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● Week 3 Test Due Tomorrow: Thursday 21:00:00. 
○ Many people have not done it yet!

● Census Date : Thursday 13th March
● Assignment 1 Due: Week 5 Friday (next week) at 6pm
● See Help Sessions Schedule 

Announcements
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Get help from the right places

○ staff in lectures, tuts, labs
○ forum, Help Sessions, Revision 

Sessions
● Do not get ‘help’ or submit code 

from external sources like:
○ ChatGPT, external tutors, other 

people’s code etc
● We run plagiarism checking on all 

submissions

Plagiarism
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student.unsw.edu.au/plagiarism

https://student.unsw.edu.au/plagiarism
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Today’s Lecture
● Integers Recap Exercises
● End of last lecture

○ Loading in MIPS
○ Endian in C

● Bitwise Operators
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What does this represent? 

10110110111110001110110101110110 

Recap: Bit and Bytes
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What does this represent? 

10110110111110001110110101110110

We can’t know without knowing its type!
Is it: int, unsigned int, float, unicode character, MIPS instruction?

Recap: Bit and Bytes
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0x01288820 = 

What MIPS instruction is this?
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● 32 bits long
● Specify:

○ An operation
■ (The thing to do)

○ 0 or more operands
■ (The thing to do it over)

● For example:

What do MIPS instructions look like?
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00100001000010010000000000001100

addi $t1, $t0, 12
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0x01288820 = 

0000 0001 0010 1000 1000 1000 0010 0000

What MIPS instruction is this?
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0x01288820 = 

000000 01001 01000 10001 00000100000

What MIPS instruction is this?
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0x01288820 = 

000000 01001 01000 10001 00000100000

add

What MIPS instruction is this?
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0x01288820 = 

000000 01001 01000 10001 00000100000

add $17

What MIPS instruction is this?
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0x01288820 = 

000000 01001 01000 10001 00000100000

add $17, $9

What MIPS instruction is this?
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0x01288820 = 

000000 01001 01000 10001 00000100000

add $17, $9, $8

What MIPS instruction is this?
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0x01288820 = 

000000 01001 01000 10001 00000100000

add $17, $9, $8

add $s1, $t1, $t0
Let’s type it into mipsy web to check!

What MIPS instruction is this?
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● “What order to put things in” is a hard question to answer
● Two schools of thought:

○ Big-endian: MSB at the “low address” - big bits “first!”
○ Little-endian: LSB at the “low address” - little bits “first!”

BIG: LITTLE:

Recap: New concept: Endian-ness
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● Mipsy-web is little-endian

Code example

17

.text

main:

        li $t0, 0x12345678

        sw $t0, my_word

.data

my_word:        

.space 4
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The results of these will depend on endianness:
● lh/lb assume the loaded byte/halfword is signed

○ The destination register top bits are set to the sign bit
● lhu/lbu for doing the same thing, but unsigned 

Loading bytes, half-words
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Loading Examples: lb
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.text

main:

        lb $t0, my_label

.data

my_label:

        .word 0x12345678
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Loading Examples Negative: lb
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.text

main:

        lb $t0, my_label

.data

my_label:

        .word 0x1234ABCD

CD AB

$t0 = 0xFFFFFFCD
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Loading Examples: lbu
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.text

main:

        lbu $t0, my_label

.data

my_label:

        .word 0x1234ABCD

CD AB

$t0 = 0x000000CD
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.text

main:

        lh $t0, my_label

.data

my_label:

        .word 0x12345678

Loading Examples: lh
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Loading Examples Negative: lh
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.text

main:

        lh $t0, my_label

.data

my_label:

        .word 0x1234ABCD

$t0 = 0xFFFFABCD

CD AB
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Loading Examples Negative: lhu
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.text

main:

        lhu $t0, my_label

.data

my_label:

        .word 0x1234ABCD

CD AB

$t0 = 0x0000ABCD
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endianness.c

Endianness in C
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Bitwise Operators
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Used extensively in this course and also:
● Optimisation
● Embedded Systems
● Data compression
● Security and Cryptography
● Graphics  
● Computer Networks

Why Learn Bitwise Operators
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● CPUs provide instructions which implement bitwise operations

○ Provide us ways to manipulating the individual bits of a value.

