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● Lab 3 Due: Today midday (2 hours ago )

● Weekly Test 3 Due: Thursday 21:00:00. 

● Assignment 1 Due: Week 5 Friday 18:00 (next week) 

○ Spec, code, walkthrough video are all available

● See Help Session Schedule for assistance

● Census Date: Thursday 26th Jun

○ Last day to drop T2 courses without financial liability

Announcements
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● Watch Video 

● Fetch Code 

● Run C Code 

● For each subset 0-3

○ Write simplified C 1 function at a time. 

○ Compile and autotest

○ Write MIPS function 

○ Autotest MIPS

○ Start next subset

● Follow style in supplied .s code 

○ including function comments and equivalent C comments. 

Assignment 1
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Today’s Lecture

● Integers

● Bitwise Operations

4
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1ntegers

5



COMP1521 25T2

● Fundamental topic in computing 

○ Understand what you are 

seeing in mipsy web! 

○ Understand limits of types and 

help you understand and debug 

code 

● Prepare you for the next topic: 

bitwise operators

● Understand the jokes in these 

slides

Why Learn About Integers
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There are 10 types of students
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There are 10 types of students

Those that understand binary,

And those that don’t

-Andrew Taylor
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4705
It is equivalent to: 4*103 + 7*102 + 0*101 + 5*100

=   4000 + 700 + 0 + 5

Numbers

9
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4705
It is equivalent to: 4*103 + 7*102 + 0*101 + 5*100

=   4000 + 700 + 0 + 5

Numbers

10

If we assume it is base 10!



COMP1521 25T2

● In Base (or radix) 10 we have 10 digits  e.g. 0..9

○ Then to get bigger numbers we start combining the digits e.g. 10

● Place Values

● Example:

470510 = 4 ∗ 103 + 7 ∗ 102 + 0 ∗ 101 + 5 ∗ 100

= 4000 + 700 + 0 + 5

= 470510

Base 10: Decimal

11

103 102 101 100

100010 10010 1010 110
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● Possibly exists because we have 10 digits (fingers)

● Ancient Egyptians, Brahmi Numerals, Greek Numerals, 

Hebrew Numerals, Roman Numerals and Chinese Numerals:

○ All base 10!

Base 10 was an arbitrary choice

12
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digits.c

Code Demo

13

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/integers/code/digits.c
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● Let’s think about base 7

(not a very useful base)

● We have 7 digits 0..6 

○ Then we start combining the digits  

e.g. 10 represents 710

What about some other bases?

14

73 72 71 70

34310 4910 710 110

● Here, 12167 =
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● Let’s think about base 7

(not a very useful base)

● We have 7 digits 0..6 

○ Then we start combining the digits  

e.g. 10 represents 710

What about some other bases?

15

73 72 71 70

34310 4910 710 110

● Here, 12167 = 1 ∗ 73 + 2 ∗ 73 + 1 ∗ 71 + 6 ∗ 70

= 1 ∗ 343 + 2 ∗ 47 + 1 ∗ 7 + 6 ∗ 1

= 45410
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● In Base (or radix) 2 we have 2 digits -- 0 and 1

○ Easy to represent using “electricity” -- Off and On

○ Then we start combining the digits  e.g. 102 represents 210
● Place Values

𝟏𝟎𝟏𝟏𝟐 = ? 10

Base 2: Computers like binary

16

23 22 21 20

810 410 210 110
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● In Base (or radix) 2 we have 2 digits -- 0 and 1

○ Easy to represent using “electricity” -- Off and On

○ Then we start combining the digits  e.g. 102 represents 210
● Place Values

𝟏𝟎𝟏𝟏𝟐 = 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21+ 1 ∗ 20

= 1 ∗ 8 + 0 ∗ 4 + 1 ∗ 2 + 1 ∗ 1

= 11𝟏𝟎

Base 2: Computers like binary

17

23 22 21 20

810 410 210 110
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Question: Convert 11012 to decimal?

Question: Convert 2910 to binary?

More examples

18
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Question: Convert 11012 to decimal?

Answer:  1 ∗ 23+ 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

=  1 ∗ 8 + 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1

= 13

Question: Convert 2910 to binary?

More examples

19
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Question: Convert 11012 to decimal?

