
COMP1521 25T1

COMP1521 25T1

Bitwise Operators

Week 4 Lecture 2

Adapted from Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

● Week 3 Test Due Tomorrow: Thursday 21:00:00.
○ Many people have not done it yet!

● Census Date : Thursday 13th March
● Assignment 1 Due: Week 5 Friday (next week) at 6pm
● See Help Sessions Schedule

Announcements

2

COMP1521 25T1

Get help from the right places

○ staff in lectures, tuts, labs
○ forum, Help Sessions, Revision

Sessions
● Do not get ‘help’ or submit code

from external sources like:
○ ChatGPT, external tutors, other

people’s code etc
● We run plagiarism checking on all

submissions

Plagiarism

3

student.unsw.edu.au/plagiarism

https://student.unsw.edu.au/plagiarism

COMP1521 25T1

Today’s Lecture
● Integers Recap Exercises
● End of last lecture

○ Loading in MIPS
○ Endian in C

● Bitwise Operators

4

COMP1521 25T1

What does this represent?

10110110111110001110110101110110

Recap: Bit and Bytes

5

COMP1521 25T1

What does this represent?

10110110111110001110110101110110

We can’t know without knowing its type!
Is it: int, unsigned int, float, unicode character, MIPS instruction?

Recap: Bit and Bytes

6

COMP1521 25T1

0x01288820 =

What MIPS instruction is this?

7

COMP1521 25T1

● 32 bits long
● Specify:

○ An operation
■ (The thing to do)

○ 0 or more operands
■ (The thing to do it over)

● For example:

What do MIPS instructions look like?

8

00100001000010010000000000001100

addi $t1, $t0, 12

COMP1521 25T1

0x01288820 =

0000 0001 0010 1000 1000 1000 0010 0000

What MIPS instruction is this?

9

COMP1521 25T1

0x01288820 =

000000 01001 01000 10001 00000100000

What MIPS instruction is this?

10

COMP1521 25T1

0x01288820 =

000000 01001 01000 10001 00000100000

add

What MIPS instruction is this?

11

COMP1521 25T1

0x01288820 =

000000 01001 01000 10001 00000100000

add $17

What MIPS instruction is this?

12

COMP1521 25T1

0x01288820 =

000000 01001 01000 10001 00000100000

add $17, $9

What MIPS instruction is this?

13

COMP1521 25T1

0x01288820 =

000000 01001 01000 10001 00000100000

add $17, $9, $8

What MIPS instruction is this?

14

COMP1521 25T1

0x01288820 =

000000 01001 01000 10001 00000100000

add $17, $9, $8

add $s1, $t1, $t0
Let’s type it into mipsy web to check!

What MIPS instruction is this?

15

COMP1521 25T1

● “What order to put things in” is a hard question to answer
● Two schools of thought:

○ Big-endian: MSB at the “low address” - big bits “first!”
○ Little-endian: LSB at the “low address” - little bits “first!”

BIG: LITTLE:

Recap: New concept: Endian-ness

16

COMP1521 25T1

● Mipsy-web is little-endian

Code example

17

.text

main:

 li $t0, 0x12345678

 sw $t0, my_word

.data

my_word:

.space 4

COMP1521 25T1

The results of these will depend on endianness:
● lh/lb assume the loaded byte/halfword is signed

○ The destination register top bits are set to the sign bit
● lhu/lbu for doing the same thing, but unsigned

Loading bytes, half-words

18

COMP1521 25T1

Loading Examples: lb

19

.text

main:

 lb $t0, my_label

.data

my_label:

 .word 0x12345678

COMP1521 25T1

Loading Examples Negative: lb

20

.text

main:

 lb $t0, my_label

.data

my_label:

 .word 0x1234ABCD

CD AB

$t0 = 0xFFFFFFCD

COMP1521 25T1

Loading Examples: lbu

21

.text

main:

 lbu $t0, my_label

.data

my_label:

 .word 0x1234ABCD

CD AB

$t0 = 0x000000CD

COMP1521 25T1 22

.text

main:

 lh $t0, my_label

.data

my_label:

 .word 0x12345678

Loading Examples: lh

COMP1521 25T1

Loading Examples Negative: lh

23

.text

main:

 lh $t0, my_label

.data

my_label:

 .word 0x1234ABCD

$t0 = 0xFFFFABCD

CD AB

COMP1521 25T1

Loading Examples Negative: lhu

24

.text

main:

 lhu $t0, my_label

.data

my_label:

 .word 0x1234ABCD

CD AB

$t0 = 0x0000ABCD

COMP1521 25T1

endianness.c

Endianness in C

25

COMP1521 25T1

Bitwise Operators

26

COMP1521 25T1

Used extensively in this course and also:
● Optimisation
● Embedded Systems
● Data compression
● Security and Cryptography
● Graphics
● Computer Networks

Why Learn Bitwise Operators

27

COMP1521 25T1

● CPUs provide instructions which implement bitwise operations

○ Provide us ways to manipulating the individual bits of a value.