○ MIPS provides 13 bit manipulation instructions

○ C provides 6 bitwise operators
&  bitwise AND
|  bitwise OR
^  bitwise XOR (eXclusive OR)
~  bitwise NOT
<< left shift
>> right shift

Bitwise Operations
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● && works on whole values 

○ We usually use it in conditions like:

■ if (x > 10 && x < 20)

● & works on every individual bit in each value

○ We use it to modify and/or extract bit information from values

Logical AND (&&) vs Bitwise AND (&)
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● takes two values (eg. a & b) and performs a logical AND 
between pairs of corresponding bits

○ resulting bits are set to 1 if both the original bits in that column 
are 1

Example:

Bitwise AND (&)
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Used for eg. checking if particular bits are set (that is, set to 1) or 
unsetting bits (that is, setting them to 0)
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For any given bit value, x what is:

x & 0 = ?
x & 1 = ?

Exercise: &
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For any given bit value, x what is:

x & 0 = 0    
x & 1 = x

Exercise: &
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We can create bit patterns to help us isolate the bits we are 
interested in! We call these masks!

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111  &
int8_t result = x & mask;           

Bit Masks

33



COMP1521 25T1

We can create bit patterns to help us isolate the bits we are 
interested in! We call these masks!

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111  &
int8_t result = x & mask;          

Bit Masks

34



COMP1521 25T1

We can create bit patterns to help us isolate the bits we are 
interested in! We call these masks!

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111  &
int8_t result = x & mask;          //00000011

bit_ops_and.c

Bit Masks
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Checking if a number is odd

The obvious way to check if a number is odd in C:

int is_odd(int n) {
    return n % 2 != 0;
}
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Checking if a number is odd
What pattern do you see in the binary 
representation of odd numbers?
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Decimal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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Checking if a number is odd
What pattern do you see in the binary 
representation of odd numbers?

They all have a 1 as the least significant 
bit.

We can check that bit to see if it is 1.
If it is it is odd!
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Decimal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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Checking if a number is odd

If the value is ODD (eg 39): If the value is EVEN (eg 38):

int is_odd(int n) {
    return n & 1;
}
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● takes two values (eg. a | b) and performs a logical OR between 
pairs of corresponding bits

○ resulting bits are set to 1 if at least one of the original bits are 1
Example:

Bitwise OR (|)
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Used for eg. setting particular bits (ie set to 1)
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For any given bit value, x what is:

x | 0 = ?  
x | 1 = ?

Bit Masks with |
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For any given bit value, x what is:

x | 0 = x   
x | 1 = 1

Bit Masks with |
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For any given bit value, x what is:

x | 0 = x   
x | 1 = 1

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111
int8_t result = x | mask;           //00010111

Bit Masks with |
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● takes a single value (eg. ~a) and performs a logical negation on 
each bit

Example:

Note: This does NOT mean making a number negative!

Bitwise Negation (~)
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0 0 0 1 0 1 1 0

1 1 1 0 1 0 0 1

~ ~ 0 1

1 0
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We can have a mask we can use to both set bits and unset bits
● Example: 

○ mask 0x7 with | to set the least significant 3 bits
○ negate that mask and use it with & to unset the least significant 3 

bits

Bit Masks with ~
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We can have a mask we can use to both set bits and unset bits
● Example: 

○ mask 0x7 with | to set the least significant 3 bits
○ negate that mask and use it with & to unset the least significant 3 

bits

For example:
int8_t x = 0x13; //00010011
int8_t mask = ~0x7; //11111000
int8_t result = x & mask;           //00010000

Bit Masks with ~
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● takes two values (eg. a ^ b) and performs an exclusive OR 
between pairs of corresponding bits

○ resulting bits are set to 1 if exactly one of the original bits are 1
Example:

Bitwise XOR (^)
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Used for eg. cryptography, flipping a bit 
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For any given bit value, x what is:

x ^ 0 = x   
x ^ 1 = ~x (flips the bit)

Bit Masks with ^
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For any given bit value, x what is:

x ^ 0 = x   
x ^ 1 = ~x (flips the bit)

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111
int8_t result = x & mask;          //00010100

Bit Masks with ^
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For any given bit value, x what is:

x ^ 0 = x   
x ^ 1 = ~x (flips the bit)

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111
int8_t result = x & mask;          //00010100

Bit Masks with ^

50
What happens if I apply the mask again?
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● Evaluate the following:

○  5 && 6

○  5 & 6

● How many beers did the software 
      developer drink?

Exercise 1:
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● takes a value and a small positive integer x (eg. a << x)
● shifts each bit x positions to the left

○ any bits that fall off the left vanish

○ new 0 bits are inserted on the right

○ result contains the same number of bits as the input
● Example:

Left Shift (<<)
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What does this mean mathematically?

Implications of left shift

53
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What does this mean mathematically? 