Answer:  1 ∗ 23+ 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20

=  1 ∗ 8 + 1 ∗ 4 + 0 ∗ 2 + 1 ∗ 1

= 13

Question: Convert 2910 to binary? 11101

● 29/2 = 14 R 1

● 14/2 =   7 R 0

● 7/2  =  3 R 1

● 3/2  =  1 R 1

● 1/2  =  0 R 1

More examples

20
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● They get very long, very fast

● E.g. 1234567810 = 1011110001100001010011102

Binary numbers are hard to read!

21
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● They get very long, very fast

● E.g. 1234567810 = 1011110001100001010011102

● Solution: Write numbers in hexadecimal!

○ More compact than binary

○ Maps more easily to binary than decimal.

■ Bit patterns remain more obvious than in decimal

Binary numbers are hard to read!

22
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● In Base (or radix) 16 we have 16 digits 

○ 0 1 2 3 4 5 6 7 8 9 A B C D E F

○ Then we start combining the digits  e.g. 10 represents 1610

● Place Values

● 3AF116 = ?10

Base 16: Hexadecimal

23

163 162 161 160

409610 25610 1610 110
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● In Base (or radix) 16 we have 16 digits 

○ 0 1 2 3 4 5 6 7 8 9 A B C D E F

○ Then we start combining the digits  e.g. 10 represents 1610

● Place Values

● 3AF116 = 3 ∗ 163 + 10 ∗ 162 + 15 ∗ 161 + 1 ∗ 160

= 1508910

Base 16: Hexadecimal

24

163 162 161 160

409610 25610 1610 110



COMP1521 25T2

Question: Convert 1FF16 to decimal?

Question: Convert 1310 to hexadecimal?

More hexadecimal examples

25
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Question: Convert 1FF16 to decimal?

Answer: 1 ∗ 162+ 15 ∗ 161+ 15 ∗ 160 = 51110

Question: Convert 1310 to hexadecimal?

More hexadecimal examples

26
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Question: Convert 1FF16 to decimal?

Answer: 1 ∗ 162+ 15 ∗ 161+ 15 ∗ 160 = 51110

Question: Convert 1310 to hexadecimal?

Answer: 𝐷16

More hexadecimal examples

27
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● Binary gets very  long very quick

○ e.g. 1234567810 = 1011110001100001010011102

● Solution: Write numbers in hexadecimal!

● 16  == 24

○ We can separate the bits into groups of 4…

Binary -> Hexadecimal

28

163 162 161 160

409610 25610 1610 110
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● 1234567810 = 1011110001100001010011102

= 1011 1100 0110 0001 0100 11102

Each 4 bit group can be represented by one hexadecimal digit!

Binary -> Hexadecimal

29

Base 10 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Base 16 F E D C B A 9 8 7 6 5 4 3 2 1 0

Base 2 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000
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● 1234567810 = 1011110001100001010011102

= 1011 1100 0110 0001 0100 11102

=     B C 6 1 4 E

Each 4 bit group can be represented by one hexadecimal digit!

Binary -> Hexadecimal

30

Base 10 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Base 16 F E D C B A 9 8 7 6 5 4 3 2 1 0

Base 2 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000
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Binary 011011112 =

Hexadecimal 𝐵𝐴𝐷216 = 

More examples

31
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Binary 011011112 = 6𝐹16

Hexadecimal 𝐵𝐴𝐷216 = 

More examples

32
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Binary 011011112 = 6𝐹16

Hexadecimal 𝐵𝐴𝐷216 = 10111010110100102

More examples

33
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● In Base (or radix) 8 we have 8 digits 

○ 0 1 2 3 4 5 6 7

○ Then we start combining the digits e.g. 10 represents 810

● Similar advantages to hexadecimal

○ 8 = 23 so group bits into 3: 

○ Example: 728 = 111 0102 = 3A16 = 5810

Base 8: Octal

34

Base 10 7 6 5 4 3 2 1 0

Base 8 7 6 5 4 3 2 1 0

Base 2 111 110 101 100 011 010 001 000
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● In binary, (base 2), each digit represents 1 bit:

○ 010010001111101010111100100101112

● In octal, (base 8), each digit represents 3 bits

○ 01 001 000 111 110 101 011 110 010 010 1112

○ 1 1 0 7 6 5 3 6 2 2 78

● In hexadecimal, (base 16), each digit represents 4 bits:

