COMP1521 25T1

Week 4 Lecture 1

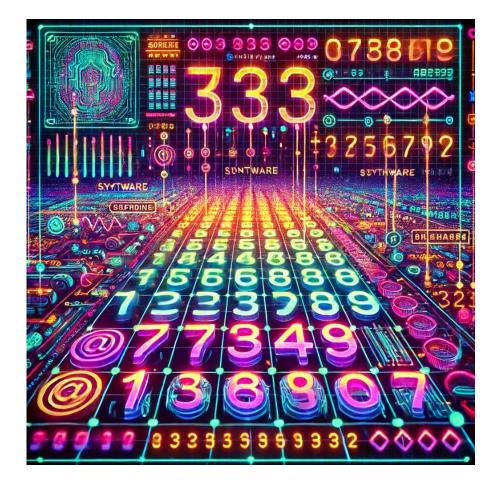
Integers and Bitwise Operators

Adapted from Hammond Pearce, Andrew Taylor and John Shepherd's slides

COMP1521 25T1

Today's Lecture

- Assignment 1
- Stacks and Frames
 - Recursive MIPS function
 - Invalid C
- Integers
- Bitwise Operations



Announcements

- Lab 3 Due: Today midday
- Weekly Test 3 Due: Thursday 21:00:00.
- Census Date : Thursday 13th Mar
 - Last day to drop T1 courses without financial liability
- Assignment 1 Due: Week 5 Friday 18:00 (next week)
- See Help Sessions Schedule

Assignment 1

- Watch Video
- Fetch Code
- Run C Code
- For each subset
 - Write simplified C 1 function at a time.
 - Compile and autotest
 - Write MIPS function
 - Autotest MIPS
- Follow style in supplied .s code
 - including function comments and equivalent C comments.

Code Demos: Stacks and Frames

sum_to_r.c, sum_to_r.s
invalid_1.c
invalid_4.c

Integers

Why Learn About Integers

- Fundamental topic in computing
 - Understand what you are seeing in mipsy web!
 - Understand limits of types and help you understand and debug code
- Prepare you for the next topic bitwise operators
- Understand the jokes in these slides

There are 10 types of students

There are 10 types of students

Those that understand binary,

And those that don't

-Andrew Taylor

Numbers

4705

It is equivalent to: $4*10^3 + 7*10^2 + 0*10^1 + 5*10^0$ = 4000 + 700 + 0 + 5

Numbers

4705

It is equivalent to: $4*10^3 + 7*10^2 + 0*10^1 + 5*10^0$ = 4000 + 700 + 0 + 5

If we assume it is base 10!

Base 10: Decimal

- In Base (or radix) 10 we have 10 digits e.g. 0..9
 - Then to get bigger numbers we start combining the digits e.g. 10
- Place Values

10 ³	10 ²	10 ¹	10 ⁰
1000 ₁₀	100 ₁₀	10 ₁₀	1 ₁₀

• Example:

$$4705_{10} = 4*10^{3} + 7*10^{2} + 0*10^{1} + 5*10^{0}$$
$$= 4000 + 700 + 0 + 5$$
$$= 4705_{10}$$

Base 10 was an arbitrary choice

- Possibly exists because we have 10 digits (fingers)
- Ancient Egyptians, Brahmi Numerals, Greek Numerals, Hebrew Numerals, Roman Numerals and Chinese Numerals:

• All base 10!

Code Demo

digits.c

What about some other bases?

- Let's think about base 7 (not a very useful base)
- We have 7 digits 0..6
 - Then we start combining the digits e.g. 10 represents 7_{10}

7 ³	7 ²	7 ¹	7 ⁰
343 ₁₀	49 ₁₀	7 ₁₀	1 ₁₀

• Here, 1216₇ = ?

What about some other bases?

