COMP1521 25T2

Week 5 Lecture 1

Bitwise Operators and Floating Point

Adapted from Angela Finlayson, Hammond Pearce, Andrew Taylor and John Shepherd's slides

COMP1521 25T2

Assignment 1 is due Friday 6pm

Week 4 test: due Thursday 9pm (MIPS basics, control, arrays)

Week 6 Flexibility Week

Week 6 (next week) is flexibility week so nothing is due then!

Week 5 lab: due Monday midday week 7 Week 5 test: due Thursday 9pm week 7 (MIPS strings) Week 6 test: due Thursday 9pm week 7 (bitwise operators C)

Today's Lecture

- Bitwise Operators
 - Recap
 - MIPS examples
 - C Coding examples
- Floating Point Representation

Recap Demo: bitwise.c

\$ dcc bitwise.c print_bits.c -o bitwise \$./bitwise Enter a: 23032 Enter b: 12345 Enter c: 3 a = 0101100111111000 = 0x59f8 = 23032 b = 0011000000111001 = 0x3039 = 12345~a = 1010011000000111 = 0xa607 = 42503 $a \& b = 000100000111000 = 0 \times 1038 = 4152$ a | b = 0111100111111001 = 0x79f9 = 31225 $a \wedge b = 0110100111000001 = 0x69c1 = 27073$ a >> c = 0000101100111111 = 0x0b3f = 2879a << c = 1100111111000000 = 0xcfc0 = 53184

Recap Exercise 1

Given the following declarations:

// a signed 8-bit value
 uint8_t x = 0x55;
 uint8_t y = 0xAA;

What is the value of each of these expressions?

uint8_t a = x & y; uint8_t e = x >> 1; uint8_t b = x ^ y; uint8_t f = y >> 2; uint8_t c = x | y; uint8_t g = y << 2; uint8 t d = ~x

COMP1521 25T2

Recap Exercise 2:

How can we:

- 1) Check the bit at position 3 of an uint8_t?
- 2) Set the bit at position 3 of an uint8_t?
- 3) Unset the bit at position 3 of an unint8_t?
- 1) Check the bit at position n of an uint8_t?
- 2) Set the bit at position n of an uint8_t?
- 3) Unset the bit at position n of an unint8_t?

MIPS - Bit manipulation instructions

assembly	meaning	bit pattern
and r_d , r_s , r_t	r_d = r_s & r_t	000000ssssstttttddddd00000100100
or r_d , r_s , r_t	r_d = r_s l r_t	000000ssssstttttddddd00000100101
xor r_d , r_s , r_t	r_d = r_s ^ r_t	000000ssssstttttddddd00000100110
nor r_d , r_s , r_t	r_d = ~ ($r_s \mid r_t$)	000000ssssstttttddddd00000100111
and i r_t , r_s , I	r_t = r_s & I	001100ssssstttttIIIIIIIIIIIIIIIII
ori r_t , r_s , I	r_t = r_s l I	001101ssssstttttIIIIIIIIIIIIIIII
xori r_t , r_s , I	r_t = r_s ^ I	001110ssssstttttIIIIIIIIIIIIIIII
${\rm not} r_d \text{, } r_s$	r_d = ~ r_s	pseudo-instruction

MIPS - Shift instructions

assembly	meaning	bit pattern
sllv r_d , r_t , r_s	r_d = $r_t \ll r_s$	000000ssssstttttddddd00000000100
srlv r_d , r_t , r_s	r_d = $r_t \gg r_s$	000000ssssstttttddddd0000000110
srav r_d , r_t , r_s	r_d = $r_t \gg r_s$	000000ssssstttttddddd0000000111
sll r_d , r_t , I	r_d = r_t « I	00000000000tttttdddddIIIII000000
$\operatorname{\mathbf{srl}} r_d$, r_t , I	r_d = r_t » I	00000000000tttttdddddIIIII000010
sra r_d , r_t , I	r_d = r_t » I	0000000000tttttdddddIIIII000011

- **srl** and **srlv** shift zeroes into most-significant bit
 - This matches shift in C of unsigned values
- **sra** and **srav** propagate most-significant bit
 - This ensures the sign is maintained

MIPS Code Demos

• <u>odd_even.s</u>

Code Demos

- XOr.C
- pokemon.c
- set_low_bits.c
- bitset.c

Demo: bitset.c

```
$ dcc bitset.c print_bits.c -o bitset
$ ./bitset
```

Set members can be 0-63, negative number to finish

```
Enter set a: 1 2 4 8 16 32 -1
```

```
Enter set b: 5 4 3 33 -1
```

```
a = {1,2,4,8,16,32}
b = {3,4,5,33}
a union b = {1,2,3,4,5,8,16,32,33}
a intersection b = {4}
cardinality(a) = 6
is_member(42, a) = 0
```


Floating point

IEEE 754 Floating Point Representation

- The industry standard
 - Used by almost all computers
- Crucial to understand when working with numeric computations
- Understand precision and accuracy limitations
 - \circ $\,$ Why using them for finance is unwise
 - Why sometimes
 - a + 1 == a
 - Why code like
 - if (x == y) for floats is not a good idea