○ 0100 1000 1111 1010 1011 1100 1001 01112

○ 4 8 F A B C 9 716

Binary, Octal, Hexadecimal Summary

35
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● A number beginning with 0x is hexadecimal

● A number beginning with 0 is octal

● A number beginning with 0b is binary

● Otherwise, it is decimal

Constants in C and MIPS assembly

36

printf("%d", 0x2A); // prints 42

printf("%d", 052); // prints 42

printf("%d", 0b101010); // prints 42

printf("%d", 42); // prints 42



COMP1521 25T2

integer_prefixes.c

Easy Base Conversions in C

37

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/integers/code/integer_prefixes.c
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● In C the unsigned int data type is 4 bytes on our system

○ means we can store values from the range 0 .. 232-1

Unsigned integers

38
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How do we store signed integers?

39

-6 -5 -4 -3 -2 -1  0  1 2 3  4  5 6
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● What if we use 1 of the bits to represent the sign?

How do we store signed integers?

40

-6 -5 -4 -3 -2 -1  0  1 2 3  4  5 6

0000 0001 0010 0011 0100 0101 0110
1110 1101 1100 1011 1010 1001 1000
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● What if we use 1 of the bits to represent the sign?

● Okay, but what algorithm for adding/subtracting numbers?

How do we store signed integers?

41

-6    -5    -4   -3    -2    -1    0     1     2     3     4     5     6

0000 0001 0010 0011 0100 0101 0110
1110 1101 1100 1011 1010 1001 1000
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How we really represent negative numbers

42

4 = 00000100

3 = 00000011

2 = 00000010

1 = 00000001

0 = 00000000

-1 =
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How we really represent negative numbers

43

4 = 00000100

3 = 00000011

2 = 00000010

1 = 00000001

0 = 00000000

-1 = 11111111
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How we really represent negative numbers

44

4 = 00000100

3 = 00000011

2 = 00000010

1 = 00000001

0 = 00000000

-1 = 11111111

-2 = 11111110

-3 = 11111101
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● In C the int data type is 4 bytes on our system

○ we can store values from the range -231.. 231 -1

Signed integers

45
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● Modern computers use two’s complement for integers

● Positive integers and zero represented as normal

● Negative integers represented in a way to make maths easy

for the computer (not humans)

○ For an n-bit binary number, the number -b is 2n - b

○ E.g. 8-bit number “-5” is represented as 28 - 5 = 1111 10112

What do signed binary numbers look like?

46
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● A shortcut for doing 2’s complement

○ If you are trying to represent -5 in 8 bits

○ Take the +5 representation

■ 0000 0101

○ invert all the bits

■ 1111 1010 

○ add 1

■ 1111 1011

● Repeat the process to go from -5 back to 5 again! 

Two’s Complement Tips and Tricks

47
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● Some simple code to examine 8-bit 2’s complement numbers:

● gcc 8_bit_twos_complement.c print_bits.c -o 8_bit_twos_complement

Example: 2’s Complement Example

48

for (int i = -128; i < 128; i++) {

printf("%4d ", i);

print_bits(i, 8);

printf("\n");

}
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$ ./8_bit_twos_complement

-128 10000000

-127 10000001

-126 10000010

...

-3 11111101

-2 11111110

-1 11111111

0 00000000

1 00000001

2 00000010

3 00000011

...

125 01111101

126 01111110

127 01111111

Example: Printing all 8-bit 2’s complement

49
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$ ./print_bits_of_int

Enter an int: 0

00000000000000000000000000000000

$ ./print_bits_of_int

Enter an int: 1

00000000000000000000000000000001

$ ./print_bits_of_int

Enter an int: -1

11111111111111111111111111111111

$ ./print_bits_of_int

Enter an int: 2147483647

01111111111111111111111111111111

$ ./print_bits_of_int

Enter an int: -2147483648

10000000000000000000000000000000

$

Example: print_bits_of_int.c

50
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● On CSE servers, C types have these sizes

○ char = 1 byte = 8 bits

■ 42 is 00101010

○ short = 2 bytes = 16 bits, 

■ 42 is 0000000000101010

○ int = 4 bytes = 32 bits, 

■ 42 is 00000000000000000000000000101010

○ double = 8 bytes = 64 bits, 

■ 42 = ?  