Implications of left shift
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Expression Result Binary Result Decimal

00000001 << 1 00000010 2

00000001 << 2 00000100 4

00000001 << 3 00001000 8

00000001 << 4 00010000 16
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What does this mean mathematically? Multiplies by powers of 2! 

Demo: shift_as_multiply.c

Implications of left shift
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Expression Result Binary Result Decimal

00000001 << 1 00000010 2

00000001 << 2 00000100 4

00000001 << 3 00001000 8

00000001 << 4 00010000 16
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● takes a value and a small positive integer x (eg. a >> x)
● shifts each bit x positions to the right

○ any bits that fall off the right vanish

○ new 0 bits are inserted on the left (for unsigned types)

○ result contains the same number of bits as the input
● Example:

Right Shift (>>)
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Used for eg looping through 1 bit at a time 



COMP1521 25T1

What does this mean mathematically?

Implications of right shift
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What does this mean mathematically? 1610 == 000100002

Implications of right shift

58

Expression Result Binary Result Decimal

00010000 >> 1 00001000 8

00010000 >> 2 00000100 4

00010000 >> 3 00000010 2

00010000 >> 4 00000001 1
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What does this mean mathematically? 1610 == 000100002

Divides by powers of 2

Implications of right shift
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Expression Result Binary Result Decimal

00010000 >> 1 00001000 8

00010000 >> 2 00000100 4

00010000 >> 3 00000010 2

00010000 >> 4 00000001 1
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But what about situations like this? We lose some bits!

0111 >> 1   == 0011

This is the same as 7/2  == 3 with integer division!

Demo: right_shift.c

Implications of right shift
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● Shifts involving negative values may not be portable, and can 
vary across different implementations

● Common source of bugs in COMP1521 (and elsewhere)
● Always use unsigned values/variables when shifting to be 

safe/portable

Demo: shift_bug.c

Issues with shifting
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● get_nth_bit.c
● xor.c
● pokemon.c
● set_low_bits0.c
● set_low_bits.c

Code Demos
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Demo: pokemon.c

#define FIRE_TYPE      0x0001
#define FIGHTING_TYPE  0x0002
#define WATER_TYPE     0x0004
#define FLYING_TYPE    0x0008
#define POISON_TYPE    0x0010
#define ELECTRIC_TYPE  0x0020
#define GROUND_TYPE    0x0040
#define PSYCHIC_TYPE   0x0080
#define ROCK_TYPE      0x0100
#define ICE_TYPE       0x0200
#define BUG_TYPE       0x0400
#define DRAGON_TYPE    0x0800
#define GHOST_TYPE     0x1000
#define DARK_TYPE      0x2000
#define STEEL_TYPE     0x4000
#define FAIRY_TYPE     0x8000
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Given the following declarations:

What is the value of each of these expressions?

Exercise 1
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// a signed 8-bit value

   uint8_t x = 0x55;

   uint8_t y = 0xAA;

   uint8_t a = x & y;

   uint8_t b = x ^ y;

   uint8_t c = x << 1;

   uint8_t d = y << 2;

   uint8_t e = x >> 1;

   uint8_t f = y >> 2;

   uint8_t g = x | y;
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MIPS - Bit manipulation instructions
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MIPS - Shift instructions

● srl and srlv shift zeroes into most-significant bit

○ This matches shift in C of unsigned values
● sra and srav propagate most-significant bit

○ This ensures the sign is maintained
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● odd_even.s
● mips_bits.s
● mips_negative_shifts.s

MIPS Code Demos
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● Integer representation recap
● Bitwise Operators
● Next lecture:

○ Floating Point Data

What did we learn today?
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Feedback Please!
Your feedback is valuable! 

If you have any feedback from 
today's lecture, please follow the 
link below or use the QR Code. 

Please remember to keep your 
feedback constructive, so I can 
action it and improve your 
learning experience.
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https://forms.office.com/r/NKVTwTXixC
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Content Related Questions:  
Forum

Admin related Questions email: 
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au
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Student Support | I Need Help With…
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—  student.unsw.edu.au/advisorsStudent Support
Indigenous Student 
Support

Equity Diversity and Inclusion 
(EDI)

—  edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service 
(ELS)

— student.unsw.edu.au/els

Academic Language 
Skills

— student.unsw.edu.au/skills

Special Consideration —  student.unsw.edu.au/special-consideration

My Feelings and Mental 
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health 
Connect

Mind 
HUB

student.unsw.edu.au/counselling 
Telehealth

student.unsw.edu.au/mind-hub 
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support 
Line

Outside Australia 
Afterhours 24-hour 
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams


