
COMP1521 25T2

COMP1521 25T2

Bitwise Operators

Week 4 Lecture 2

Adapted from Angela Finlayson, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T2

● Week 3 Test Due Tomorrow: Thursday 21:00:00.

● Census Date: Thursday 13th March

● Assignment 1 Due: Week 5 Friday (next week) at 6pm

● See Help Sessions Schedule

Announcements

2

COMP1521 25T2

Get help from the right places

○ staff in lectures, tuts, labs

○ forum, Help Sessions, Revision

Sessions

● Do not get ‘help’ or submit code

from external sources like:

○ ChatGPT, external tutors, other

people’s code etc

● We run plagiarism checking on all

submissions

Plagiarism

3

student.unsw.edu.au/plagiarism

https://student.unsw.edu.au/plagiarism

COMP1521 25T2

Today’s Lecture

● Integers Recap Exercises

● Bitwise Operators

4

COMP1521 25T2

Base

5

103 102 101 100

100010 10010 1010 110

163 162 161 160

409610 25610 1610 110

470510
It is equivalent to: 4 ∗ 103 + 7 ∗ 102

+ 0 ∗ 101 + 5 ∗ 100

= 4000 + 700 + 0 + 5

3AF116
Is equivalent to: 3 ∗ 163+ 10 ∗ 162

+15 ∗ 161+ 1 ∗ 160

= 12288 + 256 + 240 + 1

= 1508910

COMP1521 25T2

What does this represent?

10110110111110001110110101110110

Recap: Bit and Bytes

6

COMP1521 25T2

What does this represent?

10110110111110001110110101110110

We can’t know without knowing its type!

Is it: int, unsigned int, float, unicode character, MIPS instruction?

Recap: Bit and Bytes

7

COMP1521 25T2

0x01288820 =

What MIPS instruction is this?

8

COMP1521 25T2

● 32 bits long

● Specify:

○ An operation

■ (The thing to do)

○ 0 or more operands

■ (The thing to do it over)

● For example:

What do MIPS instructions look like?

9

00100001000010010000000000001100

addi $t1, $t0, 12

COMP1521 25T2

0x01288820 =

0000 0001 0010 1000 1000 1000 0010 0000

What MIPS instruction is this?

10

COMP1521 25T2

0x01288820 =

000000 01001 01000 10001 00000100000

What MIPS instruction is this?

11

COMP1521 25T2

0x01288820 =

000000 01001 01000 10001 00000100000

add

What MIPS instruction is this?

12

COMP1521 25T2

0x01288820 =

000000 01001 01000 10001 00000100000

add $17

What MIPS instruction is this?

13

COMP1521 25T2

0x01288820 =

000000 01001 01000 10001 00000100000

add $17, $9

What MIPS instruction is this?

14

COMP1521 25T2

0x01288820 =

000000 01001 01000 10001 00000100000

add $17, $9, $8

What MIPS instruction is this?

15

COMP1521 25T2

0x01288820 =

000000 01001 01000 10001 00000100000

add $17, $9, $8

add $s1, $t1, $t0

Let’s type it into mipsy web to check!

What MIPS instruction is this?

16

COMP1521 25T2

● “What order to put things in” is a hard question to answer

● Two schools of thought:

○ Big-endian: MSB at the “low address” - big bits “first!”

○ Little-endian: LSB at the “low address” - little bits “first!”

BIG:

LITTLE:

Recap: New concept: Endian-ness

17

COMP1521 25T2

The results of these will depend on endianness:

● lh/lb assume the loaded byte/halfword is signed

○ The destination register top bits are set to the sign bit

● lhu/lbu for doing the same thing, but unsigned

Loading bytes, half-words

18

COMP1521 25T2 19

.text

main:

lh $t0, my_label

.data

my_label:

.word 0x12345678

Loading Examples: lh

COMP1521 25T2

Loading Examples Negative: lh

20

.text

main:

lh $t0, my_label

.data

my_label:

.word 0x1234ABCD

$t0 = 0xFFFFABCD

CD AB

COMP1521 25T2

Loading Examples Negative: lhu

21

.text

main:

lhu $t0, my_label

.data

my_label:

.word 0x1234ABCD

CD AB

$t0 = 0x0000ABCD

COMP1521 25T2

Fixed size integers

22

#include <limits.h>

COMP1521 25T2

● In C the unsigned int data type is 4 bytes on our system

○ means we can store values from the range 0 .. 232-1

Unsigned integers

23

COMP1521 25T2

● In C the int data type is 4 bytes on our system

○ we can store values from the range -231.. 231 -1

Signed integers

24

COMP1521 25T2

Bitwise Operators

25

COMP1521 25T2

Used extensively in this course and also:

● Optimisation

● Embedded Systems

● Data compression

● Security and Cryptography

● Graphics

● Computer Networks

Why Learn Bitwise Operators

26

COMP1521 25T2

Why Learn Bitwise Operators

27

MIPS-161 supervisor registers (not examinable)

COMP1521 25T2

● CPUs provide instructions which implement bitwise operations

○ Provide us ways to manipulating the individual bits of a value.