- Let's think about base 7 (not a very useful base)
- We have 7 digits 0..6
 - Then we start combining the digits e.g. 10 represents 7_{10}

7 ³	7 ²	7 ¹	7 ⁰
343 ₁₀	49 ₁₀	7 ₁₀	1 ₁₀

• Here, $1216_7 = 1 * 7^3 + 2 * 7^2 + 1 * 7^1 + 6 * 7^0$ = 1 * 343 + 2 * 47 + 2 * 7 + 6 * 1 = 454₁₀

Base 2: Computers like binary

- In Base (or radix) 2 we have 2 digits (bits) e.g. 0 and 1
 - Easy to represent using "electricity"
 - Then we start combining the digits e.g. 10 represents 2_{10}
- Place Values

2 ³	2 ²	2 ¹	2 ⁰
8 ₁₀	4 ₁₀	2 ₁₀	1 ₁₀

1011₂=?₁₀

Base 2: Computers like binary

- In Base 2 we have 2 digits (bits) e.g. 0 and 1
 - Easy to represent using "electricity"
 - Then we start combining the digits e.g. 10 represents 2_{10}
- Place Values

2 ³	2 ²	2 ¹	2 ⁰
8 ₁₀	4 ₁₀	2 ₁₀	1 ₁₀

$$1011_{2} = 1 * 2^{3} + 0 * 2^{2} + 1 * 2^{1} + 1 * 2^{0}$$

= 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
= 11₁₀

Question: Convert 1101₂ to decimal?

```
Question: Convert 29<sub>10</sub> to binary?
```

Question: Convert 1101_2 to decimal? **Answer:** $1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0$

$$= 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$$

= 13

Question: Convert 29₁₀ to binary?

Question: Convert 1101_2 to decimal? **Answer:** $1 * 2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0$

$$= 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$$

Question: Convert 29_{10} to binary = 11101

- 29/2 = 14 R 1
- 14/2 = 7 R 0
- 7/2 = 3 R 1
- 3/2 = 1 R 1
- 1/2 = 0 R 1

Binary numbers are hard to read!

- They get very long, very fast
- E.g. 12345678₁₀ = 101111000110000101001110₂

Binary numbers are hard to read!

- They get very long, very fast
- E.g. 12345678₁₀ = 101111000110000101001110₂
- Solution: Write numbers in hexadecimal!
 - More compact than binary
 - Maps more easily to binary than decimal.
 - Bit patterns remain more obvious than in decimal

Base 16: Hexadecimal

- In Base (or radix) 16 we have 16 digits
 - \circ 0123456789ABCDEF
 - Then we start combining the digits e.g. 10 represents 16_{10}
- Place Values

16 ³	16 ²	16 ¹	16 ⁰
4096 ₁₀	256 ₁₀	16 ₁₀	1 ₁₀

• 3AF1₁₆ = ?₁₀

Base 16: Hexadecimal

- In Base (or radix) 16 we have 16 digits
 - \circ 0123456789ABCDEF
 - Then we start combining the digits e.g. 10 represents 16_{10}
- Place Values

16 ³	16 ²	16 ¹	16 ⁰
4096 ₁₀	256 ₁₀	16 ₁₀	1 ₁₀

• $3AF1_{16} = 3 \times 16^3 + 10 \times 16^2 + 15 \times 16^1 + 1 \times 16^0$ = 15089_{10}

More hexadecimal examples

Question: Convert 1FF₁₆ to decimal?

Question: Convert 13₁₀ to hexadecimal?

More hexadecimal examples

Question: Convert $1FF_{16}$ to decimal? **Answer:** $1 \times 16^2 + 15 \times 16^1 + 15 \times 16^0 = 511_{10}$

Question: Convert 13₁₀ to hexadecimal?

More hexadecimal examples

Question: Convert $1FF_{16}$ to decimal? **Answer:** $1 \ge 16^2 + 15 \ge 16^1 + 15 \ge 16^0 = 511_{10}$

Question: Convert 13₁₀ to hexadecimal? **Answer:** D₁₆

- Binary gets very long very quick
 - e.g. $12345678_{10} = 101111000110000101001110_2$
- Solution: Write numbers in hexadecimal!

16 ³	16 ²	16 ¹	16 ⁰
4096 ₁₀	256 ₁₀	16 ₁₀	1 ₁₀

• **16** == **2**⁴

• We can separate the bits into groups of **4**...