○ MIPS provides 13 bit manipulation instructions

○ C provides 6 bitwise operators
& bitwise AND
| bitwise OR
^ bitwise XOR (eXclusive OR)
~ bitwise NOT
<< left shift
>> right shift

Bitwise Operations

28

COMP1521 25T1

● && works on whole values

○ We usually use it in conditions like:

■ if (x > 10 && x < 20)

● & works on every individual bit in each value

○ We use it to modify and/or extract bit information from values

Logical AND (&&) vs Bitwise AND (&)

29

COMP1521 25T1

● takes two values (eg. a & b) and performs a logical AND
between pairs of corresponding bits

○ resulting bits are set to 1 if both the original bits in that column
are 1

Example:

Bitwise AND (&)

30

Used for eg. checking if particular bits are set (that is, set to 1) or
unsetting bits (that is, setting them to 0)

COMP1521 25T1

For any given bit value, x what is:

x & 0 = ?
x & 1 = ?

Exercise: &

31

COMP1521 25T1

For any given bit value, x what is:

x & 0 = 0
x & 1 = x

Exercise: &

32

COMP1521 25T1

We can create bit patterns to help us isolate the bits we are
interested in! We call these masks!

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111 &
int8_t result = x & mask;

Bit Masks

33

COMP1521 25T1

We can create bit patterns to help us isolate the bits we are
interested in! We call these masks!

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111 &
int8_t result = x & mask;

Bit Masks

34

COMP1521 25T1

We can create bit patterns to help us isolate the bits we are
interested in! We call these masks!

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111 &
int8_t result = x & mask; //00000011

bit_ops_and.c

Bit Masks

35

COMP1521 25T1

Checking if a number is odd

The obvious way to check if a number is odd in C:

int is_odd(int n) {
 return n % 2 != 0;
}

COMP1521 25T1

Checking if a number is odd
What pattern do you see in the binary
representation of odd numbers?

37

Decimal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

COMP1521 25T1

Checking if a number is odd
What pattern do you see in the binary
representation of odd numbers?

They all have a 1 as the least significant
bit.

We can check that bit to see if it is 1.
If it is it is odd!

38

Decimal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

COMP1521 25T1

Checking if a number is odd

If the value is ODD (eg 39): If the value is EVEN (eg 38):

int is_odd(int n) {
 return n & 1;
}

COMP1521 25T1

● takes two values (eg. a | b) and performs a logical OR between
pairs of corresponding bits

○ resulting bits are set to 1 if at least one of the original bits are 1
Example:

Bitwise OR (|)

40

Used for eg. setting particular bits (ie set to 1)

COMP1521 25T1

For any given bit value, x what is:

x | 0 = ?
x | 1 = ?

Bit Masks with |

41

COMP1521 25T1

For any given bit value, x what is:

x | 0 = x
x | 1 = 1

Bit Masks with |

42

COMP1521 25T1

For any given bit value, x what is:

x | 0 = x
x | 1 = 1

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111
int8_t result = x | mask; //00010111

Bit Masks with |

43

COMP1521 25T1

● takes a single value (eg. ~a) and performs a logical negation on
each bit

Example:

Note: This does NOT mean making a number negative!

Bitwise Negation (~)

44

0 0 0 1 0 1 1 0

1 1 1 0 1 0 0 1

~ ~ 0 1

1 0

COMP1521 25T1

We can have a mask we can use to both set bits and unset bits
● Example:

○ mask 0x7 with | to set the least significant 3 bits
○ negate that mask and use it with & to unset the least significant 3

bits

Bit Masks with ~

45

COMP1521 25T1

We can have a mask we can use to both set bits and unset bits
● Example:

○ mask 0x7 with | to set the least significant 3 bits
○ negate that mask and use it with & to unset the least significant 3

bits

For example:
int8_t x = 0x13; //00010011
int8_t mask = ~0x7; //11111000
int8_t result = x & mask; //00010000

Bit Masks with ~

46

COMP1521 25T1

● takes two values (eg. a ^ b) and performs an exclusive OR
between pairs of corresponding bits

○ resulting bits are set to 1 if exactly one of the original bits are 1
Example:

Bitwise XOR (^)

47

Used for eg. cryptography, flipping a bit

COMP1521 25T1

For any given bit value, x what is:

x ^ 0 = x
x ^ 1 = ~x (flips the bit)

Bit Masks with ^

48

COMP1521 25T1

For any given bit value, x what is:

x ^ 0 = x
x ^ 1 = ~x (flips the bit)

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111
int8_t result = x & mask; //00010100

Bit Masks with ^

49

COMP1521 25T1

For any given bit value, x what is:

x ^ 0 = x
x ^ 1 = ~x (flips the bit)

For example:
int8_t x = 0x13; //00010011
int8_t mask = 0x7; //00000111
int8_t result = x & mask; //00010100

Bit Masks with ^

50
What happens if I apply the mask again?

COMP1521 25T1

● Evaluate the following:

○ 5 && 6

○ 5 & 6

● How many beers did the software
 developer drink?

Exercise 1:

51

COMP1521 25T1

● takes a value and a small positive integer x (eg. a << x)
● shifts each bit x positions to the left

○ any bits that fall off the left vanish

○ new 0 bits are inserted on the right

○ result contains the same number of bits as the input
● Example:

Left Shift (<<)

52

COMP1521 25T1

What does this mean mathematically?

Implications of left shift

53

COMP1521 25T1

What does this mean mathematically?

Implications of left shift

54

Expression Result Binary Result Decimal

00000001 << 1 00000010 2

00000001 << 2 00000100 4

00000001 << 3 00001000 8

00000001 << 4 00010000 16

COMP1521 25T1

What does this mean mathematically? Multiplies by powers of 2!

Demo: shift_as_multiply.c

Implications of left shift

55

Expression Result Binary Result Decimal

00000001 << 1 00000010 2

00000001 << 2 00000100 4

00000001 << 3 00001000 8

00000001 << 4 00010000 16

COMP1521 25T1

● takes a value and a small positive integer x (eg. a >> x)
● shifts each bit x positions to the right

○ any bits that fall off the right vanish

○ new 0 bits are inserted on the left (for unsigned types)

○ result contains the same number of bits as the input
● Example:

Right Shift (>>)

56

Used for eg looping through 1 bit at a time

COMP1521 25T1

What does this mean mathematically?

Implications of right shift

57

COMP1521 25T1

What does this mean mathematically? 1610 == 000100002

Implications of right shift

58

Expression Result Binary Result Decimal

00010000 >> 1 00001000 8

00010000 >> 2 00000100 4

00010000 >> 3 00000010 2

00010000 >> 4 00000001 1

COMP1521 25T1

What does this mean mathematically? 1610 == 000100002

Divides by powers of 2

Implications of right shift

59

Expression Result Binary Result Decimal

00010000 >> 1 00001000 8

00010000 >> 2 00000100 4

00010000 >> 3 00000010 2

00010000 >> 4 00000001 1

COMP1521 25T1

But what about situations like this? We lose some bits!

0111 >> 1 == 0011

This is the same as 7/2 == 3 with integer division!

Demo: right_shift.c

Implications of right shift

60

COMP1521 25T1

● Shifts involving negative values may not be portable, and can
vary across different implementations

● Common source of bugs in COMP1521 (and elsewhere)
● Always use unsigned values/variables when shifting to be

safe/portable

Demo: shift_bug.c

Issues with shifting

61

COMP1521 25T1

● get_nth_bit.c
● xor.c
● pokemon.c
● set_low_bits0.c
● set_low_bits.c

Code Demos

62

COMP1521 25T1

Demo: pokemon.c

#define FIRE_TYPE 0x0001
#define FIGHTING_TYPE 0x0002
#define WATER_TYPE 0x0004
#define FLYING_TYPE 0x0008
#define POISON_TYPE 0x0010
#define ELECTRIC_TYPE 0x0020
#define GROUND_TYPE 0x0040
#define PSYCHIC_TYPE 0x0080
#define ROCK_TYPE 0x0100
#define ICE_TYPE 0x0200
#define BUG_TYPE 0x0400
#define DRAGON_TYPE 0x0800
#define GHOST_TYPE 0x1000
#define DARK_TYPE 0x2000
#define STEEL_TYPE 0x4000
#define FAIRY_TYPE 0x8000

COMP1521 25T1

Given the following declarations:

What is the value of each of these expressions?

Exercise 1

64

// a signed 8-bit value

 uint8_t x = 0x55;

 uint8_t y = 0xAA;

 uint8_t a = x & y;

 uint8_t b = x ^ y;

 uint8_t c = x << 1;

 uint8_t d = y << 2;

 uint8_t e = x >> 1;

 uint8_t f = y >> 2;

 uint8_t g = x | y;

COMP1521 25T1

MIPS - Bit manipulation instructions

COMP1521 25T1

MIPS - Shift instructions

● srl and srlv shift zeroes into most-significant bit

○ This matches shift in C of unsigned values
● sra and srav propagate most-significant bit

○ This ensures the sign is maintained

COMP1521 25T1

● odd_even.s
● mips_bits.s
● mips_negative_shifts.s

MIPS Code Demos

67

COMP1521 25T1 68

● Integer representation recap
● Bitwise Operators
● Next lecture:

○ Floating Point Data

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

69

https://forms.office.com/r/NKVTwTXixC

COMP1521 25T1 70

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

71

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

