
COMP1521 25T1

COMP1521 25T1

MIPS FUNctions

Week 3 Lecture 1

Adapted from Abiram Nadarajah, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Today’s Lecture
● Recap last lecture

○ Arrays
○ structs

● Functions

Wednesday’s Lecture

We have 2 lectures a week.
Wednesday 2-4pm
live streamed on Youtube.

2

COMP1521 25T1

● Help Session Schedule is out
○ Sessions starting on monday!

● Extra practice code for each topic:
https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/mips_data/code
etc

● Assignment 1 out later this week

Help Sessions and other admin

3

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/mips_data/code

COMP1521 25T1

Released: Thursday 3pm
Time limit: 1 hour
Due: Thursday Week 4 at 3pm. (And then another test comes out)
Submitted via give
You can get 50% max for questions submitted after the hour is up

Topic for week 3 test: MIPS basics, control.
Can use mips documentation

Weekly Tests start this week

4

COMP1521 25T1

char a[5] = {‘a’, ‘z’, ‘b’, ‘f’, ‘G’};

Arrays of 1 byte elements (array.c demo)

5

● If we have the address of the start of the array:
○ How can I work out the address of the a[3]?
○ How can I work out the address of the a[i]?

COMP1521 25T1

int a[5] = {16, 4, 1, 9, 2};

Arrays of 4 byte elements

6

● If we have the address of the start of the array:
○ How can I work out the address of the a[3]?
○ How can I work out the address of the a[i]?

COMP1521 25T1

char array: address of a[i] = address of a + i

integer array: address of a[i] = address of a + (i * 4)

In general:
address of element = address of array + index * sizeof(element)

Address of Array Elements

7

COMP1521 25T1

2D Arrays in MIPS

8

Offset of start of relevant row:
(row * N_COLS) * sizeof(element)

Offset within row:
col * sizeof(element)

Total offset:
(row * N_COLS + col) * sizeof(element)

COMP1521 25T1

read_array_words.c
modify_2d.c

Try these for an exercise:
array_words_pointer.c
array_bytes_pointer.c

Recap: MIPS array coding examples

9

https://cgi.cse.unsw.edu.au/~cs1521/current/live/week_02/arrays/array_words_pointer.c
https://cgi.cse.unsw.edu.au/~cs1521/current/live/week_02/arrays/array_bytes_pointer.c

COMP1521 25T1

struct person{
 char first_initial;
 char last_initial;
 int age;
};

What size will this struct be?
What offsets will each field have?
Let’s write code in MIPS to create a global variable of this type
Read in data and print it out again.

Recap Structs: recap_struct.c

10

COMP1521 25T1

struct person{
 int age;

 char first_initial;
 char last_initial;
};

What if we do it like this?

Recap Structs: recap_struct.c

11

COMP1521 25T1

struct student {
 int zid;
 char first[20];
 char last[20];
 int program;
 char alias[10];
}

Structs

12

COMP1521 25T1

struct student {
 int zid; //Offset 0
 char first[20]; //Offset 4
 char last[20]; //Offset 44
 int program; //Offset 48
 char alias[10]; //Offset 52
};

Structs

13

structs are really just sets
of variables at known
offsets

COMP1521 25T1

Functions

14

COMP1521 25T1

● It takes an argument (x)
● It does some calculations
● It returns a value (two_x)

Here’s a function

15

int timesTwo(int x) {

 int two_x = x*2;

 return two_x;

}

COMP1521 25T1

● Also known as “signatures”
● These define the number and types of parameters
● And define the type of the return value

When calling a function, we must supply an appropriate number of
values each with the correct type

(Some functions are special and can take “variable” numbers of arguments, e.g. printf - out of scope for
COMP1521 but feel free to Google! varargs c)

Functions have “prototypes”

16

//timesTwo takes an int argument and returns an int result

int timesTwo(int x);

COMP1521 25T1

A Typical Function Call

17

result = func(expr1, expr2, ...);

