
COMP1521 25T2

COMP1521 25T2

Bitwise Operators and Floating Point

Week 5 Lecture 1

Adapted from Angela Finlayson, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T2

Assignment 1 is due Friday 6pm

Week 4 test: due Thursday 9pm (MIPS basics, control, arrays)

2

COMP1521 25T2

Week 6 Flexibility Week

3

Week 6 (next week) is flexibility week so nothing is due then!

Week 5 lab: due Monday midday week 7

Week 5 test: due Thursday 9pm week 7 (MIPS strings)

Week 6 test: due Thursday 9pm week 7 (bitwise operators C)

COMP1521 25T2

Today’s Lecture

● Bitwise Operators

○ Recap

○ MIPS examples

○ C Coding examples

● Floating Point Representation

4

COMP1521 25T2

Recap Demo: bitwise.c

$ dcc bitwise.c print_bits.c -o bitwise
$./bitwise
Enter a: 23032
Enter b: 12345
Enter c: 3

a = 0101100111111000 = 0x59f8 = 23032
b = 0011000000111001 = 0x3039 = 12345
~a = 1010011000000111 = 0xa607 = 42503

a & b = 0001000000111000 = 0x1038 = 4152
a | b = 0111100111111001 = 0x79f9 = 31225
a ^ b = 0110100111000001 = 0x69c1 = 27073
a >> c = 0000101100111111 = 0x0b3f = 2879
a << c = 1100111111000000 = 0xcfc0 = 53184

5

COMP1521 25T2

Given the following declarations:

What is the value of each of these expressions?

Recap Exercise 1

6

// a signed 8-bit value

uint8_t x = 0x55;

uint8_t y = 0xAA;

uint8_t a = x & y;

uint8_t b = x ^ y;

uint8_t c = x | y;

uint8_t d = ~x

uint8_t e = x >> 1;

uint8_t f = y >> 2;

uint8_t g = y << 2;

COMP1521 25T2

How can we:

1) Check the bit at position 3 of an uint8_t?

2) Set the bit at position 3 of an uint8_t?

3) Unset the bit at position 3 of an unint8_t?

1) Check the bit at position n of an uint8_t?

2) Set the bit at position n of an uint8_t?

3) Unset the bit at position n of an unint8_t?

Recap Exercise 2:

7

COMP1521 25T2

MIPS - Bit manipulation instructions

8

COMP1521 25T2

MIPS - Shift instructions

● srl and srlv shift zeroes into most-significant bit

○ This matches shift in C of unsigned values

● sra and srav propagate most-significant bit

○ This ensures the sign is maintained
9

COMP1521 25T2

● odd_even.s

MIPS Code Demos

10

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_control/code/odd_even.s

COMP1521 25T2

● xor.c

● pokemon.c

● set_low_bits.c

● bitset.c

Code Demos

11

COMP1521 25T2

Demo: bitset.c
$ dcc bitset.c print_bits.c -o bitset
$./bitset

Set members can be 0-63, negative number to finish

Enter set a: 1 2 4 8 16 32 -1

Enter set b: 5 4 3 33 -1
a = 0000000000000000000000000000000100000000000000010000000100010110 = 0x100010116 =
4295033110
b = 0000000000000000000000000000001000000000000000000000000000111000 = 0x200000038 =
8589934648
a = {1,2,4,8,16,32}
b = {3,4,5,33}
a union b = {1,2,3,4,5,8,16,32,33}
a intersection b = {4}
cardinality(a) = 6
is_member(42, a) = 0

12

COMP1521 25T2

Floating point

13

..

.

COMP1521 25T2

● The industry standard

○ Used by almost all computers

● Crucial to understand when working with

numeric computations

● Understand precision and accuracy

limitations

○ Why using them for finance is unwise

○ Why sometimes

■ a + 1 == a

○ Why code like

■ if (x == y) for floats is not a good idea

IEEE 754 Floating Point Representation

14

Uh Oh!

COMP1521 25T2

● C has 3 floating point types

○ float ... typically 32-bit quantity (lower precision, narrower range)

○ double ... typically 64-bit quantity (higher precision, wider range)

○ long double … typically 128-bit quantity (but maybe only 80 bits

used)

● Literal floating point values by default are double: 3.14159,

1.0/3, 1.0e-9

● Reminder: division of 2 ints gives an int e.g. 1 / 2 == 0

Code demo: float_output.c

Floating Point Numbers

15

COMP1521 25T2

How do floating types have such a large range?

float 4 bytes min=1.17549e-38 max=3.40282e+38

double 8 bytes min=2.22507e-308 max=1.79769e+308

With the same number of bytes compare:

unsigned int 4 bytes min=0 max= 4294967295 (4.29497e+09)

unsigned long 8 bytes min=0 max= (1.84467e+19)

Code demo: floating_types.c

Range of Floating Point Types

16

COMP1521 25T2

The decimal fraction 0.75 means

● 7*10-1 + 5*10-2 = 0.7 + 0.05 = 0.75

● or equivalently 75/102 = 75/100 = 0.75

Similarly 0.112 means

● 1*2-1 + 1*2-2 = 0.5 + 0.25 = 0.75

● or equivalently 3/22 = 3/4 = 0.75

Similarly 0.C16 would means

● 12*16-1 = 0.75

● or equivalently 12/161 = 3/4 = 0.75

Fractions in different bases

Note: We call the . a radix

point rather than a decimal

point when we are dealing

with other bases.

17

COMP1521 25T2

Fractions in different bases

18

23 22 21 20 2-1 2-2 2-3

810 410 210 110 0.510 0.2510 0.12510

COMP1521 25T2

● The algorithm to convert a decimal fraction to another base is

○ Take the decimal (fractional) part of the number and multiply it by the

base you are converting to.

○ The whole number part of the result becomes the next digit after the

radix point in the converted number.

○ Repeat the process with the remaining fractional part.

○ Continue until the fractional part becomes zero or you have enough digits

for the desired accuracy.

Note: This process does not always terminate because some fractions have

repeating representations in certain bases.

Converting fractions to other bases

19

COMP1521 25T2

For example if we want to convert 0.3125 to base 2

● 0.3125 * 2 = 0.625

● 0.625 * 2 = 1.25

● 0.25 * 2 = 0.5

● 0.5 * 2 = 1.0

Therefore 0.3125 = 0.01012

Example: Converting Fractions

20

COMP1521 25T2

Convert the following decimal values into binary

● 12.625

● 0.1

Fixed Point Exercise 1:

21

COMP1521 25T2

double_imprecision.c

Code Demos

22

COMP1521 25T2

Representing floating point numbers with a fixed small number of bits

means:

● Finite number of bit patterns

● Can only represent a finite subset of reals

○ almost all real values will have no exact representation

○ value of arithmetic operations may be real with no exact representation

● Must use closest value which can be exactly represented

○ this approximation introduces an error into our calculations

○ often, does not matter

○ sometimes ... can be disastrous

■ eg pacemakers, finance

Floating-Point Representation Issues

23

COMP1521 25T2

● A simple trick to represent fractional numbers as integers

○ Every value is multiplied by a particular constant and stored as an integer

■ e.g. if constant is 1000 then 56125 represents 56.125

■ we could not represent 3.141592

● Used on small embedded processors without floating point hardware

● Major limitation is range:

○ e.g. 16 bits used for integer part and 16 bits for fraction

(equivalent to a scale factor of 216)

■ minimum step 2-16 ≈ 0.000015

■ maximum 215 ≈ 32768

Fixed-Point Representation

24

COMP1521 25T2

Idea: use scientific notation

● e.g 6.0221515 * 1023

But in binary:

● 10.6875 = 1010.1011

= 1.0101011 * 23

Allows a much bigger range of values to be represented than fixed point

● 8 bits for the exponent can represent numbers from 10-38 .. 1038

● 11 bits for the exponent can represent numbers from 10-308 .. 10308

IEEE Standard: Exponential Representation

25

COMP1521 25T2

IEEE 754 Standard

Note: the fraction part is often called the mantissa

Note:
float in C is
represented in this
single precision
format.
double in C is
represented in this
double precision
format

26

COMP1521 25T2

Sign bit: 0 for positive, 1 for negative

Fraction:

We don’t want multiple representations of the same number so we normalise it

● Use representation with exactly 1 digit in front of the radix point

○ (i.e. 1.1001×23 rather than 1100.1×20 or 11.001×22)

● better to have only one representation (one bit pattern) representing a value

○ multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it

● As long we have a special representation for zero

● To represent 1.1001×23 we would store 1001000000… for the fraction.

