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Assignment 1 is due Friday 6pm

Week 4 test: due Thursday 9pm (MIPS basics, control, arrays)
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Week 6 Flexibility Week
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Week 6 (next week) is flexibility week so nothing is due then!

Week 5 lab: due Monday midday week 7

Week 5 test: due Thursday 9pm week 7 (MIPS strings)

Week 6 test: due Thursday 9pm week 7 (bitwise operators C)
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Today’s Lecture

● Bitwise Operators 

○ Recap

○ MIPS examples

○ C Coding examples

● Floating Point Representation
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Recap Demo: bitwise.c

$ dcc bitwise.c print_bits.c -o bitwise
$ ./bitwise
Enter a: 23032
Enter b: 12345
Enter c: 3

a = 0101100111111000 = 0x59f8 = 23032
b = 0011000000111001 = 0x3039 = 12345
~a = 1010011000000111 = 0xa607 = 42503

a & b = 0001000000111000 = 0x1038 = 4152
a | b = 0111100111111001 = 0x79f9 = 31225
a ^ b = 0110100111000001 = 0x69c1 = 27073
a >> c = 0000101100111111 = 0x0b3f = 2879
a << c = 1100111111000000 = 0xcfc0 = 53184
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Given the following declarations:

What is the value of each of these expressions?

Recap Exercise 1
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// a signed 8-bit value

uint8_t x = 0x55;

uint8_t y = 0xAA;

uint8_t a = x & y;

uint8_t b = x ^ y;

uint8_t c = x | y;

uint8_t d = ~x

uint8_t e = x >> 1;

uint8_t f = y >> 2;

uint8_t g = y << 2;
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How can we: 

1) Check the bit at position 3 of an uint8_t?

2) Set the bit at position 3 of an uint8_t?

3) Unset the bit at position 3 of an unint8_t?

1) Check the bit at position n of an uint8_t?

2) Set the bit at position n of an uint8_t?

3) Unset the bit at position n of an unint8_t?

Recap Exercise 2:
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MIPS - Bit manipulation instructions

8



COMP1521 25T2

MIPS - Shift instructions

● srl and srlv shift zeroes into most-significant bit

○ This matches shift in C of unsigned values

● sra and srav propagate most-significant bit

○ This ensures the sign is maintained
9
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● odd_even.s

MIPS Code Demos
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https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_control/code/odd_even.s
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● xor.c

● pokemon.c

● set_low_bits.c

● bitset.c

Code Demos
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Demo: bitset.c
$ dcc bitset.c print_bits.c -o bitset
$ ./bitset

Set members can be 0-63, negative number to finish

Enter set a: 1 2 4 8 16 32 -1

Enter set b: 5 4 3 33 -1
a = 0000000000000000000000000000000100000000000000010000000100010110 = 0x100010116 = 
4295033110
b = 0000000000000000000000000000001000000000000000000000000000111000 = 0x200000038 = 
8589934648
a = {1,2,4,8,16,32}
b = {3,4,5,33}
a union b = {1,2,3,4,5,8,16,32,33}
a intersection b = {4}
cardinality(a) = 6
is_member(42, a) = 0
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Floating point
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..

.
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● The industry standard

○ Used by almost all computers

● Crucial to understand when working with 

numeric computations

● Understand precision and accuracy 

limitations

○ Why using them for finance is unwise

○ Why sometimes

■ a + 1 == a 

○ Why code like 

■ if (x == y) for floats is not a good idea

IEEE 754 Floating Point Representation
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Uh Oh!
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● C has 3 floating point types

○ float ... typically 32-bit quantity (lower precision, narrower range)

○ double ... typically 64-bit quantity (higher precision, wider range)

○ long double … typically 128-bit quantity (but maybe only 80 bits 

used)

● Literal floating point values by default are double:  3.14159,  

1.0/3,  1.0e-9

● Reminder: division of 2 ints gives an int e.g. 1 / 2 == 0

Code demo: float_output.c

Floating Point Numbers
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How do floating types have such a large range?

float        4 bytes  min=1.17549e-38   max=3.40282e+38

double       8 bytes  min=2.22507e-308  max=1.79769e+308

With the same number of bytes compare:

unsigned int  4 bytes  min=0   max= 4294967295 (4.29497e+09)

unsigned long 8 bytes  min=0   max= (1.84467e+19)

Code demo: floating_types.c

Range of Floating Point Types
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The decimal fraction 0.75 means

● 7*10-1 + 5*10-2 = 0.7 + 0.05 = 0.75

● or equivalently 75/102 = 75/100 = 0.75

Similarly 0.112 means

● 1*2-1 + 1*2-2 = 0.5 + 0.25 = 0.75

● or equivalently 3/22 = 3/4 = 0.75

Similarly 0.C16 would means

● 12*16-1 = 0.75

● or equivalently 12/161 = 3/4 = 0.75

Fractions in different bases

Note: We call the . a radix 

point rather than a decimal 

point when we are dealing 

with other bases.
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Fractions in different bases
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23 22 21 20 2-1 2-2 2-3

810 410 210 110 0.510 0.2510 0.12510
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● The algorithm to convert a decimal fraction to another base is

○ Take the decimal (fractional) part of the number and multiply it by the 

base you are converting to.

○ The whole number part of the result becomes the next digit after the 

radix point in the converted number.

○ Repeat the process with the remaining fractional part.

○ Continue until the fractional part becomes zero or you have enough digits 

for the desired accuracy.

Note: This process does not always terminate because some fractions have 

repeating representations in certain bases.

