COMP1521 2572

Week 5 Lecture 1

Bitwise Operators and Floating Point

Adapted from Angela Finlayson, Hammond Pearce,
Andrew Taylor and John Shepherd's slides

COMP1521 25T2

Assignment 1 is due Friday 6pm

Week 4 test: due Thursday 9pm (MIPS basics, control, arrays)

COMP1521 25T2

Week 6 Flexibility Week

Week 6 (next week) is flexibility week so nothing is due then!

Week 5 lab: due Monday midday week 7
Week 5 test: due Thursday 9pm week 7 (MIPS strings)
Week 6 test: due Thursday 9pm week 7 (bitwise operators C)

COMP1521 25T2

Today's Lecture

e Bitwise Operators
o Recap
o MIPS examples
o C Coding examples

e Floating Point Representation

Prove you are human:

0.1 (2=

WELCOME TO
THE SECRET |o.30000000000000004|

ROBOT INTERNET

COMP1521 25T2

Recap Demo: bitwise.c

S dcc bitwise.c print_bits.c -o bitwise

S ./bitwise
Enter a: 23032
Enter b: 12345
Enter c: 3
a = 0161100111111000
b = 6611000000111001
~a = 1070011000000111
a & b = 0001000000111000
a| b=20111160111111001
a b =0110100111000001
a >> c = 0000161100111111
a << c =1100111111000000

COMP1521 25T2

Ox59f8
Bx3039
Bxab607
0x1038
Bx79f9
Bx69c1
Ox0b3f
Oxcfco

23032
12345
42503
4152

31225
27073
2879

53184

Recap Exercise 1

Given the following declarations:

// a signed 8-bit wvalue
uint8 t x = 0x55;

uint8 t y = OxAA;

What is the value of each of these expressions?

uint8 t a = x & y; uint8 t e = x >> 1;
uint8 t b = x * y; uint8 t £ =y >> 2;
uint8 t ¢ =x | y; uint8 t g =y << 2;

uint8 t d

~X

COMP1521 25T2

Recap Exercise 2:

How can we;

1) Check the bit at position 3 of an uint8_t?
2) Set the bit at position 3 of an uint8_t?
3) Unset the bit at position 3 of an unint8_t?

1) Check the bit at position n of an uint8_t?
2) Set the bit at position n of an uint8_t?

3) Unset the bit at position n of an unint8_t?

COMP1521 25T2

MIPS - Bit manipulation instructions

assembly meaning bit pattern

andr,r.,r, T =1, &7, 000000ssssstttttdddddo000100160
orr,,r.,r; rg=r,lr, 000000ssssstttttddddd00000100161
Xorr,r,r, T =T, T, 000000ssssstttttddddd00000100110
norr,r,r, Tr;=~(r,|r) 000000ssssstttttdddddoeEO100111
andir,r,I r,=r &I 001100ssssstttttITITITITITITIIIII
orir,r,1I r,=r,L1 001101ssssstttttIIIIIIIIIIIIIIII
xorir,r,I r,=r "1 001110ssssstttttITITITITIITIIIIII
notr,r, rg=~T, pseudo-instruction

COMP1521 25T2

MIPS - Shift instructions

assembly

meaning

bit pattern

sllvr, r,r,
srlvr, r,r,
sravr, T, T,
slilr,r, I
sriry,r,1
srar, 1, 1

Ty =T, €T,
rg=T,»r,
Tq =Ty P T
rg=r,«I
rg=ry»1
rg=r;»1

000000ssssstttttdddddOOOOEOOO100
000000ssssstttttdddddOOOOEOOO110
000000ssssstttttdddddoeOOEOEO11l
00000000000tttttdddddIIITIINOE0000
00000000000tttttdddddIIIITOO0010
00000000000tttttdddddIIITIINE0011

e srl and srlv shift zeroes into most-significant bit

o This matches shift in C of unsigned values
e sra and srav propagate most-significant bit

