
COMP1521 25T1

COMP1521 25T1

Integers and Bitwise Operators

Week 4 Lecture 1

Adapted from Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Today’s Lecture
● Assignment 1
● Stacks and Frames

○ Recursive MIPS function
○ Invalid C

● Integers
● Bitwise Operations

2

COMP1521 25T1

● Lab 3 Due: Today midday
● Weekly Test 3 Due: Thursday 21:00:00.
● Census Date : Thursday 13th Mar

○ Last day to drop T1 courses without financial liability
● Assignment 1 Due: Week 5 Friday 18:00 (next week)
● See Help Sessions Schedule

Announcements

3

COMP1521 25T1

● Watch Video
● Fetch Code
● Run C Code
● For each subset

○ Write simplified C 1 function at a time.
○ Compile and autotest
○ Write MIPS function
○ Autotest MIPS

● Follow style in supplied .s code
○ including function comments and equivalent C comments.

Assignment 1

4

COMP1521 25T1

sum_to_r.c, sum_to_r.s
invalid_1.c
invalid_4.c

Code Demos: Stacks and Frames

5

COMP1521 25T1

Integers

6

COMP1521 25T1

● Fundamental topic in computing
○ Understand what you are

seeing in mipsy web!
○ Understand limits of types and

help you understand and debug
code

● Prepare you for the next topic
bitwise operators

● Understand the jokes in these
slides

Why Learn About Integers

7

COMP1521 25T1

There are 10 types of students

8

COMP1521 25T1

There are 10 types of students

Those that understand binary,

And those that don’t

-Andrew Taylor

9

COMP1521 25T1

4705
It is equivalent to: 4*103 + 7*102 + 0*101 + 5*100

= 4000 + 700 + 0 + 5

Numbers

10

COMP1521 25T1

4705
It is equivalent to: 4*103 + 7*102 + 0*101 + 5*100

= 4000 + 700 + 0 + 5

Numbers

11

If we assume it is base 10!

COMP1521 25T1

● In Base (or radix) 10 we have 10 digits e.g. 0..9
○ Then to get bigger numbers we start combining the digits e.g. 10

● Place Values

● Example:
470510 = 4*103 + 7*102 + 0*101 + 5*100

= 4000 + 700 + 0 + 5
 = 470510

Base 10: Decimal

12

103 102 101 100

100010 10010 1010 110

COMP1521 25T1

● Possibly exists because we have 10 digits (fingers)
● Ancient Egyptians, Brahmi Numerals, Greek Numerals,

Hebrew Numerals, Roman Numerals and Chinese Numerals:

○ All base 10!

Base 10 was an arbitrary choice

13

COMP1521 25T1

digits.c

Code Demo

14

COMP1521 25T1

● Let’s think about base 7 (not a very useful base)
● We have 7 digits 0..6

○ Then we start combining the digits e.g. 10 represents 710

What about some other bases?

15

73 72 71 70

34310 4910 710 110

● Here, 12167 = ?

COMP1521 25T1

● Let’s think about base 7 (not a very useful base)
● We have 7 digits 0..6

○ Then we start combining the digits e.g. 10 represents 710

What about some other bases?

16

73 72 71 70

34310 4910 710 110

● Here, 12167 = 1 * 73 + 2 * 72 + 1 * 71 + 6 * 70

 = 1 * 343 + 2 * 47 + 2 * 7 + 6 * 1
 = 45410

COMP1521 25T1

● In Base (or radix) 2 we have 2 digits (bits) e.g. 0 and 1
○ Easy to represent using “electricity”
○ Then we start combining the digits e.g. 10 represents 210

● Place Values

10112 =?10

Base 2: Computers like binary

17

23 22 21 20

810 410 210 110

COMP1521 25T1

● In Base 2 we have 2 digits (bits) e.g. 0 and 1
○ Easy to represent using “electricity”
○ Then we start combining the digits e.g. 10 represents 210

● Place Values

10112 = 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20

 = 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
 = 1110

Base 2: Computers like binary

18

23 22 21 20

810 410 210 110

COMP1521 25T1

Question: Convert 11012 to decimal?

Question: Convert 2910 to binary?