- $12345678_{10} = 101111000110000101001110_{2}$
 - = 1011 1100 0110 0001 0100 1110₂

=

- $12345678_{10} = 101111000110000101001110_{2}$
 - $= 1011 \ 1100 \ 0110 \ 0001 \ 0100 \ 1110_{2}$
- Each 4 bit group can be represented by **one** hexadecimal digit!

_

- $12345678_{10} = 101111000110000101001110_{2}$
 - $= 1011 \ 1100 \ 0110 \ 0001 \ 0100 \ 1110_2$
- Each 4 bit group can be represented by **one** hexadecimal digit!

Base 10	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Base 16	F	E	D	С	В	А	9	8	7	6	5	4	3	2	1	0
Base 2	1111	1110	1101	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001	0000

- $12345678_{10} = 101111000110000101001110_{2}$
 - = 1011 1100 0110 0001 0100 1110₂
 - = B C 6 1 4 E
- Each 4 bit group can be represented by **one** hexadecimal digit!

Base 10	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Base 16	F	E	D	С	В	A	9	8	7	6	5	4	3	2	1	0
Base 2	1111	1110	1101	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001	0000

Binary 01101111 =

Hexadecimal BAD2 =

Binary $01101111 = 6F_{16}$

Hexadecimal BAD2 =

Binary $01101111 = 6F_{16}$

Hexadecimal BAD2 = 1011101011010010_2

Base 8: Octal

- In Base (or radix) 8 we have 8 digits
 - $\circ \quad 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
 - Then we start combining the digits e.g. 10 represents 8_{10}
- Similar advantages to hexadecimal
 - $8 = 2^3$ so group bits into 3:
 - Example: $72_8 = 111\ 010_2 = 3A_{16} = 58_{10}$

Base 10	7	6	5	4	3	2	1	0
Base 8	7	6	5	4	3	2	1	0
Base 2	111	110	101	100	011	010	001	000

Binary, Octal, Hexadecimal Summary

- In **binary**, (base 2), each digit represents **1** bit:
 - 010010001111101010111100100101112
- In octal, (base 8), each digit represents 3 bits

 - · 1 1 0 7 6 5 3 6 2 2 7₈
- In hexadecimal, (base 16), each digit represents 4 bits:
 - 0100 1000 1111 1010 1011 1100 1001 0111
 - 4 8 F A B C 9 7₁₆

Constants in C and MIPS assembly

- A number beginning with **0x** is hexadecimal
- A number beginning with **0** is octal
- A number beginning with **0b** is binary
- Otherwise, it is decimal

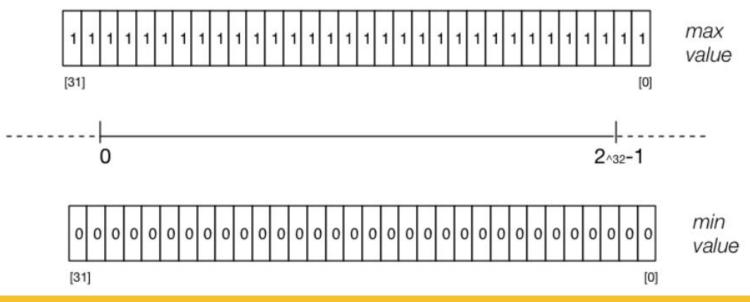
```
printf("%d", 0x2A); // prints 42
printf("%d", 052); // prints 42
printf("%d", 0b101010); // prints 42
printf("%d", 42); // prints 42
```

Easy Base Conversions in C

integer_prefixes.c
integer_prefixes_args.c

Unsigned integers

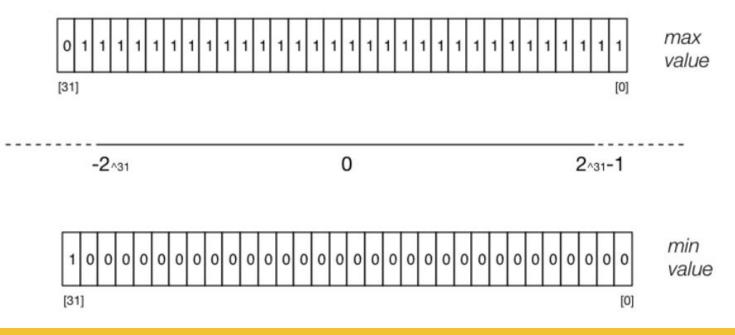
- In C the **unsigned** int data type is 4 bytes on our system
 - means we can store values from the range 0 .. 2^{32} -1



Signed integers

• In C the int data type is 4 bytes on our system

• we can store values from the range -2^{31} .. $2^{31}-1$



What do signed binary numbers look like?