Converting fractions to other bases
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For example if we want to convert 0.3125 to base 2

● 0.3125 * 2 = 0.625

● 0.625 * 2 = 1.25

● 0.25 * 2 = 0.5

● 0.5 * 2 = 1.0

Therefore 0.3125 = 0.01012

Example: Converting Fractions
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Convert the following decimal values into binary

● 12.625

● 0.1

Fixed Point Exercise 1:
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double_imprecision.c

Code Demos
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Representing floating point numbers with a fixed small number of bits 

means:

● Finite number of bit patterns

● Can only represent a finite subset of reals

○ almost all real values will have no exact representation

○ value of arithmetic operations may be real with no exact representation

● Must use closest value which can be exactly represented

○ this approximation introduces an error into our calculations

○ often, does not matter

○ sometimes ... can be disastrous

■ eg pacemakers, finance

Floating-Point Representation Issues
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● A simple trick to represent fractional numbers as integers

○ Every value is multiplied by a particular constant and stored as an integer

■ e.g. if constant is 1000 then 56125  represents 56.125

■ we could not represent 3.141592

● Used on small embedded processors without floating point hardware

● Major limitation is range:

○ e.g. 16 bits used for integer part and 16 bits for fraction

(equivalent to a scale factor of 216)

■ minimum step 2-16 ≈ 0.000015

■ maximum  215 ≈ 32768

Fixed-Point Representation
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Idea: use scientific notation

● e.g 6.0221515 * 1023

But in binary: 

● 10.6875 = 1010.1011 

= 1.0101011 * 23 

Allows a much bigger range of values to be represented than fixed point

● 8 bits for the exponent can represent numbers from 10-38 .. 1038

● 11 bits for the exponent can represent numbers from 10-308 .. 10308

IEEE Standard: Exponential Representation
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IEEE 754 Standard

Note: the fraction part is often called the mantissa

Note: 
float in C is 
represented in this 
single precision 
format.
double in C is 
represented in this 
double precision 
format
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Sign bit: 0 for positive, 1 for negative

Fraction:

We don’t want multiple representations of the same number so we normalise it

● Use representation with exactly 1 digit in front of the radix point

○ (i.e. 1.1001×23 rather than 1100.1×20 or 11.001×22)

● better to have only one representation (one bit pattern) representing a value

○ multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it

● As long we have a special representation for zero

● To represent 1.1001×23 we would store 1001000000… for the fraction.

IEEE 754 Standard: Sign and Fraction
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● represented relative to a bias value B

○ to represent exponent of x, we would store x+B

○ for floats the bias is 127

● e.g. we were representing 1.1001×23 we would store

(3+127) = 130 = 10000010 for a float

● How bias is calculated:

○ Assume an 8-bit exponent, then bias B = 28-1-1 = 127

○ Valid bit patterns for exponent  00000001 .. 11111110  (1..254)

○ Exponent values we can represent   -126 .. 127

IEEE 754 Standard: Exponent 
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150.75 = 10010110.11
// normalise fraction, compute exponent

= 1.001011011 × 27

// determine sign bit,

// map fraction to 24 bits, (don’t store the leading 1)

// map exponent to 8 bits after adding on the bias of 127

= 01000011000101101100000000000000

where red is sign bit, green is exponent, blue is fraction

Note: B=127, e=27, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

IEEE 754 Example

29

https://www.h-schmidt.net/FloatConverter/IEEE754.html
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Question 1: Convert the decimal number 1 to a floating point number in IEEE 754 

single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point 

numbers to decimal.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000

Exercise 2: Floating Point Conversions
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IEEE 754 Standard: Special Cases

Value Exponent Fraction Example

0 (+ve or -ve) all 0’s all 0’s

inf (∞ and -∞) all 1’s all 0’s 1.0/0

nan all 1’s Not all 0’s 0.0/0
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Representation of +- infinity : propagates sensibly through calculations

IEEE 754 infinity.c
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Representation for invalid results NaN (not a number)

● Ensures errors propagates sensibly through calculations

IEEE 754 nan.c

33
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integers ... subset (range) of the mathematical integers

● can represent all integer values in that subset

● each integer is 1 away from the next one and previous one

● all integers are represented accurately

Distribution of Floating Point Numbers 
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floating point ... subset of the mathematical real numbers

● Floating point numbers not evenly distributed

○ Numbers closer to 0 have higher precision which is good

○ Representations get further apart as values get bigger 

○ This works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers 
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A 64-bit double uses 52 bits for the fraction (mantissa).
● Between 2n and  2n+1 there are 252 doubles evenly spaced 

○ e.g. in the interval 2-42 and 2-43 there are 252 doubles

○ and in the interval between 1 and 2 there are 252 doubles

○ and in the interval between 242 and 243 there are 252 doubles

● near 0.001 - doubles are about 0.0000000000000000002 apart

● near 1000 - doubles are about 0.0000000000002 apart

● near 1000000000000000 - doubles are about 0.25 apart

● above 253 - doubles are more than 1 apart

Distribution of Floating Point Numbers 
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double_disaster.c 

double_catastrophe.c

explain_float_representation.c   

Code Demos
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● Bitwise Operators

○ Recap

○ MIPS examples

○ C Coding examples

● Floating Point Representation

Next Lecture: File Systems

What did we learn today?
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Content Related Questions:  

Forum

Admin related Questions email: 

cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au
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Student Support | I Need Help With…
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— student.unsw.edu.au/advisorsStudent Support
Indigenous Student 

Support

Equity Diversity and Inclusion 

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service 

(ELS)

— student.unsw.edu.au/els

Academic Language 

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental 

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health 

Connect

Mind 

HUB

student.unsw.edu.au/counselling 

Telehealth

student.unsw.edu.au/mind-hub 

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support 

Line

Outside Australia 

Afterhours 24-hour 

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams
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