o This ensures the sign is maintained

COMP1521 25T2

MIPS Code Demos

e o0dd even.s

COMP1521 25T2

10

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_control/code/odd_even.s

Code Demos

e XOrI.C

e pokemon.c

o set_low_bits.c
e bitset.c

COMP1521 25T2

11

Demo: bitset.c

S dcc bitset.c print_bits.c -o bitset
S ./bitset

Set members can be 0-63, negative number to finish
Enter set a: 1 2 4 8 16 32 -1

Enter set b: 5 4 3 33 -1

a = 0000000000000V0VVVVVVVBBVBBVVBNT100000000000BVB010000000100010110 = BXx100010116
42956033116
b = 0000000000000000000000000000001000000000000000000000000000111000 = 0x200000038

8589934648

a=4{1,2,4,8,16,32}

b ={3,4,5,33}

a union b = {1,2,3,4,5,8,16,32,33}

a intersection b = {4}
cardinality(a) = 6
is_member (42, a) = 0@

COMP1521 25T2

Floating point

IEEE 754 Floating Point Representation

e The industry standard
o Used by almost all computers
e Crucial to understand when working with
numeric computations
e Understand precision and accuracy
limitations

o Why using them for finance is unwise
o Why sometimes
m at+1==
o Why code like
m if (x ==y) for floats is not a good idea

COMP1521 25T2

When your mom calls you

by your full name

-1.490116e-08

14

Floating Point Numbers

e C has 3 floating point types
o float ... typically 32-bit quantity (lower precision, narrower range)
o double ... typically 64-bit quantity (higher precision, wider range)
o long double ... typically 128-bit quantity (but maybe only 80 bits
used)

o Literal floating point values by default are double: 3.14159,
1.0/3, 1.0e-9
e Reminder: division of 2 ints gives aninte.g. 1/ 2 ==

Code demo: float_output.c

COMP1521 25T2 15

Range of Floating Point Types

How do floating types have such a large range?

float 4 bytes
double 8 bytes

min=1.17549e-38 max=3.40282e+38
min=2.22507e-308 max=1.79769e+308

With the same number of bytes compare:

unsigned int 4 bytes
unsigned long 8 bytes

min=0 max= 4294967295 (4.29497e+09)
min=0 max= (1.84467e+19)

Code demo: floating_types.c

COMP1521 25T2

16

Fractions in different bases

The decimal fraction 0.75 means

e 7*107+5*102=0.7+0.05=0.75
e orequivalently 75/10%2=75/100 = 0.75

Similarly 0.11, means

e 1*271+1*22=05+0.25=0.75
e orequivalently 3/22=3/4=0.75

Similarly 0.C,, would means

e 12*167=0.75
e orequivalently 12/167=3/4=0.75

COMP1521 25T2

Note: We call the . a radix
point rather than a decimal
point when we are dealing
with other bases.

17

Fractions in different bases

COMP1521 25T2

23

22

21

20

2-1

2-2

2-3

0-510

0.25,,

0.125,,

18

Converting fractions to other bases

e The algorithm to convert a decimal fraction to another base is

o Take the decimal (fractional) part of the number and multiply it by the
base you are converting to.

o The whole number part of the result becomes the next digit after the
radix point in the converted number.

o Repeat the process with the remaining fractional part.

o Continue until the fractional part becomes zero or you have enough digits
for the desired accuracy.

Note: This process does not always terminate because some fractions have
repeating representations in certain bases.