● Expressions are evaluated and associated with each parameter
● Control flow transfers to the body of func
● Local variables are created for func
● A return value is computed
● Control flow transfers to the caller which can make use of

result

COMP1521 25T1

Here’s a very basic program with function

18

#include <stdio.h>

void f(void);

int main(void) {

 printf("calling function f\n");

 f();

 printf("back from function f\n");

 return 0;

}

void f(void) {

 printf("in function f\n");

}

Signature comes first

Function implementation

COMP1521 25T1

How?
Well, functions are a bit like the labels we have been “goto”-ing
Maybe we can use branch instructions “b”

Let’s write it in assembly

19

COMP1521 25T1

What if we want to call the function again???

20

#include <stdio.h>

void f(void);

int main(void) {

 printf("calling function f\n");

 f();

 printf("back from function f\n");

 f();

 printf("back from function f again\n");

 return 0;

}

Signature comes first

Calling function again

COMP1521 25T1

How do we actually call other functions?
● We use the jal instruction to call functions
● jal is a special version of the j (or pseudo-instruction b)

○ It also jumps to the given label

○ However, it also sets $ra (return address) to point to the next
instruction before jumping

○ This gives us a mechanism to return to the caller function!
● However, this presents a problem…

○ Let’s try run our program!

21

COMP1521 25T1

● We are overwriting the $ra register when we use jal
○ we can’t return properly from the main function!
○ we end up in an infinite loop!

● Maybe we could temporarily save it in a register, like $t0 and
then restore it when we need it again?

Clobbering the $ra register

22

COMP1521 25T1

● We are overwriting the $ra register when we use jal
○ we can’t return properly from the main function!
○ we end up in an infinite loop!

● Maybe we could temporarily save it in a register, like $t0 and
then restore it when we need it again?
○ What is the worry with this?

■ Function could change $t0
■ Functions can call functions can call functions and we have

recursive functions too. How many registers would we need? We
have 32 registers max…

Clobbering the $ra register

23

COMP1521 25T1

● We can use the $a registers to pass in arguments

○ We have $a0 - $a3 – four registers to pass in arguments

○ Can use the stack (more soon) if we theoretically had more than 4
arguments, or arguments that don’t fit in a register.

■ However, you won’t have to deal with this in COMP1521

How do we pass data to a function??

24

COMP1521 25T1

Implement this: Arguments

25

void f(int x);

int main(void) {
 printf("calling function f\n");
 f(22);
 printf("back from function f\n");
 return 0;
}

void f(int x) {
 printf("in function f\n");
 printf("%d", x);
 putchar('\n');
}

COMP1521 25T1

How do functions return values?

26

● We can use the $v registers to retrieve a function’s result

○ Values occupying 32-bits or fewer should be returned using
$v0

○ We don’t have to deal with $v1 in COMP1521

COMP1521 25T1

Implement this: return value

27

int f(int x) {

 printf("in function f\n");

 printf("%d", x);

 putchar('\n');

 x = x + 1;

 return x;

}

int f(int x);

int main(void) {

 printf("calling function f\n");

 int result = f(22);

 printf("back from function f\n");

 printf("%d", result);

 putchar('\n');

 return 0;

}

COMP1521 25T1

We have made a mess using t registers to
● save and restore the $ra
● save $a0 and $v0
● local variables and temporary values

This is with only a tiny program with 1 main and 1 other simple
function!

There must be a more consistent way of doing this!

There must be a better way…

28

COMP1521 25T1

● Functions are named pieces of code (labels)

○ Which you can call

○ Which you can (optionally) supply arguments

○ Perform computations using those arguments

○ And return a value to a caller

Functions - a summary

29

COMP1521 25T1

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments

○ Perform computations using those arguments

○ And return a value to a caller

Functions - a summary

30

COMP1521 25T1

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments ($a0 - $a3)

○ Perform computations using those arguments

○ And return a value to a caller

Functions - a summary

31

COMP1521 25T1

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments ($a0 - $a3)

○ Perform computations using those arguments

○ And return a value ($v0) to a caller

Functions - a summary

32

COMP1521 25T1

We’ve now laid some ground rules on
communicating with functions.