- Modern computers use **two's complement** for integers
- Positive integers and zero represented as normal
- Negative integers represented in a way to make maths for the computer (not humans)
 - For an *n*-bit binary number, the number -b is $2^n b$
 - E.g. 8-bit number "-5" is represented as $2^8 5 = 1111 \ 1011_2$

Two's Complement Tips and Tricks

- Another shortcut for doing 2's complement
 - If you are trying to represent -5 in 8 bits
 - Take the +5 representation
 - 0000 0101
 - invert all the bits
 - 1111 1010
 - add 1
 - 1111 1011
- Repeat the process to go from -5 back to 5 again!

Example: 2's Complement Example

• Some simple code to examine 8-bit 2's complement numbers:

```
for (int i = -128; i < 128; i++) {
    printf("%4d ", i);
    print_bits(i, 8);
    printf("\n");</pre>
```

Example: Printing all 8-bit 2's complement

- \$./8_bit_twos_complement
- -128 1000000
- -127 1000001
- -126 10000010

• • •

- -3 11111101
- -2 11111110
- -1 11111111

0 0000000

1 0000001

2 0000010

3 0000011

•••

125 01111101

126 01111110

127 01111111

Example: print_bits_of_int.c

```
$ ./print bits of int
Enter an int: 0
$ ./print bits of int
Enter an int: 1
$ ./print bits of int
Enter an int: -1
$ ./print bits of int
Enter an int: 2147483647
$ ./print bits of int
Enter an int: -2147483648
$
```

Bits and Bytes on cse Servers

- On CSE servers, C types have these sizes
 - char = 1 byte = 8 bits
 - 42 is 00101010
 - short = 2 bytes = 16 bits,
 - 42 is 000000000101010
 - int = 4 bytes = 32 bits,
 - double = 8 bytes = 64 bits,

■ 42 = ?

- above are common sizes but not universal
- sizeof (int) might be 2 (bytes) on a small embedded CPU

integer_types.c - exploring integer types

Туре	Bytes	Bits
char	1	8
signed char	1	8
unsigned char	1	8
short	2	16
unsigned short	2	16
int	4	32
unsigned int	4	32
long	8	64
unsigned long	8	64
long long	8	64
unsigned long long	8	64

Exploring integer types

Min Max Type -128 char 127 signed char -128 127 unsigned char 255 0 short -3276832767 unsigned short 65535 0 int -21474836482147483647 unsigned int 0 4294967295 long -9223372036854775808 9223372036854775807 unsigned long 18446744073709551615 0 long long -9223372036854775808 9223372036854775807 unsigned long long 18446744073709551615 0

stdint.h - guaranteed size integer types

- **#include <stdint.h>** to get below int types (and more) with known sizes
- We use these a lot in COMP1521!

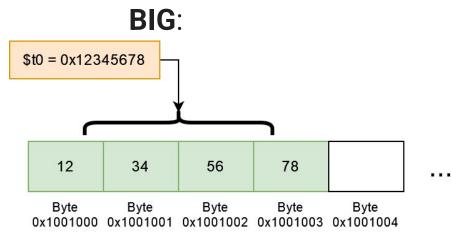
		//	range of values for a	type
		//	minimum	maximum
int8_t	i1;	//	-128	127
uint8_t	i2;	//	0	255
int16_t	i3;	//	-32768	32767
uint16_t	i4;	//	0	65535
int32_t	i5;	11	-2147483648	2147483647
uint32_t	16;	11	0	4294967295
int64_t	i7;	//	-9223372036854775808	9223372036854775807
uint64_t	i8;	//	0	18446744073709551615