COMP1521 25T2 19

Example: Converting Fractions

For example if we want to convert 0.3125 to base 2

0.3125*2 =0.625
0.625*2=1.25
0.25*2=0.5
0.5*2=1.0

Therefore 0.3125 =0.0101,

COMP1521 25T2

20

Fixed Point Exercise 1:

Convert the following decimal values into binary
o 12.625
o 0.1

COMP1521 25T2

21

Code Demos

double_imprecision.c

COMP1521 25T2

22

Floating-Point Representation Issues

Representing floating point numbers with a fixed small number of bits

Means:
e Finite number of bit patterns
e Can only represent a finite subset of reals
o almost all real values will have no exact representation
o value of arithmetic operations may be real with no exact representation
e Must use closest value which can be exactly represented
o this approximation introduces an error into our calculations
o often, does not matter
o sometimes ... can be disastrous
m eg pacemakers, finance

COMP1521 25T2

23

Fixed-Point Representation

e A simple trick to represent fractional numbers as integers
o Every value is multiplied by a particular constant and stored as an integer
m e.g.if constantis 1000 then 56125 represents 56.125
m we could not represent 3.141592

e Used on small embedded processors without floating point hardware
e Major limitation is range:

o e.g. 16 bits used for integer part and 16 bits for fraction
(equivalent to a scale factor of 216)

m minimum step 2= 0.000015

m Mmaximum 275 = 32768

COMP1521 25T2

24

IEEE Standard: Exponential Representation

|dea: use scientific notation
e e.96.0221515* 102

But in binary:
e 10.6875=1010.1011
=1.0101011 * 23

Allows a much bigger range of values to be represented than fixed point

e 8 bits for the exponent can represent numbers from 1038 .. 1038
e 11 bits for the exponent can represent numbers from 1039 . 10308

COMP1521 25T2

25

IEEE 754 Standard

3130 23 22 0

A
= 8 bits < F——— 23 bits /

sign

63 62 52 51

exp fraction single precision

Note:

floatin C is
represented in this
single precision
format.

double in C is
represented in this
double precision
format

exp fraction

A
F— 11 bits

T

52 bits

sign

Note: the fraction part is often called the mantissa

COMP1521 25T2

26

IEEE 754 Standard: Sign and Fraction

Sign bit: 0 for positive, 1 for negative

Fraction:
We don't want multiple representations of the same number so we normalise it

e Use representation with exactly 1 digit in front of the radix point
o (i.e. 1.1001x23 rather than 1100.1x2° or 11.001x22)

e Dbetter to have only one representation (one bit pattern) representing a value
o multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it
e Aslong we have a special representation for zero
e Torepresent 1.1001x23 we would store 1001000000... for the fraction.

COMP1521 25T2 27

IEEE 754 Standard: Exponent

e represented relative to a bias value B
o to represent exponent of x, we would store x+B
o for floats the bias is 127
e e.g. we were representing 1.1001x23we would store
(3+127) =130 = 10000010 for a float
e How bias is calculated:
o Assume an 8-bit exponent, then bias B = 281-1 = 127
o Valid bit patterns for exponent 00000001 .. 11111110 (1..254)
o Exponent values we can represent -126 .. 127

COMP1521 25T2

28

IEEE 754 Example

150.75=10010110.11
// normalise fraction, compute exponent
=1.001011011 x 27
// determine sign bit,
// map fraction to 24 bits, (don't store the leading 1)
// map exponent to 8 bits after adding on the bias of 127

=01000011000101101100000000000000
where red is sign bit, green is exponent, blue is fraction

Note: B=127, e=2’/, so exponent = 127+7 =134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

COMP1521 25T2

29

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Exercise 2: Floating Point Conversions

Question 1: Convert the decimal number 1 to a floating point number in IEEE 754
single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point
numbers to decimal.

