
	Slide 40: stdio library to print message to stdout
	Slide 41: Libc wrapper to open a file
	Slide 42: Libc wrapper to open a file
	Slide 43: Libc wrapper to close a file
	Slide 44: Libc library wrapper for read system call
	Slide 45: Libc library wrapper for read system call
	Slide 46: stdio.h - fopen()
	Slide 47: FILE *
	Slide 48: stdio.h fclose()
	Slide 49: stdio.h reading and writing
	Slide 50: stdio.h reading and writing text only
	Slide 51: stdio.h convenience functions
	Slide 52: stdio.h - IO to strings
	Slide 53: Exercise
	Slide 54: Demo: fgetc return type bug
	Slide 55: Demo: cp using fgets and fprintf
	Slide 56: What did we learn today?
	Slide 57: Coming up after flex week
	Slide 58: Reach Out
	Slide 59: Student Support | I Need Help With…

