
COMP1521 25T2

COMP1521 25T2

Integers and Bitwise Operators

Week 4 Lecture 1

COMP1521 25T2

● Lab 3 Due: Today midday (2 hours ago)

● Weekly Test 3 Due: Thursday 21:00:00.

● Assignment 1 Due: Week 5 Friday 18:00 (next week)

○ Spec, code, walkthrough video are all available

● See Help Session Schedule for assistance

● Census Date: Thursday 26th Jun

○ Last day to drop T2 courses without financial liability

Announcements

2

COMP1521 25T2

● Watch Video

● Fetch Code

● Run C Code

● For each subset 0-3

○ Write simplified C 1 function at a time.

○ Compile and autotest

○ Write MIPS function

○ Autotest MIPS

○ Start next subset

● Follow style in supplied .s code

○ including function comments and equivalent C comments.

Assignment 1

3

COMP1521 25T2

Today’s Lecture

● Integers

● Bitwise Operations

4

COMP1521 25T2

1ntegers

5

COMP1521 25T2

● Fundamental topic in computing

○ Understand what you are

seeing in mipsy web!

○ Understand limits of types and

help you understand and debug

code

● Prepare you for the next topic:

bitwise operators

● Understand the jokes in these

slides

Why Learn About Integers

6

COMP1521 25T2

There are 10 types of students

7

COMP1521 25T2

There are 10 types of students

Those that understand binary,

And those that don’t

-Andrew Taylor

8

COMP1521 25T2

4705
It is equivalent to: 4*103 + 7*102 + 0*101 + 5*100

= 4000 + 700 + 0 + 5

Numbers

9

COMP1521 25T2

4705
It is equivalent to: 4*103 + 7*102 + 0*101 + 5*100

= 4000 + 700 + 0 + 5

Numbers

10

If we assume it is base 10!

COMP1521 25T2

● In Base (or radix) 10 we have 10 digits e.g. 0..9

○ Then to get bigger numbers we start combining the digits e.g. 10

● Place Values

● Example:

470510 = 4 ∗ 103 + 7 ∗ 102 + 0 ∗ 101 + 5 ∗ 100

= 4000 + 700 + 0 + 5

= 470510

Base 10: Decimal

11

103 102 101 100

100010 10010 1010 110

COMP1521 25T2

● Possibly exists because we have 10 digits (fingers)

● Ancient Egyptians, Brahmi Numerals, Greek Numerals,

Hebrew Numerals, Roman Numerals and Chinese Numerals:

○ All base 10!

Base 10 was an arbitrary choice

12

COMP1521 25T2

digits.c

Code Demo

13

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/integers/code/digits.c

COMP1521 25T2

● Let’s think about base 7

(not a very useful base)

● We have 7 digits 0..6

○ Then we start combining the digits

e.g. 10 represents 710

What about some other bases?

14

73 72 71 70

34310 4910 710 110

● Here, 12167 =

COMP1521 25T2

● Let’s think about base 7

(not a very useful base)

● We have 7 digits 0..6

○ Then we start combining the digits

e.g. 10 represents 710

What about some other bases?

15

73 72 71 70

34310 4910 710 110

● Here, 12167 = 1 ∗ 73 + 2 ∗ 73 + 1 ∗ 71 + 6 ∗ 70

= 1 ∗ 343 + 2 ∗ 47 + 1 ∗ 7 + 6 ∗ 1

= 45410

COMP1521 25T2

● In Base (or radix) 2 we have 2 digits -- 0 and 1

○ Easy to represent using “electricity” -- Off and On

○ Then we start combining the digits e.g. 102 represents 210
● Place Values

𝟏𝟎𝟏𝟏𝟐 = ? 10

Base 2: Computers like binary

16

23 22 21 20

810 410 210 110

COMP1521 25T2

● In Base (or radix) 2 we have 2 digits -- 0 and 1

○ Easy to represent using “electricity” -- Off and On

○ Then we start combining the digits e.g. 102 represents 210
● Place Values

𝟏𝟎𝟏𝟏𝟐 = 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21+ 1 ∗ 20

= 1 ∗ 8 + 0 ∗ 4 + 1 ∗ 2 + 1 ∗ 1

= 11𝟏𝟎

Base 2: Computers like binary

17

23 22 21 20

810 410 210 110

COMP1521 25T2

Question: Convert 11012 to decimal?