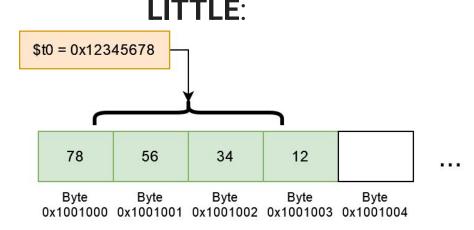
Code Examples

overflow_int.c wrap_around_uint.c char_bug.c

New concept: Endian-ness

- "What order to put things in" is a hard question to answer
- Two schools of thought:
 - **Big**-endian: MSB at the "low address" big bits "first!"
 - Little-endian: LSB at the "low address" little bits "first!"





Code example

• Mipsy-web is little-endian

.text

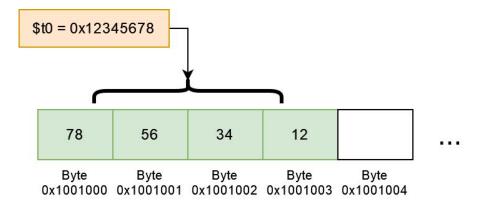
main:

li \$t0, 0x12345678 sw \$t0, my word

.data

my_word:

.space 4

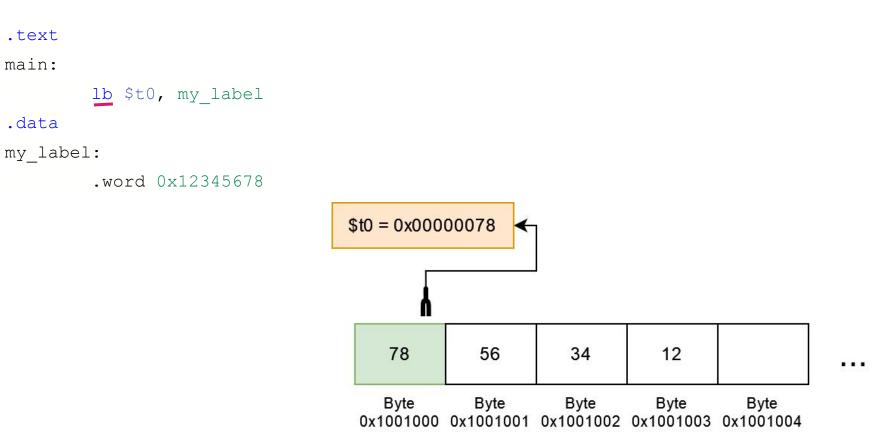


Loading bytes, half-words

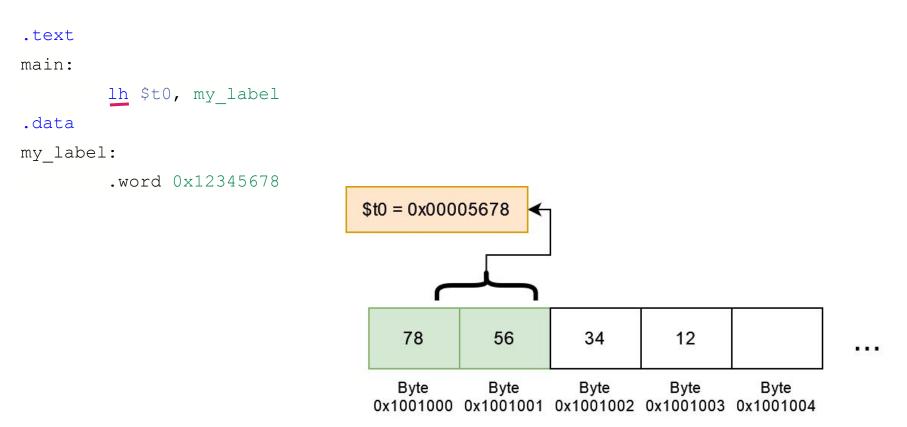
The results of these will depend on endianness:

- **lh/lb** assume the loaded byte/halfword is signed
 The destination register top bits are set to the sign bit
- **lhu/lbu** for doing the same thing, but unsigned

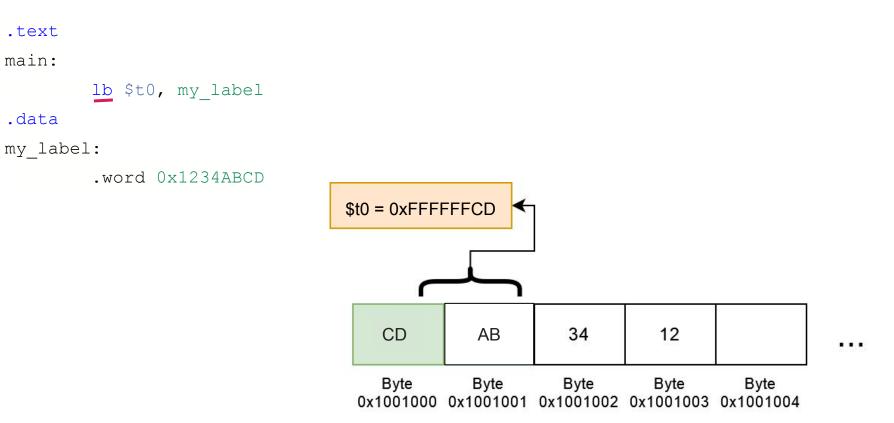
Loading Examples: Ib



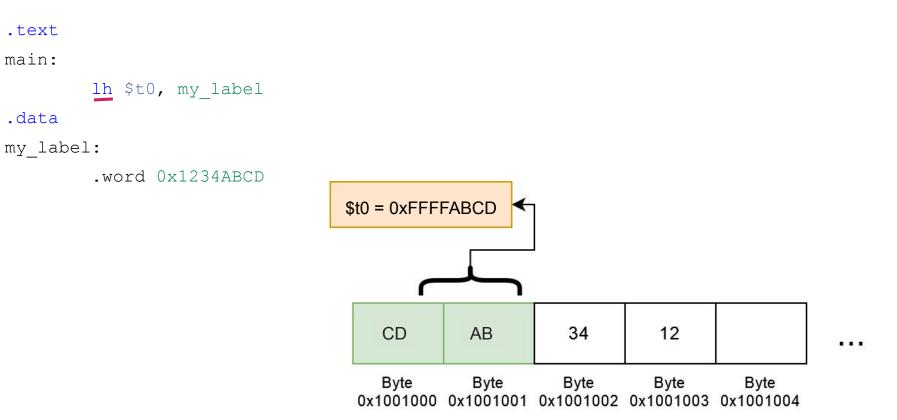
Loading Examples: Ih



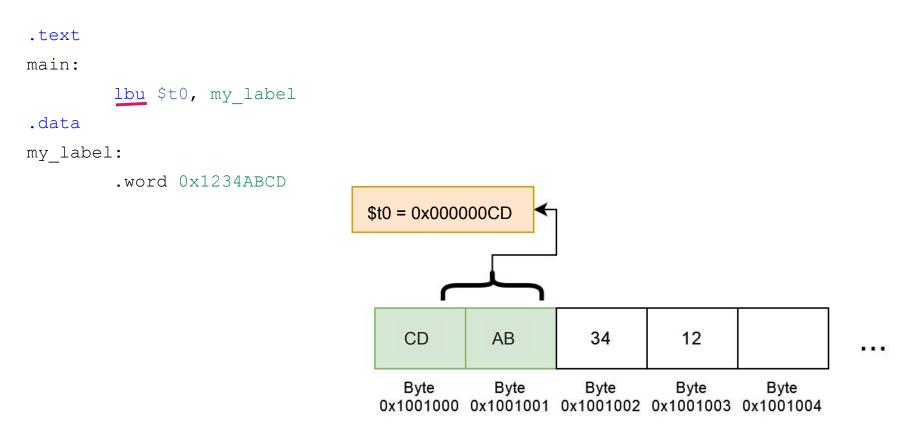
Loading Examples Negative: Ib



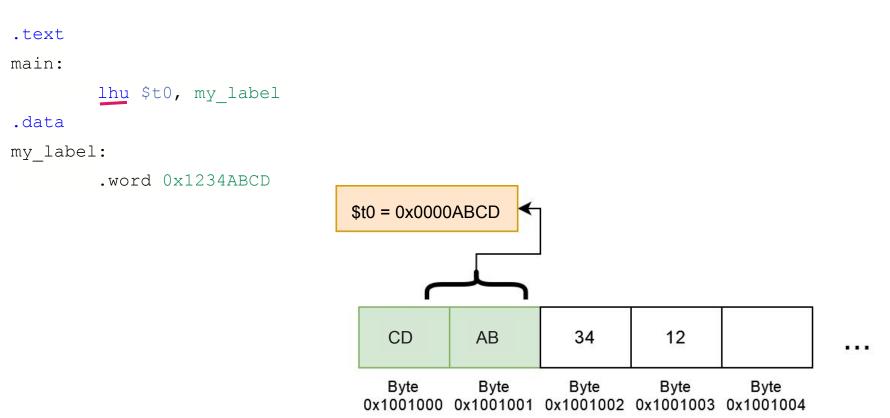
Loading Examples Negative: Ih



Loading Examples: Ibu



Loading Examples Negative: Ihu



Endianness in C

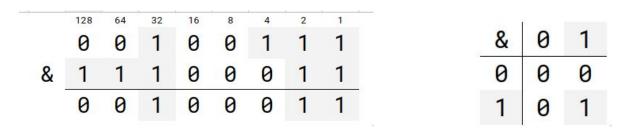
endianness.c

Bitwise Operations

- CPUs provide instructions which implement bitwise operations
 - Provide us ways to manipulating the individual bits of a value.
 - MIPS provides 13 bit manipulation instructions
 - C provides 6 bitwise operators
 - & bitwise AND
 - | bitwise OR
 - ^ bitwise XOR (eXclusive OR)
 - ~ bitwise NOT
 - << left shift
 - >> right shift

Bitwise AND (&)

- takes two values (eg. a & b) and performs a logical AND between pairs of corresponding bits
 - resulting bits are set to 1 if **both** the original bits in that column are 1
- Example:



Used for eg. checking if a particular bit is set (that is, set to 1)

Checking if a number is odd

The obvious way to check if a number is odd in C:

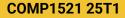
```
int is_odd(int n) {
    return n % 2 != 0;
}
```

Checking if a number is odd

However, an odd value must have a 1 bit in the 1s place:

128	64	32	16	8	4	2	1
0	0	1	0	0	1	1	1

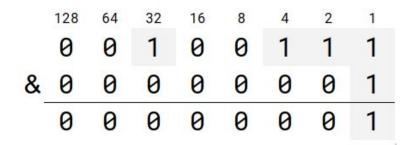
We can use bitwise AND to check if the last bit is set .



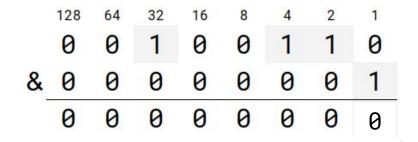
Checking if a number is odd

```
int is_odd(int n) {
    return n & 1;
}
```

If the value is **ODD** (eg 39):



If the value is EVEN (eg 38):



Bitwise OR (|)

 takes two values (eg. a | b) and performs a logical OR between pairs of corresponding bits

resulting bits are set to 1 if **at least** one of the original bits are 1
 Example:

Used for eg. setting a particular bit

What did we learn today?

- Recursive MIPS functions, invalid C
- Integers
- Bitwise & and |
- Next lecture:
 - More bitwise operators

Feedback Please!

Your feedback is valuable!

If you have any feedback from today's lecture, please follow the link below or use the QR Code.

Please remember to keep your feedback constructive, so I can action it and improve your learning experience.

https://forms.office.com/r/GXGX6vKDG6

Reach Out

Content Related Questions: Forum

Admin related Questions email: <u>cs1521@cse.unsw.edu.au</u>

Student Support | I Need Help With...