More examples

19

COMP1521 25T1

Question: Convert 11012 to decimal?
Answer: 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20

 = 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1
 = 13
Question: Convert 2910 to binary?

More examples

20

COMP1521 25T1

Question: Convert 11012 to decimal?
Answer: 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20

 = 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1
 = 13
Question: Convert 2910 to binary = 11101

● 29/2 = 14 R 1
● 14/2 = 7 R 0
● 7/2 = 3 R 1
● 3/2 = 1 R 1
● 1/2 = 0 R 1

More examples

21

COMP1521 25T1

● They get very long, very fast

● E.g. 1234567810 = 1011110001100001010011102

Binary numbers are hard to read!

22

COMP1521 25T1

● They get very long, very fast

● E.g. 1234567810 = 1011110001100001010011102

● Solution: Write numbers in hexadecimal!

○ More compact than binary

○ Maps more easily to binary than decimal.

■ Bit patterns remain more obvious than in decimal

Binary numbers are hard to read!

23

COMP1521 25T1

● In Base (or radix) 16 we have 16 digits
○ 0 1 2 3 4 5 6 7 8 9 A B C D E F
○ Then we start combining the digits e.g. 10 represents 1610

● Place Values

● 3AF116 = ?10

Base 16: Hexadecimal

24

163 162 161 160

409610 25610 1610 110

COMP1521 25T1

● In Base (or radix) 16 we have 16 digits
○ 0 1 2 3 4 5 6 7 8 9 A B C D E F
○ Then we start combining the digits e.g. 10 represents 1610

● Place Values

● 3AF116 = 3 x 163 + 10 x 162 + 15 x 161
 + 1 x 160

 = 1508910

Base 16: Hexadecimal

25

163 162 161 160

409610 25610 1610 110

COMP1521 25T1

Question: Convert 1FF16 to decimal?

Question: Convert 1310 to hexadecimal?

More hexadecimal examples

26

COMP1521 25T1

Question: Convert 1FF16 to decimal?
Answer: 1 x 162 + 15 x 161

 + 15 x 160 = 51110

Question: Convert 1310 to hexadecimal?

More hexadecimal examples

27

COMP1521 25T1

Question: Convert 1FF16 to decimal?
Answer: 1 x 162 + 15 x 161

 + 15 x 160 = 51110

Question: Convert 1310 to hexadecimal?
Answer: D16

More hexadecimal examples

28

COMP1521 25T1

● Binary gets very long very quick

○ e.g. 1234567810 = 1011110001100001010011102

● Solution: Write numbers in hexadecimal!

● 16 == 24

○ We can separate the bits into groups of 4…

Binary -> Hexadecimal

29

163 162 161 160

409610 25610 1610 110

COMP1521 25T1

● 1234567810 = 1011110001100001010011102
 = 1011 1100 0110 0001 0100 11102

Binary -> Hexadecimal

30

COMP1521 25T1

● 1234567810 = 1011110001100001010011102
 = 1011 1100 0110 0001 0100 11102
 =

● Each 4 bit group can be represented by one hexadecimal digit!

Binary -> Hexadecimal

31

COMP1521 25T1

● 1234567810 = 1011110001100001010011102
 = 1011 1100 0110 0001 0100 11102
 =

● Each 4 bit group can be represented by one hexadecimal digit!

Binary -> Hexadecimal

32

Base 10 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Base 16 F E D C B A 9 8 7 6 5 4 3 2 1 0

Base 2 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

COMP1521 25T1

● 1234567810 = 1011110001100001010011102
 = 1011 1100 0110 0001 0100 11102
 = B C 6 1 4 E

● Each 4 bit group can be represented by one hexadecimal digit!