● above are common sizes but not universal 

● sizeof (int) might be 2 (bytes) on a small embedded CPU

Bits and Bytes on cse Servers

51
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integer_types.c - exploring integer types

52
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Exploring integer types

53
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● #include <stdint.h> to get below int types (and more) with known sizes

● We use these a lot in COMP1521!

stdint.h - guaranteed size integer types

54
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overflow_int.c

wrap_around_uint.c

char_bug.c

Code Examples

55
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● “What order to put things in” is a hard question to answer

● Two schools of thought:

○ Big-endian: MSB at the “low address” - big bytes “first!”

○ Little-endian: LSB at the “low address” - little bytes “first!”

BIG: LITTLE:

New? concept: Endian-ness

56
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● Mipsy-web is little-endian

Code example

57

.text

main:

li $t0, 0x12345678

sw $t0, my_word

.data

my_word:

.space 4
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The results of these will depend on endianness:

● lh/lb assume the loaded byte/halfword is signed

○ The destination register top bits are set to the sign bit

● lhu/lbu for doing the same thing, but unsigned 

Loading bytes, half-words

58
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Loading Examples: lb

59

.text

main:

lb $t0, my_label

.data

my_label:

.word 0x12345678
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.text

main:

lh $t0, my_label

.data

my_label:

.word 0x12345678

Loading Examples: lh
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Loading Examples Negative: lb

61

.text

main:

lb $t0, my_label

.data

my_label:

.word 0x1234ABCD

CD AB

$t0 = 0xFFFFFFCD
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Loading Examples Negative: lh

62

.text

main:

lh $t0, my_label

.data

my_label:

.word 0x1234ABCD

$t0 = 0xFFFFABCD

CD AB
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Loading Examples: lbu

63

.text

main:

lbu $t0, my_label

.data

my_label:

.word 0x1234ABCD

CD AB

$t0 = 0x000000CD
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Loading Examples Negative: lhu

64

.text

main:

lhu $t0, my_label

.data

my_label:

.word 0x1234ABCD

CD AB

$t0 = 0x0000ABCD
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endianness.c

Endianness in C

65
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● CPUs provide instructions which implement bitwise operations

○ Provide us ways to manipulating the individual bits of a value.

○ MIPS provides 13 bit manipulation instructions

○ C provides 6 bitwise operators

& bitwise AND
|  bitwise OR
^  bitwise XOR (eXclusive OR)
~  bitwise NOT
<< left shift
>> right shift

Bitwise Operations

66
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● takes two values (eg. a & b) and performs a logical AND 

between pairs of corresponding bits

○ resulting bits are set to 1 if both the original bits in that column 

are 1

Example:

Bitwise AND (&)

67

Used for eg. checking if a particular bit is set (that is, set to 1)
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Checking if a number is odd

The obvious way to check if a number is odd in C:

int is_odd(int n) {
return n % 2 != 0;

}
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Checking if a number is odd

However, an odd value must have a 1 bit in the 1s place: 

We can use bitwise AND to check if the last bit is set .
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Checking if a number is odd

If the value is ODD (eg 39): If the value is EVEN (eg 38):

int is_odd(int n) {
return n & 1;

}

0
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● takes two values (eg. a | b) and performs a logical OR between 

pairs of corresponding bits

○ resulting bits are set to 1 if at least one of the original bits are 1

Example:

Bitwise OR (|)

71

Used for eg. setting a particular bit
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● Recursive MIPS functions, invalid C

● Integers

● Bitwise & and |

● Next lecture:

○ More bitwise operators

What did we learn today?



COMP1521 25T2 73

Content Related Questions:  

Forum

Admin related Questions email: 

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au
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Student Support | I Need Help With…

74

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student 

Support

Equity Diversity and Inclusion 

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service 

(ELS)

— student.unsw.edu.au/els

Academic Language 

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental 

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health 

Connect

Mind 

HUB

student.unsw.edu.au/counselling 

Telehealth

student.unsw.edu.au/mind-hub 

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support 

Line

Outside Australia 

Afterhours 24-hour 

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams
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