But it ge
ts bette

r!

COMP1521 25T1

● lay out rules on how we should be using registers when
interfacing between different functions

● forms the MIPS ABI (application binary interface), which lays
out how different code should interact with each other

● We theoretically could break these rules

○ However, makes it hard to have code that works interoperably
with code from other sources

The MIPS calling conventions

34

COMP1521 25T1

● It is Important to follow these rules to make sure that functions
work nicely with each other

● “You know the rules, and so do I” - Richard Paul Astley, never gonna give you up

The MIPS calling conventions

35

COMP1521 25T1

● $t registers are free real estate for a function

○ Functions can completely obliterate any existing values in a $t
register

● However, this has implications for the function’s caller

○ The caller function must assume that the callee function
completely obliterated any values in $t registers

The MIPS calling conventions - $t registers

36

COMP1521 25T1

● Too bad - we MUST treat other functions like black boxes

○ We have to assume they will delete everything in our t registers.
● In fact, ‘strict’ autotesting for assignment 1 will intentionally

destroy the existing values in your $t registers.
● The term for ‘obliterating’ an existing value inside a register

without eventually restoring it is clobbering

Hey, but my function doesn’t actually
obliterate values in $t0 …

37

COMP1521 25T1

● could theoretically use global variables to preserve values

○ This could still get messy

○ However, what if we call a function recursively?

■ Global variables need to be pre-allocated,

■ We don’t know how many instances of a recursive function might
exist at a given time

● Instead, we use $s registers to save values between function
calls

So we can’t preserve values between function
calls in MIPS??

38

COMP1521 25T1

● Functions cannot permanently change the value of a $s register
● This means that we can rely on our callee functions not

clobbering any values we keep in $s registers
● Problem solved?? Store $ra in a $s register?

The MIPS calling convention - $s registers

39

COMP1521 25T1

● But now our main function violates the “rules” by modifying $s0

○ The main function is not special, and must also abide by these rules
● All functions can potentially call other functions and also have

this issue - they also “change” $ra!

Uh oh!

40

COMP1521 25T1

● Solution: functions can temporarily make changes to $s/$ra
registers, as long as they save and restore them afterwards

● How do we do this?

○ Save the $s/$ra register’s original value to RAM (the stack) at
start of the function

○ Restore the $s/$ra register’s original value from RAM (the stack)
once complete

Solution: Save and restore on the stack

41

COMP1521 25T1

The stack
● is a region of memory which we

can grow and expand
● uses the $sp (stack pointer)

register to keep track of the top of
the stack

● We can modify the stack pointer
to allocate more room on the
stack for us to store values

Saving to the Stack

42

COMP1521 25T1

The stack: growing and shrinking

This is how the stack changes as functions are called and return:

43

COMP1521 25T1

● Functions are free to use the stack as they need - as long as
they restore $sp to its original value once done

○ That is, a function must restore the stack to its original size
● Failure to do so may lead to disastrous consequences

The MIPS calling conventions - $sp

44

COMP1521 25T1

Example - $sp and the stack (the hard way)
If I subtract a total of 8 from $sp at the start of my function, and store $ra and $s0

addi $sp, $sp, -4
sw $ra, ($sp)
addi $sp, $sp, -4
sw $s0, ($sp)

I must reverse this by adding a total of 8 from $sp and restore $s0 and $ra at the end of the
function

lw $s0, ($sp)
addi $sp, $sp, 4
lw $ra, ($sp)
addi $sp, $sp, 4

45

COMP1521 25T1

Example - $sp and the stack (the easy way)
● For convenience, we provide you with two pseudo-instructions

to interact with the stack: push and pop
● push Rt

○ ‘allocates’ 4 bytes on the stack ($sp = $sp - 4)

○ stores the value of Rt to the stack
● pop Rt

○ restores the value on the top of the stack into Rt

○ ‘deallocates’ 4 bytes on the stack ($sp = $sp + 4)