IEEE 754 Standard: Sign and Fraction

27

COMP1521 25T2

● represented relative to a bias value B

○ to represent exponent of x, we would store x+B

○ for floats the bias is 127

● e.g. we were representing 1.1001×23 we would store

(3+127) = 130 = 10000010 for a float

● How bias is calculated:

○ Assume an 8-bit exponent, then bias B = 28-1-1 = 127

○ Valid bit patterns for exponent 00000001 .. 11111110 (1..254)

○ Exponent values we can represent -126 .. 127

IEEE 754 Standard: Exponent

28

COMP1521 25T2

150.75 = 10010110.11
// normalise fraction, compute exponent

= 1.001011011 × 27

// determine sign bit,

// map fraction to 24 bits, (don’t store the leading 1)

// map exponent to 8 bits after adding on the bias of 127

= 01000011000101101100000000000000

where red is sign bit, green is exponent, blue is fraction

Note: B=127, e=27, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

IEEE 754 Example

29

https://www.h-schmidt.net/FloatConverter/IEEE754.html

COMP1521 25T2

Question 1: Convert the decimal number 1 to a floating point number in IEEE 754

single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point

numbers to decimal.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000

Exercise 2: Floating Point Conversions

30

COMP1521 25T2

IEEE 754 Standard: Special Cases

Value Exponent Fraction Example

0 (+ve or -ve) all 0’s all 0’s

inf (∞ and -∞) all 1’s all 0’s 1.0/0

nan all 1’s Not all 0’s 0.0/0

31

COMP1521 25T2

Representation of +- infinity : propagates sensibly through calculations

IEEE 754 infinity.c

32

COMP1521 25T2

Representation for invalid results NaN (not a number)

● Ensures errors propagates sensibly through calculations

IEEE 754 nan.c

33

COMP1521 25T2

integers ... subset (range) of the mathematical integers

● can represent all integer values in that subset

● each integer is 1 away from the next one and previous one

● all integers are represented accurately

Distribution of Floating Point Numbers

34

COMP1521 25T2

floating point ... subset of the mathematical real numbers

● Floating point numbers not evenly distributed

○ Numbers closer to 0 have higher precision which is good

○ Representations get further apart as values get bigger

○ This works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

35

COMP1521 25T2

A 64-bit double uses 52 bits for the fraction (mantissa).
● Between 2n and 2n+1 there are 252 doubles evenly spaced

○ e.g. in the interval 2-42 and 2-43 there are 252 doubles

○ and in the interval between 1 and 2 there are 252 doubles

○ and in the interval between 242 and 243 there are 252 doubles

● near 0.001 - doubles are about 0.0000000000000000002 apart

● near 1000 - doubles are about 0.0000000000002 apart

● near 1000000000000000 - doubles are about 0.25 apart

● above 253 - doubles are more than 1 apart

Distribution of Floating Point Numbers

36

COMP1521 25T2

double_disaster.c

double_catastrophe.c

explain_float_representation.c

Code Demos

37

COMP1521 25T2 38

● Bitwise Operators

○ Recap

○ MIPS examples

○ C Coding examples

● Floating Point Representation

Next Lecture: File Systems

What did we learn today?

COMP1521 25T2 39

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

40

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Assignment 1 is due Friday 6pm Week 4 test: due Thursday 9pm (MIPS basics, control, arrays)
	Slide 3: Week 6 Flexibility Week
	Slide 4: Today’s Lecture
	Slide 5: Recap Demo: bitwise.c
	Slide 6: Recap Exercise 1
	Slide 7: Recap Exercise 2:
	Slide 8: MIPS - Bit manipulation instructions
	Slide 9: MIPS - Shift instructions
	Slide 10: MIPS Code Demos
	Slide 11: Code Demos
	Slide 12: Demo: bitset.c
	Slide 13: Floating point
	Slide 14: IEEE 754 Floating Point Representation
	Slide 15: Floating Point Numbers
	Slide 16: Range of Floating Point Types
	Slide 17: Fractions in different bases
	Slide 18: Fractions in different bases
	Slide 19: Converting fractions to other bases
	Slide 20: Example: Converting Fractions
	Slide 21: Fixed Point Exercise 1:
	Slide 22: Code Demos
	Slide 23: Floating-Point Representation Issues
	Slide 24: Fixed-Point Representation
	Slide 25: IEEE Standard: Exponential Representation
	Slide 26: IEEE 754 Standard
	Slide 27: IEEE 754 Standard: Sign and Fraction
	Slide 28: IEEE 754 Standard: Exponent
	Slide 29: IEEE 754 Example
	Slide 30: Exercise 2: Floating Point Conversions
	Slide 31: IEEE 754 Standard: Special Cases
	Slide 32: IEEE 754 infinity.c
	Slide 33: IEEE 754 nan.c
	Slide 34: Distribution of Floating Point Numbers
	Slide 35: Distribution of Floating Point Numbers
	Slide 36: Distribution of Floating Point Numbers
	Slide 37: Code Demos
	Slide 38: What did we learn today?
	Slide 39: Reach Out
	Slide 40: Student Support | I Need Help With…