Question: Convert 2910 to binary?

More examples

18

COMP1521 25T2

Question: Convert 11012 to decimal?

Answer: 1 ∗ 23+ 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

= 1 ∗ 8 + 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1

= 13

Question: Convert 2910 to binary?

More examples

19

COMP1521 25T2

Question: Convert 11012 to decimal?

Answer: 1 ∗ 23+ 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

= 1 ∗ 8 + 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1

= 13

Question: Convert 2910 to binary? 11101

● 29/2 = 14 R 1

● 14/2 = 7 R 0

● 7/2 = 3 R 1

● 3/2 = 1 R 1

● 1/2 = 0 R 1

More examples

20

COMP1521 25T2

● They get very long, very fast

● E.g. 1234567810 = 1011110001100001010011102

Binary numbers are hard to read!

21

COMP1521 25T2

● They get very long, very fast

● E.g. 1234567810 = 1011110001100001010011102

● Solution: Write numbers in hexadecimal!

○ More compact than binary

○ Maps more easily to binary than decimal.

■ Bit patterns remain more obvious than in decimal

Binary numbers are hard to read!

22

COMP1521 25T2

● In Base (or radix) 16 we have 16 digits

○ 0 1 2 3 4 5 6 7 8 9 A B C D E F

○ Then we start combining the digits e.g. 10 represents 1610

● Place Values

● 3AF116 = ?10

Base 16: Hexadecimal

23

163 162 161 160

409610 25610 1610 110

COMP1521 25T2

● In Base (or radix) 16 we have 16 digits

○ 0 1 2 3 4 5 6 7 8 9 A B C D E F

○ Then we start combining the digits e.g. 10 represents 1610

● Place Values

● 3AF116 = 3 ∗ 163 + 10 ∗ 162 + 15 ∗ 161 + 1 ∗ 160

= 1508910

Base 16: Hexadecimal

24

163 162 161 160

409610 25610 1610 110

COMP1521 25T2

Question: Convert 1FF16 to decimal?

Question: Convert 1310 to hexadecimal?

More hexadecimal examples

25

COMP1521 25T2

Question: Convert 1FF16 to decimal?

Answer: 1 ∗ 162+ 15 ∗ 161+ 15 ∗ 160 = 51110

Question: Convert 1310 to hexadecimal?

More hexadecimal examples

26

COMP1521 25T2

Question: Convert 1FF16 to decimal?

Answer: 1 ∗ 162+ 15 ∗ 161+ 15 ∗ 160 = 51110

Question: Convert 1310 to hexadecimal?

Answer: 𝐷16

More hexadecimal examples

27

COMP1521 25T2

● Binary gets very long very quick

○ e.g. 1234567810 = 1011110001100001010011102

● Solution: Write numbers in hexadecimal!

● 16 == 24

○ We can separate the bits into groups of 4…

Binary -> Hexadecimal

28

163 162 161 160

409610 25610 1610 110

COMP1521 25T2

● 1234567810 = 1011110001100001010011102

= 1011 1100 0110 0001 0100 11102

Each 4 bit group can be represented by one hexadecimal digit!

Binary -> Hexadecimal

29

Base 10 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Base 16 F E D C B A 9 8 7 6 5 4 3 2 1 0

Base 2 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

COMP1521 25T2

● 1234567810 = 1011110001100001010011102

= 1011 1100 0110 0001 0100 11102

= B C 6 1 4 E

Each 4 bit group can be represented by one hexadecimal digit!