Binary -> Hexadecimal

33

Base 10 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Base 16 F E D C B A 9 8 7 6 5 4 3 2 1 0

Base 2 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

COMP1521 25T1

Binary 01101111 =

Hexadecimal BAD2 =

More examples

34

COMP1521 25T1

Binary 01101111 = 6F16

Hexadecimal BAD2 =

More examples

35

COMP1521 25T1

Binary 01101111 = 6F16

Hexadecimal BAD2 = 10111010110100102

More examples

36

COMP1521 25T1

● In Base (or radix) 8 we have 8 digits
○ 0 1 2 3 4 5 6 7
○ Then we start combining the digits e.g. 10 represents 810

● Similar advantages to hexadecimal

○ 8 = 23 so group bits into 3:

○ Example: 728 = 111 0102 = 3A16 = 5810

Base 8: Octal

37

Base 10 7 6 5 4 3 2 1 0

Base 8 7 6 5 4 3 2 1 0

Base 2 111 110 101 100 011 010 001 000

COMP1521 25T1

● In binary, (base 2), each digit represents 1 bit:

○ 010010001111101010111100100101112

● In octal, (base 8), each digit represents 3 bits

○ 01 001 000 111 110 101 011 110 010 010 1112

○ 1 1 0 7 6 5 3 6 2 2 78
● In hexadecimal, (base 16), each digit represents 4 bits:

○ 0100 1000 1111 1010 1011 1100 1001 01112

○ 4 8 F A B C 9 716

Binary, Octal, Hexadecimal Summary

38

COMP1521 25T1

● A number beginning with 0x is hexadecimal
● A number beginning with 0 is octal
● A number beginning with 0b is binary
● Otherwise, it is decimal

Constants in C and MIPS assembly

39

printf("%d", 0x2A); // prints 42

printf("%d", 052); // prints 42

printf("%d", 0b101010); // prints 42

printf("%d", 42); // prints 42

COMP1521 25T1

integer_prefixes.c
integer_prefixes_args.c

Easy Base Conversions in C

40

COMP1521 25T1

● In C the unsigned int data type is 4 bytes on our system

○ means we can store values from the range 0 .. 232-1

Unsigned integers

41

COMP1521 25T1

● In C the int data type is 4 bytes on our system

○ we can store values from the range -231.. 231 -1

Signed integers

42

COMP1521 25T1

● Modern computers use two’s complement for integers

● Positive integers and zero represented as normal

● Negative integers represented in a way to make maths ✨easy✨
for the computer (not humans)

○ For an n-bit binary number, the number -b is 2n - b

○ E.g. 8-bit number “-5” is represented as 28 - 5 = 1111 10112

What do signed binary numbers look like?

43

COMP1521 25T1

● Another shortcut for doing 2’s complement
○ If you are trying to represent -5 in 8 bits
○ Take the +5 representation

■ 0000 0101
○ invert all the bits

■ 1111 1010
○ add 1

■ 1111 1011

● Repeat the process to go from -5 back to 5 again!

Two’s Complement Tips and Tricks

44

COMP1521 25T1

● Some simple code to examine 8-bit 2’s complement numbers:

● gcc 8_bit_twos_complement.c print_bits.c -o 8_bit_twos_complement

Example: 2’s Complement Example

45

 for (int i = -128; i < 128; i++) {

 printf("%4d ", i);

 print_bits(i, 8);

 printf("\n");

 }

COMP1521 25T1

$./8_bit_twos_complement
-128 10000000
-127 10000001
-126 10000010
...
-3 11111101
-2 11111110
-1 11111111
0 00000000
1 00000001
2 00000010
3 00000011
...
125 01111101
126 01111110
127 01111111

Example: Printing all 8-bit 2’s complement

46

COMP1521 25T1

$./print_bits_of_int
Enter an int: 0
00000000000000000000000000000000
$./print_bits_of_int
Enter an int: 1
00000000000000000000000000000001
$./print_bits_of_int
Enter an int: -1
11111111111111111111111111111111
$./print_bits_of_int
Enter an int: 2147483647
01111111111111111111111111111111
$./print_bits_of_int
Enter an int: -2147483648
10000000000000000000000000000000
$

Example: print_bits_of_int.c

47

COMP1521 25T1

● On CSE servers, C types have these sizes
○ char = 1 byte = 8 bits

■ 42 is 00101010
○ short = 2 bytes = 16 bits,

■ 42 is 0000000000101010
○ int = 4 bytes = 32 bits,

■ 42 is 00000000000000000000000000101010
○ double = 8 bytes = 64 bits,

■ 42 = ?
● above are common sizes but not universal
● sizeof (int) might be 2 (bytes) on a small embedded CPU