0 10000000 11000000000000000000000

101111170 10000000000000000000000

COMP1521 25T2

30

IEEE 754 Standard: Special Cases

Value Exponent Fraction Example
0 (+ve or -ve) all 0's all 0’s
inf (coand-00) all 1’s all 0’s 1.0/0

nan all 1's Not all O’s 0.0/0

COMP1521 25T2

IEEE 754 infinity.c

Representation of +- infinity : propagates sensibly through calculations

COMP1521 25T2

double x

printf("
printf("
printf("
printf("

printf("

printf("

=1.0/0.0,
%1f\n", x); //prints inf
%1f\n", -x); //prints -inf
%1f\n", x - 1); // prints inf
%1f\n", 2 * atan(x)); // prints 3.141593
%d\n", 42 < x); // prints 1 (true)

%d\n", x == INFINITY); // prints 1 (true)

32

IEEE 754 nan.c

Representation for invalid results NaN (not a number)
e Ensures errors propagates sensibly through calculations

double x = 0.0/0.0;

printf("%1f\n", x); //prints nan
printf("%1f\n", x - 1); // prints nan
printf("%d\n", x == x); // prints @ (false)

printf("%d\n", isnan(x)); // prints 1 (true)

COMP1521 25T2

33

Distribution of Floating Point Numbers

INT MIN M INT MAX
N int -

__________ | r---------- Integers

double
e OO - OO -O-O-O-C--0---0---0----0----0---------- [Regls

0

integers ... subset (range) of the mathematical integers
e canrepresent all integer values in that subset
e eachintegeris 1 away from the next one and previous one

e all integers are represented accurately

COMP1521 25T2

34

Distribution of Floating Point Numbers

INT MIN M INT MAX
N int -

__________ | r---------- Integers

double
e OO - OO -O-O-O-C--0---0---0----0----0---------- [Regls

0

floating point ... subset of the mathematical real numbers
e Floating point numbers not evenly distributed
o Numbers closer to 0 have higher precision which is good
o Representations get further apart as values get bigger

o This works well for most calculations but can cause weird bugs

COMP1521 25T2 35

Distribution of Floating Point Numbers

A 64-bit double uses 52 bits for the fraction (mantissa).

e Between 2" and 2" there are 252 doubles evenly spaced
o e.g.inthe interval 242 and 243 there are 2°2 doubles
o andin the interval between 1 and 2 there are 252 doubles
o and in the interval between 242 and 243 there are 2°2doubles

near 0.001 - doubles are about 0.0000000000000000002 apart
near 1000 - doubles are about 0.0000000000002 apart

near 1000000000000000 - doubles are about 0.25 apart

above 2°3 - doubles are more than 1 apart

COMP1521 25T2 36

Code Demos

double_disaster.c
double_catastrophe.c
explain_float_representation.c

COMP1521 25T2

37

What did we learn today?

e Bitwise Operators
o Recap
o MIPS examples
o C Coding examples

e Floating Point Representation

Next Lecture: File Systems

COMP1521 25T2

38

Reach Out

17e+09; 1.U45533§ 36313¢408; 1.075317+07; U.2178U7e+t
Y76e+09; 1.425579 1.516919e+09; 1.115219%
))388e+08; 1.71560088 | X\ 9.926701+68; 1.726359%

Content Related Questlons |355Ue+09; 3.6751U : be\707539e+08; 1.884U3L
. 78368e+08; 1 : .500910e+68; 2.55171

. AN 2 1.6517061e+09; 3.3007

Forum . , & B; 7.923782e+08; 1.96
1.108267+08; e 09; 1.732U99e+09; 9.2¢

. 5.431051e+88; 1. : N e+07; 9.520118e+08; 4.7

}; 5.U62998e+08; 9.3 J1e+09; 1.5U9219e+09; 5.

)9; 1.918605e+08; 3. D53e+09; 2.182336e+08; 1

109; 3.36U720e+08; 1.4 5312e+08; 3.229595e+08;

. . .. 1408; 2.1UU658e+09; 3. 03U363e+09; 1.355128e+09;
Adm|n related QueSt|OnS ema|| le+08; 9.321679¢+08; U4 .U90732e+08; 1.623699e+0¢
lle+09; 7.3572U6e+08; & .55888e+09; 1.770088e+¢