○ MIPS provides 13 bit manipulation instructions

○ C provides 6 bitwise operators

& bitwise AND
| bitwise OR
^ bitwise XOR (eXclusive OR)
~ bitwise NOT
<< left shift
>> right shift

Bitwise Operations

28

COMP1521 25T2

● && works on whole values

○ We usually use it in conditions like:

■ if (x > 10 && x < 20)

● & works on every individual bit in each value

○ We use it to modify and/or extract bit information from values

Logical AND (&&) vs Bitwise AND (&)

29

COMP1521 25T2

● takes two values (eg. a & b) and performs a logical AND

between pairs of corresponding bits

○ resulting bits are set to 1 if both the original bits in that column

are 1

Example:

Bitwise AND (&)

30

Used for eg. checking if particular bits are set (that is, set to 1) or

unsetting bits (that is, setting them to 0)

COMP1521 25T2

For any given bit value, x what is:

x & 0 = ?

x & 1 = ?

Exercise: &

31

COMP1521 25T2

For any given bit value, x what is:

x & 0 = 0

x & 1 = x

Exercise: &

32

COMP1521 25T2

We can create bit patterns to help us isolate the bits we are

interested in! We call these masks!

For example:

int8_t x = 0x13; //00010011

int8_t mask = 0x7; //00000111 &

int8_t result = x & mask;

Bit Masks

33

COMP1521 25T2

We can create bit patterns to help us isolate the bits we are

interested in! We call these masks!

For example:

int8_t x = 0x13; //00010011

int8_t mask = 0x7; //00000111 &

int8_t result = x & mask;

Bit Masks

34

COMP1521 25T2

We can create bit patterns to help us isolate the bits we are

interested in! We call these masks!

For example:

int8_t x = 0x13; //00010011

int8_t mask = 0x7; //00000111 &

int8_t result = x & mask; //00000011

Bit Masks

35

COMP1521 25T2

Checking if a number is odd

The obvious way to check if a number is odd in C:

int is_odd(int n) {
return n % 2 != 0;

}

COMP1521 25T2

Checking if a number is odd

37

Decimal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

What pattern do you see in the binary

representation of odd numbers?

COMP1521 25T2

Checking if a number is odd

What pattern do you see in the binary

representation of odd numbers?

They all have a 1 as the least significant

bit.

We can check that bit to see if it is 1.

If it is it is odd!

38

Decimal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

COMP1521 25T2

Checking if a number is odd

If the value is ODD (eg 39): If the value is EVEN (eg 38):

int is_odd(int n) {
return n & 1;

}

COMP1521 25T2

● takes two values (eg. a | b) and performs a logical OR between

pairs of corresponding bits

○ resulting bits are set to 1 if at least one of the original bits are 1

Example:

Bitwise OR (|)

40

Used for eg. setting particular bits (ie set to 1)

COMP1521 25T2

For any given bit value, x what is:

x | 0 = ?

x | 1 = ?

Bit Masks with |

41

COMP1521 25T2

For any given bit value, x what is:

x | 0 = x

x | 1 = 1

Bit Masks with |

42

COMP1521 25T2

For any given bit value, x what is:

x | 0 = x

x | 1 = 1

For example:

int8_t x = 0x13; //00010011

int8_t mask = 0x7; //00000111

int8_t result = x | mask; //00010111

Bit Masks with |

43

COMP1521 25T2

● takes a single value (eg. ~a) and performs a logical negation

on each bit

Example:

Note: This does NOT mean making a number negative!

Bitwise Negation (~)

44

0 0 0 1 0 1 1 0

1 1 1 0 1 0 0 1

~ ~ 0 1

1 0

COMP1521 25T2

We can use a mask to both set and unset bits

● Example:

○ Mask 0x7 with | to set the least significant 3 bits

○ ~ that mask and use it with & to unset the least significant 3 bits

Bit Masks with ~

45

COMP1521 25T2

We can use a mask to both set and unset bits

● Example:

○ Mask 0x7 with | to set the least significant 3 bits

○ ~ that mask and use it with & to unset the least significant 3 bits

For example:

int8_t x = 0x13; //00010011

int8_t mask = ~0x7; //11111000

int8_t result = x & mask; //00010000

Bit Masks with ~

46

COMP1521 25T2

● Takes two values (eg. a ^ b) and performs an exclusive OR

between pairs of corresponding bits

○ resulting bits are set to 1 if exactly one of the original bits are 1

Example:

Bitwise XOR (^)

47

Used for e.g. cryptography, flipping a bit, checking for bits that don't match

COMP1521 25T2

For any given bit value, x what is:

x ^ 0 = x

x ^ 1 = ~x (flips the bit)

Bit Masks with ^

48

COMP1521 25T2

For any given bit value, x what is:

x ^ 0 = x

x ^ 1 = ~x (flips the bit)

For example:

int8_t x = 0x13; //00010011

int8_t mask = 0x7; //00000111

int8_t result = x & mask; //00010100

Bit Masks with ^

49

COMP1521 25T2

For any given bit value, x what is:

x ^ 0 = x

x ^ 1 = ~x (flips the bit)

For example:

int8_t x = 0x13; //00010011

int8_t mask = 0x7; //00000111

int8_t result = x ^ mask; //00010100

Bit Masks with ^

50

What happens if I apply the mask again?

COMP1521 25T2

● Evaluate the following:

○ 5 && 6

○ 5 & 6

● How many beers did the software

developer drink?

Exercise 1:

51

COMP1521 25T2

& bitwise AND
| bitwise OR
^ bitwise XOR (eXclusive OR)
~ bitwise NOT
<< left shift
>> right shift

Bitwise Operations

52

COMP1521 25T2

● Takes a value and a small positive integer x (eg. a << x)

● Shifts each bit x positions to the left

○ Any bits that fall off the left vanish

○ New 0 bits are inserted on the right

○ Result contains the same number of bits as the input

● Example:

Left Shift (<<)

53

COMP1521 25T2

What does this mean mathematically?

Implications of left shift

54

COMP1521 25T2

What does this mean mathematically?

Implications of left shift

55

Expression Result Binary Result Decimal

00000001 << 1 00000010 2

00000001 << 2 00000100 4

00000001 << 3 00001000 8

00000001 << 4 00010000 16

COMP1521 25T2

What does this mean mathematically? Multiplies by powers of 2!

Demo: shift_as_multiply.c

Implications of left shift

56

Expression Result Binary Result Decimal

00000001 << 1 00000010 2

00000001 << 2 00000100 4

00000001 << 3 00001000 8

00000001 << 4 00010000 16

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/bitwise_operations/code/shift_as_multiply.c

COMP1521 25T2

● Can you program x * 6 without multiplication?

<< Exercise <<

57

COMP1521 25T2

● Can you program x * 6 without multiplication?

x * 6 = x * 4 + x * 2

= (x << 2) + (x << 1)

<< Exercise <<

58

COMP1521 25T2

● Takes a value and a small positive integer x (eg. a >> x)

● Shifts each bit x positions to the right

○ Any bits that fall off the right vanish

○ New 0 bits are inserted on the left (for unsigned types)

○ Result contains the same number of bits as the input

● Example:

Right Shift (>>)

59

Used for eg looping through 1 bit at a time

COMP1521 25T2

What does this mean mathematically?

Implications of right shift

60

COMP1521 25T2

What does this mean mathematically? 1610 == 000100002

Implications of right shift

61

Expression Result Binary Result Decimal

00010000 >> 1 00001000 8

00010000 >> 2 00000100 4

00010000 >> 3 00000010 2

00010000 >> 4 00000001 1

COMP1521 25T2

What does this mean mathematically? 1610 == 000100002

Divides by powers of 2

Implications of right shift

62

Expression Result Binary Result Decimal

00010000 >> 1 00001000 8

00010000 >> 2 00000100 4

00010000 >> 3 00000010 2

00010000 >> 4 00000001 1

COMP1521 25T2

But what about situations like this? We lose some bits!

0111 >> 1 == 0011

This is the same as 7/2 == 3 with integer division!

Implications of right shift

63

COMP1521 25T2

● Shifts involving negative values may not be portable, and can

vary across different implementations

● Common source of bugs in COMP1521 (and elsewhere)

● Always use unsigned values/variables when shifting to be

safe/portable

Demo: shift_bug.c

Issues with shifting

64

https://cgi.cse.unsw.edu.au/~cs1521/current/topic/bitwise_operations/code/shift_bug.c

COMP1521 25T2

● get_nth_bit.c

● xor.c

● pokemon.c

● set_low_bits.c

Code Demos

65

COMP1521 25T2

Demo: pokemon.c

#define FIRE_TYPE 0x0001
#define FIGHTING_TYPE 0x0002
#define WATER_TYPE 0x0004
#define FLYING_TYPE 0x0008
#define POISON_TYPE 0x0010
#define ELECTRIC_TYPE 0x0020
#define GROUND_TYPE 0x0040
#define PSYCHIC_TYPE 0x0080
#define ROCK_TYPE 0x0100
#define ICE_TYPE 0x0200
#define BUG_TYPE 0x0400
#define DRAGON_TYPE 0x0800
#define GHOST_TYPE 0x1000
#define DARK_TYPE 0x2000
#define STEEL_TYPE 0x4000
#define FAIRY_TYPE 0x8000

COMP1521 25T2

Given the following declarations:

What is the value of each of these expressions?