When your mom calls you by your full name

Floating Point Numbers

- C has 3 floating point types
 - **float** ... typically 32-bit quantity (lower precision, narrower range)
 - **double** ... typically 64-bit quantity (higher precision, wider range)
 - long double ... typically 128-bit quantity (but maybe only 80 bits used)
- Literal floating point values by default are **double**: 3.14159, 1.0/3, 1.0e-9
- Reminder: division of 2 ints gives an int e.g. 1 / 2 == 0

Code demo: float_output.c

Range of Floating Point Types

How do floating types have such a large range?

float	4 bytes	min=1.17549e-38	max=3.40282e+38
double	8 bytes	min=2.22507e-308	max=1.79769e+308

With the same number of bytes compare:

unsigned int 4 bytes min=0 max= 4294967295 (4.29497e+09) unsigned long 8 bytes min=0 max= (1.84467e+19)

Code demo: floating_types.c

Fractions in different bases

The decimal fraction 0.75 means

- $7*10^{-1} + 5*10^{-2} = 0.7 + 0.05 = 0.75$
- or equivalently 75/10² = 75/100 = 0.75

Similarly 0.11₂ means

- $1*2^{-1} + 1*2^{-2} = 0.5 + 0.25 = 0.75$
- or equivalently $3/2^2 = 3/4 = 0.75$

Similarly 0.C₁₆ would means

- 12*16⁻¹ = 0.75
- or equivalently 12/16¹ = 3/4 = 0.75

Note: We call the . a radix point rather than a decimal point when we are dealing with other bases.

Fractions in different bases

2 ³	2 ²	2 ¹	2 ⁰	2-1	2-2	2 ⁻³
8 ₁₀	4 ₁₀	2 ₁₀	1 ₁₀	0.5 ₁₀	0.25 ₁₀	0.125 ₁₀

Converting fractions to other bases

- The algorithm to convert a decimal fraction to another base is
 - Take the decimal (fractional) part of the number and multiply it by the base you are converting to.
 - The whole number part of the result becomes the next digit after the radix point in the converted number.
 - Repeat the process with the remaining fractional part.
 - Continue until the fractional part becomes zero or you have enough digits for the desired accuracy.

Note: This process does not always terminate because some fractions have repeating representations in certain bases.

Example: Converting Fractions

For example if we want to convert 0.3125 to base 2

- 0.3125 * 2 = **0**.625
- 0.625 * 2 **= 1**.25
- 0.25 * 2 = **0**.5
- 0.5 * 2 = **1**.0

Therefore $0.3125 = 0.0101_2$

Fixed Point Exercise 1:

Convert the following decimal values into binary

- 12.625
- 0.1

Code Demos

double_imprecision.c

Floating-Point Representation Issues

Representing floating point numbers with a fixed small number of bits means:

- Finite number of bit patterns
- Can only represent a finite subset of reals
 - almost all real values will have no exact representation
 - value of arithmetic operations may be real with no exact representation
- Must use **closest value** which can be exactly represented
 - this approximation introduces an error into our calculations
 - o often, does not matter
 - sometimes ... can be disastrous
 - eg pacemakers, finance

Fixed-Point Representation

- A simple trick to represent fractional numbers as integers
 - Every value is multiplied by a particular constant and stored as an integer
 - e.g. if constant is 1000 then 56125 represents 56.125
 - we could not represent 3.141592
- Used on small embedded processors without floating point hardware
- Major limitation is range:
 - e.g. 16 bits used for integer part and 16 bits for fraction (equivalent to a scale factor of 2¹⁶)
 - minimum step 2⁻¹⁶ ≈ 0.000015
 - maximum 2¹⁵ ≈ 32768

IEEE Standard: Exponential Representation

Idea: use scientific notation

• e.g 6.0221515 * 10²³

But in binary:

- 10.6875 = 1010.1011
 - = 1.0101011 ***** 2³

Allows a much bigger range of values to be represented than fixed point

- 8 bits for the exponent can represent numbers from 10⁻³⁸ .. 10³⁸
- 11 bits for the exponent can represent numbers from 10⁻³⁰⁸ .. 10³⁰⁸

IEEE 754 Standard

Note: the fraction part is often called the mantissa

IEEE 754 Standard: Sign and Fraction

Sign bit: 0 for positive, 1 for negative

Fraction:

We don't want multiple representations of the same number so we normalise it

- Use representation with exactly 1 digit in front of the radix point
 - (i.e. 1.1001×2^3 rather than 1100.1×2^0 or 11.001×2^2)
- better to have only one representation (one bit pattern) representing a value
 - multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it

- As long we have a special representation for zero
- To represent 1.1001×2³ we would store 1001000000... for the fraction.