Binary -> Hexadecimal

30

Base 10 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Base 16 F E D C B A 9 8 7 6 5 4 3 2 1 0

Base 2 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

COMP1521 25T2

Binary 011011112 =

Hexadecimal 𝐵𝐴𝐷216 =

More examples

31

COMP1521 25T2

Binary 011011112 = 6𝐹16

Hexadecimal 𝐵𝐴𝐷216 =

More examples

32

COMP1521 25T2

Binary 011011112 = 6𝐹16

Hexadecimal 𝐵𝐴𝐷216 = 10111010110100102

More examples

33

COMP1521 25T2

● In Base (or radix) 8 we have 8 digits

○ 0 1 2 3 4 5 6 7

○ Then we start combining the digits e.g. 10 represents 810

● Similar advantages to hexadecimal

○ 8 = 23 so group bits into 3:

○ Example: 728 = 111 0102 = 3A16 = 5810

Base 8: Octal

34

Base 10 7 6 5 4 3 2 1 0

Base 8 7 6 5 4 3 2 1 0

Base 2 111 110 101 100 011 010 001 000

COMP1521 25T2

● In binary, (base 2), each digit represents 1 bit:

○ 010010001111101010111100100101112

● In octal, (base 8), each digit represents 3 bits

○ 01 001 000 111 110 101 011 110 010 010 1112

○ 1 1 0 7 6 5 3 6 2 2 78

● In hexadecimal, (base 16), each digit represents 4 bits:

○ 0100 1000 1111 1010 1011 1100 1001 01112

○ 4 8 F A B C 9 716

Binary, Octal, Hexadecimal Summary

35

COMP1521 25T2

● A number beginning with 0x is hexadecimal

● A number beginning with 0 is octal

● A number beginning with 0b is binary

● Otherwise, it is decimal

Constants in C and MIPS assembly

36

printf("%d", 0x2A); // prints 42

printf("%d", 052); // prints 42

printf("%d", 0b101010); // prints 42

printf("%d", 42); // prints 42

COMP1521 25T2

integer_prefixes.c

Easy Base Conversions in C

37

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/integers/code/integer_prefixes.c

COMP1521 25T2

● In C the unsigned int data type is 4 bytes on our system

○ means we can store values from the range 0 .. 232-1

Unsigned integers

38

COMP1521 25T2

How do we store signed integers?

39

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

COMP1521 25T2

● What if we use 1 of the bits to represent the sign?

How do we store signed integers?

40

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0000 0001 0010 0011 0100 0101 0110
1110 1101 1100 1011 1010 1001 1000

COMP1521 25T2

● What if we use 1 of the bits to represent the sign?

● Okay, but what algorithm for adding/subtracting numbers?

How do we store signed integers?

41

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0000 0001 0010 0011 0100 0101 0110
1110 1101 1100 1011 1010 1001 1000

COMP1521 25T2

How we really represent negative numbers

42

4 = 00000100

3 = 00000011

2 = 00000010

1 = 00000001

0 = 00000000

-1 =

COMP1521 25T2

How we really represent negative numbers

43

4 = 00000100

3 = 00000011

2 = 00000010

1 = 00000001

0 = 00000000

-1 = 11111111

COMP1521 25T2

How we really represent negative numbers

44

4 = 00000100

3 = 00000011

2 = 00000010

1 = 00000001

0 = 00000000

-1 = 11111111

-2 = 11111110

-3 = 11111101

COMP1521 25T2

● In C the int data type is 4 bytes on our system

○ we can store values from the range -231.. 231 -1

Signed integers

45

COMP1521 25T2

● Modern computers use two’s complement for integers

● Positive integers and zero represented as normal

● Negative integers represented in a way to make maths easy

for the computer (not humans)

○ For an n-bit binary number, the number -b is 2n - b

○ E.g. 8-bit number “-5” is represented as 28 - 5 = 1111 10112

What do signed binary numbers look like?

46

COMP1521 25T2

● A shortcut for doing 2’s complement

○ If you are trying to represent -5 in 8 bits

○ Take the +5 representation

■ 0000 0101

○ invert all the bits

■ 1111 1010

○ add 1

■ 1111 1011

● Repeat the process to go from -5 back to 5 again!

Two’s Complement Tips and Tricks

47

COMP1521 25T2

● Some simple code to examine 8-bit 2’s complement numbers:

● gcc 8_bit_twos_complement.c print_bits.c -o 8_bit_twos_complement

Example: 2’s Complement Example

48

for (int i = -128; i < 128; i++) {

printf("%4d ", i);

print_bits(i, 8);

printf("\n");

}

COMP1521 25T2

$./8_bit_twos_complement

-128 10000000

-127 10000001

-126 10000010

...