Bits and Bytes on cse Servers

48

COMP1521 25T1

integer_types.c - exploring integer types

49

COMP1521 25T1

Exploring integer types

50

COMP1521 25T1

● #include <stdint.h> to get below int types (and more) with known sizes
● We use these a lot in COMP1521!

stdint.h - guaranteed size integer types

51

COMP1521 25T1

overflow_int.c
wrap_around_uint.c
char_bug.c

Code Examples

52

COMP1521 25T1

● “What order to put things in” is a hard question to answer
● Two schools of thought:

○ Big-endian: MSB at the “low address” - big bits “first!”
○ Little-endian: LSB at the “low address” - little bits “first!”

BIG: LITTLE:

New concept: Endian-ness

53

COMP1521 25T1

● Mipsy-web is little-endian

Code example

54

.text

main:

 li $t0, 0x12345678

 sw $t0, my_word

.data

my_word:

.space 4

COMP1521 25T1

The results of these will depend on endianness:
● lh/lb assume the loaded byte/halfword is signed

○ The destination register top bits are set to the sign bit
● lhu/lbu for doing the same thing, but unsigned

Loading bytes, half-words

55

COMP1521 25T1

Loading Examples: lb

56

.text

main:

 lb $t0, my_label

.data

my_label:

 .word 0x12345678

COMP1521 25T1 57

.text

main:

 lh $t0, my_label

.data

my_label:

 .word 0x12345678

Loading Examples: lh

COMP1521 25T1

Loading Examples Negative: lb

58

.text

main:

 lb $t0, my_label

.data

my_label:

 .word 0x1234ABCD

CD AB

$t0 = 0xFFFFFFCD

COMP1521 25T1

Loading Examples Negative: lh

59

.text

main:

 lh $t0, my_label

.data

my_label:

 .word 0x1234ABCD

$t0 = 0xFFFFABCD

CD AB

COMP1521 25T1

Loading Examples: lbu

60

.text

main:

 lbu $t0, my_label

.data

my_label:

 .word 0x1234ABCD

CD AB

$t0 = 0x000000CD

COMP1521 25T1

Loading Examples Negative: lhu

61

.text

main:

 lhu $t0, my_label

.data

my_label:

 .word 0x1234ABCD

CD AB

$t0 = 0x0000ABCD

COMP1521 25T1

endianness.c

Endianness in C

62

COMP1521 25T1

● CPUs provide instructions which implement bitwise operations

○ Provide us ways to manipulating the individual bits of a value.

○ MIPS provides 13 bit manipulation instructions

○ C provides 6 bitwise operators
& bitwise AND
| bitwise OR
^ bitwise XOR (eXclusive OR)
~ bitwise NOT
<< left shift
>> right shift

Bitwise Operations

63

COMP1521 25T1

● takes two values (eg. a & b) and performs a logical AND
between pairs of corresponding bits

○ resulting bits are set to 1 if both the original bits in that column
are 1

Example:

Bitwise AND (&)

64

Used for eg. checking if a particular bit is set (that is, set to 1)

COMP1521 25T1

Checking if a number is odd

The obvious way to check if a number is odd in C:

int is_odd(int n) {
 return n % 2 != 0;
}

COMP1521 25T1

Checking if a number is odd

However, an odd value must have a 1 bit in the 1s place:

We can use bitwise AND to check if the last bit is set .

COMP1521 25T1

Checking if a number is odd

If the value is ODD (eg 39): If the value is EVEN (eg 38):

int is_odd(int n) {
 return n & 1;
}

0

COMP1521 25T1

● takes two values (eg. a | b) and performs a logical OR between
pairs of corresponding bits

○ resulting bits are set to 1 if at least one of the original bits are 1
Example:

Bitwise OR (|)

68

Used for eg. setting a particular bit

COMP1521 25T1 69

● Recursive MIPS functions, invalid C
● Integers
● Bitwise & and |
● Next lecture:

○ More bitwise operators

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

70

https://forms.office.com/r/GXGX6vKDG6

COMP1521 25T1 71

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

72

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