46

COMP1521 25T1

● These are pseudo-instructions provided by mipsy

○ They won’t work on other MIPS emulators
● This means that you can get through this course without ever

directly interacting with $sp

Example - $sp and the stack (the easy way)

47

COMP1521 25T1

Prologues: the start of a
function’s story
● We use the begin instruction

(more on this soon)
● We need to push $ra onto the

stack
● We push the values of any $s

registers we want to use

Prologues and Epilogues

48

Epilogues: the end of a function’s
story
● We restore (pop) any $s registers

we saved to the stack, in reverse
order

● We pop $ra
● We use the end instruction (more

on this soon)
● We then return to the caller with jr

$ra

COMP1521 25T1

● Are functions that don’t call any other functions
● Leaf functions don’t need to preserve $ra

○ They don’t use jal, so they never actually modify $ra
● Leaf functions shouldn’t need to even use $s registers

○ We only use $s registers when we want to preserve a value across
a function call

○ But leaf functions don’t have any function calls within them (by
definition), so they can use $t registers

● So they do not need a prologue and epilogue

Leaf Functions

49

COMP1521 25T1

● Floating point registers exist to pass/return floats/doubles

○ These have similar conventions
● Stack used to pass more than 4 arguments
● Stack used to pass/return values too large for registers

○ eg. we can pass structs to functions in C, but structs can be much
larger than 4 bytes

Out of scope for COMP1521

50

COMP1521 25T1

● $fp is another register that points to the stack

○ It points to the bottom of a given function’s stack frame

○ In other words, it points to the same value as $sp before a function does
any pushes/pops

● Used by debuggers to analyse the stack

○ The frame pointer, combined with saving older values of $fp to the stack
essentially forms a linked list of stack frames

The Frame Pointer

51

COMP1521 25T1

● Using a frame pointer is optional (both in COMP1521 and generally)

○ Compilers omit the use of a frame pointer when fast execution/smaller
code is a priority

● Since the frame pointer tracks the original value of the stack pointer
(at the start of the function), it gives us a mechanism to prevent chaos
if a function pushes/pops too much

● We don’t expect you to fully understand the frame pointer in
COMP1521

● Instead, we provide you with two pseudo-instructions in mipsy

○ begin and end

The Frame Pointer

52

COMP1521 25T1

● begin
○ saves the old $fp to the stack (keep track of the previous stack frame)

○ sets $fp to the current $sp

○ should be the first thing in the prologue
● end

○ restore $sp to point to the top of the previous stack frame

○ restore the $fp to point to the previous value of $fp (bottom of the
previous stack frame)

○ should be right before jr $ra

● Not necessary but makes debugging in situations where you push and
pop much much easier - strongly advised

The Frame Pointer: Easy Mode

53

COMP1521 25T1

Function Skeleton
func:
 # [header comment]
func__prologue:
 begin
 push $ra
 push $s0
 push $s1

func__body:
 # do stuff

 li $a0, 42
 jal foo # foo(42)

 # foo return val in $v0

at the end of the function
func__epilogue:
 pop $s1
 pop $s0
 pop $ra
 end

 jr $ra

 54

COMP1521 25T1

● $t registers are free real estate
○ So we must assume that other functions destroy them

● A function must restore the original values of $sp, $fp, $s0..$s7
○ So we can assume that any function we call leaves these

registers unchanged
● Functions need to preserve $ra if they overwrite it

○ Otherwise, our function will lose track of where to return to
● $a0..$a3 contain arguments -

○ these are also not preserved by callees (like $t)
● $v0 contains the return value

MIPS function rules: Summary

55

COMP1521 25T1 56

● MIPS
○ recap arrays, structs
○ Functions in MIPS

● Next lecture:
○ More examples of functions in MIPS
○ A MIPS application, putting everything together

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

57

https://forms.office.com/r/44yfBBqDXD

COMP1521 25T1 58

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

59

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