-3 11111101

-2 11111110

-1 11111111

0 00000000

1 00000001

2 00000010

3 00000011

...

125 01111101

126 01111110

127 01111111

Example: Printing all 8-bit 2’s complement

49

COMP1521 25T2

$./print_bits_of_int

Enter an int: 0

00000000000000000000000000000000

$./print_bits_of_int

Enter an int: 1

00000000000000000000000000000001

$./print_bits_of_int

Enter an int: -1

11111111111111111111111111111111

$./print_bits_of_int

Enter an int: 2147483647

01111111111111111111111111111111

$./print_bits_of_int

Enter an int: -2147483648

10000000000000000000000000000000

$

Example: print_bits_of_int.c

50

COMP1521 25T2

● On CSE servers, C types have these sizes

○ char = 1 byte = 8 bits

■ 42 is 00101010

○ short = 2 bytes = 16 bits,

■ 42 is 0000000000101010

○ int = 4 bytes = 32 bits,

■ 42 is 00000000000000000000000000101010

○ double = 8 bytes = 64 bits,

■ 42 = ?

● above are common sizes but not universal

● sizeof (int) might be 2 (bytes) on a small embedded CPU

Bits and Bytes on cse Servers

51

COMP1521 25T2

integer_types.c - exploring integer types

52

COMP1521 25T2

Exploring integer types

53

COMP1521 25T2

● #include <stdint.h> to get below int types (and more) with known sizes

● We use these a lot in COMP1521!

stdint.h - guaranteed size integer types

54

COMP1521 25T2

overflow_int.c

wrap_around_uint.c

char_bug.c

Code Examples

55

COMP1521 25T2

● “What order to put things in” is a hard question to answer

● Two schools of thought:

○ Big-endian: MSB at the “low address” - big bytes “first!”

○ Little-endian: LSB at the “low address” - little bytes “first!”

BIG: LITTLE:

New? concept: Endian-ness

56

COMP1521 25T2

● Mipsy-web is little-endian

Code example

57

.text

main:

li $t0, 0x12345678

sw $t0, my_word

.data

my_word:

.space 4

COMP1521 25T2

The results of these will depend on endianness:

● lh/lb assume the loaded byte/halfword is signed

○ The destination register top bits are set to the sign bit

● lhu/lbu for doing the same thing, but unsigned

Loading bytes, half-words

58

COMP1521 25T2

Loading Examples: lb

59

.text

main:

lb $t0, my_label

.data

my_label:

.word 0x12345678

COMP1521 25T2 60

.text

main:

lh $t0, my_label

.data

my_label:

.word 0x12345678

Loading Examples: lh

COMP1521 25T2

Loading Examples Negative: lb

61

.text

main:

lb $t0, my_label

.data

my_label:

.word 0x1234ABCD

CD AB

$t0 = 0xFFFFFFCD

COMP1521 25T2

Loading Examples Negative: lh

62

.text

main:

lh $t0, my_label

.data

my_label:

.word 0x1234ABCD

$t0 = 0xFFFFABCD

CD AB

COMP1521 25T2

Loading Examples: lbu

63

.text

main:

lbu $t0, my_label

.data

my_label:

.word 0x1234ABCD

CD AB

$t0 = 0x000000CD

COMP1521 25T2

Loading Examples Negative: lhu

64

.text

main:

lhu $t0, my_label

.data

my_label:

.word 0x1234ABCD

CD AB

$t0 = 0x0000ABCD

COMP1521 25T2

endianness.c

Endianness in C

65

COMP1521 25T2

● CPUs provide instructions which implement bitwise operations

○ Provide us ways to manipulating the individual bits of a value.

○ MIPS provides 13 bit manipulation instructions

○ C provides 6 bitwise operators

& bitwise AND
| bitwise OR
^ bitwise XOR (eXclusive OR)
~ bitwise NOT
<< left shift
>> right shift

Bitwise Operations

66

COMP1521 25T2

● takes two values (eg. a & b) and performs a logical AND

between pairs of corresponding bits

○ resulting bits are set to 1 if both the original bits in that column

are 1

Example:

Bitwise AND (&)

67

Used for eg. checking if a particular bit is set (that is, set to 1)

COMP1521 25T2

Checking if a number is odd

The obvious way to check if a number is odd in C:

int is_odd(int n) {
return n % 2 != 0;

}

COMP1521 25T2

Checking if a number is odd

However, an odd value must have a 1 bit in the 1s place:

We can use bitwise AND to check if the last bit is set .