.621416e+09; 9.011357e4
.102380e+09; 1.250501
.541618e+09; 1.51772¢
.3U5710e+09; 1.3115
636U20e+09; 1.299¢
80526e+08; 5.81L
674141e+08; 1.1t

j05e+09; 1.520625e+08;
cs1521 @Cse unsw edu au 1753e+09; 1.839U96e+09; B
= : J J 18710e+08; 2.043793e+09;
7491e+08; 1.356676e+09; 9
.3U3752e+08; 7.358586e+08; 1.0
1.009985e+09; 1.383266e+09; 1.3
6.576557e+08; 1.652696e+09;
| 8.0816U3e+08; 1.2272U8e+09;
}; 5.914501e+08; 5.837673e+07
)9; 5.125085e+08; 6.93U028e+08
»99 il usu831e+99 3.936171e+0
»+es 5. 651395e+98 1.626187e+d
le+98 il 986651e+99 4.519209

COMP1521 25T2

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

Student Support | | Need Help With...

student.unsw.edu.au/counselling a In Australia Call Afterhours 1300 787 026
_ @ E'::;Z'c':ea'th Telehealth RS UNSW Mental Health Support 5pm-9am
My Feelings and Mental Line
Health q student.unsw.edu.au/mind-hub Outside Australia
Managing Low Mood, Unusual Feelings & Depression Mind Online Self-Help Resources @ Afterhours 24-hour +61 (2) 8905 0307
HUB Medibank Hotline
m Student Support — student.unsw.edu.au/advisors
' Indigenous Student
Support
Reporting Sexual Assault/Harassment Equity Diversity and Inclusion — edi.unsw.edu.au/sexual-misconduct
(EDI)
Educational Adjustments q q .
To Manage my Studies and Disability / Health Condition Equitable Learning Service — student.unsw.edu.aulels
(ELS)
Academic and Study Skills Academic Language — student.unsw.edu.au/skills
Skills
Sppeel Lencld e Special Consideration — student.unsw.edu.au/special-consideration

Because Life Impacts our Studies and Exams

COMP1521 25T2

	Slide 1: COMP1521 25T2
	Slide 2: Assignment 1 is due Friday 6pm Week 4 test: due Thursday 9pm (MIPS basics, control, arrays)
	Slide 3: Week 6 Flexibility Week
	Slide 4: Today’s Lecture
	Slide 5: Recap Demo: bitwise.c
	Slide 6: Recap Exercise 1
	Slide 7: Recap Exercise 2:
	Slide 8: MIPS - Bit manipulation instructions
	Slide 9: MIPS - Shift instructions
	Slide 10: MIPS Code Demos
	Slide 11: Code Demos
	Slide 12: Demo: bitset.c
	Slide 13: Floating point
	Slide 14: IEEE 754 Floating Point Representation
	Slide 15: Floating Point Numbers
	Slide 16: Range of Floating Point Types
	Slide 17: Fractions in different bases
	Slide 18: Fractions in different bases
	Slide 19: Converting fractions to other bases
	Slide 20: Example: Converting Fractions
	Slide 21: Fixed Point Exercise 1:
	Slide 22: Code Demos
	Slide 23: Floating-Point Representation Issues
	Slide 24: Fixed-Point Representation
	Slide 25: IEEE Standard: Exponential Representation
	Slide 26: IEEE 754 Standard
	Slide 27: IEEE 754 Standard: Sign and Fraction
	Slide 28: IEEE 754 Standard: Exponent
	Slide 29: IEEE 754 Example
	Slide 30: Exercise 2: Floating Point Conversions
	Slide 31: IEEE 754 Standard: Special Cases
	Slide 32: IEEE 754 infinity.c
	Slide 33: IEEE 754 nan.c
	Slide 34: Distribution of Floating Point Numbers
	Slide 35: Distribution of Floating Point Numbers
	Slide 36: Distribution of Floating Point Numbers
	Slide 37: Code Demos
	Slide 38: What did we learn today?
	Slide 39: Reach Out
	Slide 40: Student Support | I Need Help With…