Exercise 2

67

// a signed 8-bit value

uint8_t x = 0x55;

uint8_t y = 0xAA;

uint8_t a = x & y;

uint8_t b = x ^ y;

uint8_t c = x << 1;

uint8_t d = y << 2;

uint8_t e = x >> 1;

uint8_t f = y >> 2;

uint8_t g = x | y;

COMP1521 25T2

MIPS - Bit manipulation instructions

COMP1521 25T2

MIPS - Shift instructions

● srl and srlv shift zeroes into most-significant bit

○ This matches shift in C of unsigned values

● sra and srav propagate most-significant bit

○ This ensures the sign is maintained

COMP1521 25T2 70

● Integer representation recap

● Bitwise Operators

● Next lecture:

○ Floating Point

What did we learn today?

COMP1521 25T2

Reach Out

Content Related Questions:

Forum

Admin related Questions

email:

cs1521@cse.unsw.edu.au

71

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

72

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Default Section
	Slide 1: COMP1521 25T2
	Slide 2: Announcements
	Slide 3: Plagiarism
	Slide 4: Today’s Lecture
	Slide 5: Base
	Slide 6: Recap: Bit and Bytes
	Slide 7: Recap: Bit and Bytes
	Slide 8: What MIPS instruction is this?
	Slide 9: What do MIPS instructions look like?
	Slide 10: What MIPS instruction is this?
	Slide 11: What MIPS instruction is this?
	Slide 12: What MIPS instruction is this?
	Slide 13: What MIPS instruction is this?
	Slide 14: What MIPS instruction is this?
	Slide 15: What MIPS instruction is this?
	Slide 16: What MIPS instruction is this?
	Slide 17: Recap: New concept: Endian-ness
	Slide 18: Loading bytes, half-words
	Slide 19: Loading Examples: lh
	Slide 20: Loading Examples Negative: lh
	Slide 21: Loading Examples Negative: lhu
	Slide 22: Fixed size integers
	Slide 23: Unsigned integers
	Slide 24: Signed integers
	Slide 25: Bitwise Operators
	Slide 26: Why Learn Bitwise Operators
	Slide 27: Why Learn Bitwise Operators
	Slide 28: Bitwise Operations
	Slide 29: Logical AND (&&) vs Bitwise AND (&)
	Slide 30: Bitwise AND (&)
	Slide 31: Exercise: &
	Slide 32: Exercise: &
	Slide 33: Bit Masks
	Slide 34: Bit Masks
	Slide 35: Bit Masks
	Slide 36: Checking if a number is odd
	Slide 37: Checking if a number is odd
	Slide 38: Checking if a number is odd
	Slide 39: Checking if a number is odd
	Slide 40: Bitwise OR (|)
	Slide 41: Bit Masks with |
	Slide 42: Bit Masks with |
	Slide 43: Bit Masks with |
	Slide 44: Bitwise Negation (~)
	Slide 45: Bit Masks with ~
	Slide 46: Bit Masks with ~
	Slide 47: Bitwise XOR (^)
	Slide 48: Bit Masks with ^
	Slide 49: Bit Masks with ^
	Slide 50: Bit Masks with ^
	Slide 51: Exercise 1:
	Slide 52: Bitwise Operations
	Slide 53: Left Shift (<<)
	Slide 54: Implications of left shift
	Slide 55: Implications of left shift
	Slide 56: Implications of left shift

	Untitled Section
	Slide 57: << Exercise <<
	Slide 58: << Exercise <<
	Slide 59: Right Shift (>>)
	Slide 60: Implications of right shift
	Slide 61: Implications of right shift
	Slide 62: Implications of right shift
	Slide 63: Implications of right shift
	Slide 64: Issues with shifting
	Slide 65: Code Demos
	Slide 66: Demo: pokemon.c
	Slide 67: Exercise 2
	Slide 68: MIPS - Bit manipulation instructions
	Slide 69: MIPS - Shift instructions
	Slide 70: What did we learn today?
	Slide 71: Reach Out
	Slide 72: Student Support | I Need Help With…