COMP1521 25T2

Checking if a number is odd

If the value is ODD (eg 39): If the value is EVEN (eg 38):

int is_odd(int n) {
return n & 1;

}

0

COMP1521 25T2

● takes two values (eg. a | b) and performs a logical OR between

pairs of corresponding bits

○ resulting bits are set to 1 if at least one of the original bits are 1

Example:

Bitwise OR (|)

71

Used for eg. setting a particular bit

COMP1521 25T2 72

● Recursive MIPS functions, invalid C

● Integers

● Bitwise & and |

● Next lecture:

○ More bitwise operators

What did we learn today?

COMP1521 25T2 73

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

74

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Announcements
	Slide 3: Assignment 1
	Slide 4: Today’s Lecture
	Slide 5: 1ntegers
	Slide 6: Why Learn About Integers
	Slide 7
	Slide 8
	Slide 9: Numbers
	Slide 10: Numbers
	Slide 11: Base 10: Decimal
	Slide 12: Base 10 was an arbitrary choice
	Slide 13: Code Demo
	Slide 14: What about some other bases?
	Slide 15: What about some other bases?
	Slide 16: Base 2: Computers like binary
	Slide 17: Base 2: Computers like binary
	Slide 18: More examples
	Slide 19: More examples
	Slide 20: More examples
	Slide 21: Binary numbers are hard to read!
	Slide 22: Binary numbers are hard to read!
	Slide 23: Base 16: Hexadecimal
	Slide 24: Base 16: Hexadecimal
	Slide 25: More hexadecimal examples
	Slide 26: More hexadecimal examples
	Slide 27: More hexadecimal examples
	Slide 28: Binary -> Hexadecimal
	Slide 29: Binary -> Hexadecimal
	Slide 30: Binary -> Hexadecimal
	Slide 31: More examples
	Slide 32: More examples
	Slide 33: More examples
	Slide 34: Base 8: Octal
	Slide 35: Binary, Octal, Hexadecimal Summary
	Slide 36: Constants in C and MIPS assembly
	Slide 37: Easy Base Conversions in C
	Slide 38: Unsigned integers
	Slide 39: How do we store signed integers?
	Slide 40: How do we store signed integers?
	Slide 41: How do we store signed integers?
	Slide 42: How we really represent negative numbers
	Slide 43: How we really represent negative numbers
	Slide 44: How we really represent negative numbers
	Slide 45: Signed integers
	Slide 46: What do signed binary numbers look like?
	Slide 47: Two’s Complement Tips and Tricks
	Slide 48: Example: 2’s Complement Example
	Slide 49: Example: Printing all 8-bit 2’s complement
	Slide 50: Example: print_bits_of_int.c
	Slide 51: Bits and Bytes on cse Servers
	Slide 52: integer_types.c - exploring integer types
	Slide 53: Exploring integer types
	Slide 54: stdint.h - guaranteed size integer types
	Slide 55: Code Examples
	Slide 56: New? concept: Endian-ness
	Slide 57: Code example
	Slide 58: Loading bytes, half-words
	Slide 59: Loading Examples: lb
	Slide 60: Loading Examples: lh
	Slide 61: Loading Examples Negative: lb
	Slide 62: Loading Examples Negative: lh
	Slide 63: Loading Examples: lbu
	Slide 64: Loading Examples Negative: lhu
	Slide 65: Endianness in C
	Slide 66: Bitwise Operations
	Slide 67: Bitwise AND (&)
	Slide 68: Checking if a number is odd
	Slide 69: Checking if a number is odd
	Slide 70: Checking if a number is odd
	Slide 71: Bitwise OR (|)
	Slide 72: What did we learn today?
	Slide 73: Reach Out
	Slide 74: Student Support | I Need Help With…