IEEE 754 Standard: Exponent

- represented relative to a bias value *B*
 - to represent exponent of x, we would store x+B
 - for floats the **bias** is 127
- e.g. we were representing 1.1001×2³ we would store (3+127) = 130 = 10000010 for a float
- How bias is calculated:
 - Assume an 8-bit exponent, then bias $B = 2^{8-1}-1 = 127$
 - Valid bit patterns for exponent 00000001 .. 11111110 (1..254)
 - Exponent values we can represent -126 .. 127

IEEE 754 Example

150.75 = 10010110.11

// normalise fraction, compute exponent

= 1.001011011 × 2⁷

// determine sign bit,

// map fraction to 24 bits, (don't store the leading 1)

// map exponent to 8 bits after adding on the bias of 127

where red is sign bit, green is exponent, blue is fraction

Note: *B*=127, *e*=2⁷, so exponent = 127+7 = 134 = **10000110**

Check using explain_float_representation.c or Floating Point Calculator

Exercise 2: Floating Point Conversions

Question 1: Convert the decimal number 1 to a floating point number in IEEE 754 single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point numbers to decimal.

1 01111110 1000000000000000000000000

IEEE 754 Standard: Special Cases

Value	Exponent	Fraction	Example
0 (+ve or -ve)	all 0's	all 0's	
inf (∞ and - ∞)	all 1's	all 0's	1.0/0
nan	all 1's	Not all 0's	0.0/0

IEEE 754 infinity.c

Representation of +- infinity : propagates sensibly through calculations

```
double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
```

IEEE 754 nan.c

Representation for invalid results NaN (not a number)

• Ensures errors propagates sensibly through calculations

```
double x = 0.0/0.0;
```

```
printf("%lf\n", x); //prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

Distribution of Floating Point Numbers

integers ... subset (range) of the mathematical integers

- can represent all integer values in that subset
- each integer is 1 away from the next one and previous one
- all integers are represented accurately

Distribution of Floating Point Numbers

floating point ... subset of the mathematical real numbers

- Floating point numbers not evenly distributed
 - Numbers closer to 0 have higher precision which is good
 - Representations get further apart as values get bigger
 - This works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

A 64-bit double uses 52 bits for the fraction (mantissa).

- Between 2ⁿ and 2ⁿ⁺¹ there are 2⁵² doubles evenly spaced
 - $\circ~$ e.g. in the interval 2⁻⁴² and 2⁻⁴³ there are 2⁵² doubles
 - $\circ~$ and in the interval between 1 and 2 there are 2^{52} doubles
 - $\circ~$ and in the interval between 2^{42} and 2^{43} there are 2^{52} doubles
- near 0.001 doubles are about 0.000000000000000002 apart
- near 1000 doubles are about 0.000000000002 apart
- near 10000000000000 doubles are about 0.25 apart
- above 2⁵³ doubles are more than 1 apart

Code Demos

double_disaster.c double_catastrophe.c explain_float_representation.c

What did we learn today?

- Bitwise Operators
 - Recap
 - MIPS examples
 - C Coding examples
- Floating Point Representation

Next Lecture: File Systems

Reach Out

Content Related Questions: Forum

Admin related Questions email: <u>cs1521@cse.unsw.edu.au</u>

I7e+09; 1.445533 436313e+08; 1.075317e+07; 4.217847e+0)76e+09; 1.425575 .516919e+09; 1.115219e+)388e+08; 1.715606 .926701e+08; 1.726359€ L3554e+09; 3.67514 707539e+08; 1.884434 78368e+08; 1.4099 .500910e+08; 2.55171 289748e+08 1.651701e+09; 3.3007 3.635475e+0 7.923782e+08; 1.967 1.108267e+08; 09; 1.732499e+09; 9.28 5.431051e+08; 1 e+07; 9.520118e+08; 4.7 3; 5.462998e+08; 9 1e+09; 1.549219e+09; 5.)9; 1.918605e+08; 3 953e+09; 2.182336e+08; 1 09; 3.364720e+08; 1.4 L5312e+08; 3.229595e+08; +08; 2.144658e+09; 3 034363e+09; 1.355128e+09; le+08; 9.321679e+08; 4 490732e+08; 1.623699e+09 /le+09; 7.357246e+08; 558488e+09; 1.770088e+0 i05e+09; 1.520625e+08; 621416e+09; 9.011357e+ 3753e+09; 1.839496e+09; .102380e+09; 1.250501e 541618e+09; 1.517725 8710e+08; 2.043793e+09; 447491e+08; 1.356676e+09; .345710e+09; 1.31157 343752e+08; 7.358586e+08; 636420e+09; 1.2999 2.009985e+09; 1.383266e+09; 840526e+08; 5.814 6.576557e+08; 1.652696e+09; 674141e+08; 1.14 8.081643e+08; 1.227248e+09; 814295e+08; 2.0 3; 5.914501e+08; 5.837673e+07 074088e+09: 3.)9; 5.125085e+08; 6.934028e+08 556718e--09; 1.454831e+09; 3.936171e+0 +08; 5.651395e+08; 1.626187e+0 le+08; 1.986651e+09; 4.519209e

Student Support | I Need Help With...

