COMP1521 25173

Week 3 Lecture 1

MIPS FUNCctions

COMP1521 25T3

Announcements

e Help Session Schedule is out
O COMP1521 25T3 — COMP1521 Help Sessions

O Sessions start tomorrow! (but usually run on Mondays too)

O BYOD as they are not in labs
e Labs 1 and 2: due Today 12:00 (midday)

o Assignment 1 out later this week

e Labour day public holiday Monday next week

O Please arrange an alternate time with your tutors
Or join another TLB (please email tutors of the TLB you wish to join for approval)

COMP1521 25T3

https://cgi.cse.unsw.edu.au/~cs1521/25T3/help-sessions/
https://cgi.cse.unsw.edu.au/~cs1521/25T3/help-sessions/
https://cgi.cse.unsw.edu.au/~cs1521/25T3/help-sessions/
https://cgi.cse.unsw.edu.au/~cs1521/25T3/help-sessions/

Weekly Tests start this week

Released: Thursday 3pm

Time limit: 1 hour

Due: Thursday Week 4 at 3pm. (And then another test comes out)
Submitted via give

You can get 50% max for questions submitted after the hour is up

Topic for week 3 test: MIPS basics, control.
Self-enforced exam conditions!
You can use mips documentation

COMP1521 25T3

\
POoANON-rOera = m oM NeEao \

2

()] ©
- QO =
- 5 ©
L +— 0O
(&) %1..@

L o @
M_» = ST 80 W

Sa.ﬁ..l m
w 2T§5<35 5
~ D.aODU =
Wa wd.mZS O
- eoOOO =
o o = L
- ° o o

COMP1521 25T3

Mipsy assembler directives

. text # following instructions placed in text segment

.data # following objects placed in data segment

a: .space 18 # int8 t a[18];
.align 2 # align next object on 4-byte addr
i: .word 42 # int32 t i = 42;
v: .word 1,3,5 # int32 t v[3] = {1,3,5};
h: .half 2,4,6 # intlé t h[3] = {2,4,6};
b: .byte 7:5 # int8 t b[5] = {7,7,7,7,7};
f: .float 3.14 # float £ = 3.14;
sS: .asciiz "abc" # char s[4] {'a','b','c','\0"'};
#

t: .ascii "abc" char t[3] {'a','b',6'c'};

COMP1521 25T3

Recap: Address of Array Elements

char array: address of a[i] = address of a + i
integer array: address of a[i] = address of a + (i * 4)

In general.:
address of element = address of array + index * sizeof(element)

COMP1521 25T3

2D Arrays in MIPS

char array2D[3][4];

< col

-
H | D | O©
A Q| O N
H | o Q| w

1
b
.F
]

RAM is really just a 1D array.
A 2D array is really

represented in memory with
each row next to each other.

We need to map our 2 indexes
to the appropriate offset

COMP1521 25T3

8 9 10 M1

2D Arrays in MIPS

h 2D[3][4];
char array2D[3]i4] Offset of start of relevant row:

0 1 2 3 < col (row*N_COLS)* sizeof(element)
00a|b|c | d
1 e| f|g|h Offset within row:
20 i | j | k|1 col * sizeof(element)
A row

Total offset:
(row * N_COLS + col) * sizeof(element)
a blc| d|e | f gl h|1]j k|1

0 1 2 3 4 5 6 7 8 9 10 M1
COMP152125T3

MIPS 2d array coding examples (flag.c)

COMP1521 25T3

Structs

struct student {

int zid; structs are really just sets

char first[20]; of variables at known
h last[20];

char last[20] offsets

int program;

char alias[10];

}i

zID (4) 5308310

first (20) A b i r a m \@

last (20) N a d a r a j a h \@
program (4) 3778

alias (10) a b i r a m n \@

COMP1521 25T3

Structs

struct student {
int zid; //Offset 0O
char first[20];
char last[20];
int program;
char alias[10];

}i
zID (4) 5308310
first (20) A b i r a m \@
last (20) N a d a r a j a
program (4) 3778
alias (10) a b i r a m n \@

COMP1521 25T3

\@

structs are really just sets
of variables at known
offsets

11

Structs

struct student {
int zid; //Offset 0O
char first[20]; //Offset 0+4
char last[20];
int program;
char alias[10];

}i
zID (4) 5308310
first (20) A b i r a m \@
last (20) N a d a r a j a h
program (4) 3778
alias (10) a b i r a m n \@

COMP1521 25T3

structs are really just sets
of variables at known
offsets

12

Structs

struct student {
int zid; //Offset 0O
char first[20]; //Offset 4
char last[20]; //Offset 4+20=24
int program;
char alias[10];

}i
zID (4) 5308310
first (20) A b i r a m \@
last (20) N a d a r a j a h \@
program (4) 3778
alias (10) a b i r a m n \@

COMP1521 25T3

structs are really just sets
of variables at known
offsets

13

Structs

struct student {
int zid; //Offset 0O
char first[20]; //Offset 4
char last[20]; //Offset 24
int program; //Offset 24+20=44
char alias[10];

};
zID (4)
first (20) A
last (20) N
program (4)
alias (10) a

COMP1521 25T3

53083160

structs are really just sets
of variables at known
offsets

14

Structs

struct student {

int zid;

char first[20];
char last[20];

int program;

char alias[10];

};
zID (4)
first (20) A
last (20) N
program (4)
alias (10) a

COMP1521 25T3

53083160

//Offset
//Offset
//Offset
//Offset
//Offset

0

4

24

44
44+4=48
a \@

structs are really just sets
of variables at known
offsets

15

Structs

struct student {

int zid: //Offset O structs are really just sets
char first[20]; //Offset 4 of variables at known
char last[20]; //Offset 24

int program; //Offset 44 offsets

char alias[10]; //Offset 48
}; // Total size: 48 + 10 + 2 (for alignment) = 60

zID (4) 5308310

first (20) A b i r a m \@

last (20) N a d a r a j a h \@
program (4) 3778

alias (10) a b i r a m n \@

COMP1521 25T3

Structs

C code:
cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c

We will jump straight to ASM today:
cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s

COMP1521 25T3

17

https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/struct.s

More MIPS array and struct coding examples

Many more examples at:
cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/

Try these for an exercise:
print2d.c
pointers.c

COMP1521 25T3

18

https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/
https://cgi.cse.unsw.edu.au/~cs1521/25T3/topic/mips_data/code/
https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/print2d.c
https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/pointer5.c

COMP1521 25T3

voip F00/vO

Functions

- g = > o=

™

19

Here’'s a function

int timesTwo (int x) {
int two x = x*2;

return two_x;

o It takes an argument (x)
e It does some calculations
o ltreturns a value (two_x)

COMP1521 25T3

20

Functions have “prototypes”

// timesTwo takes an int argument and returns an int result

int timesTwo (int x) ;

o These define the number and types of parameters
o And define the type of the return value

When calling a function, we must supply an appropriate number of
values each with the correct type

(Some functions are special and can take “variable” numbers of arguments, e.g. printf - out of scope for
COMP1521 but feel free to Google! varargs c)

COMP1521 25T3 21

A Typical Function Call

result = func(expr1, expr2, ...);
1. Expressions are evaluated and associated with each
parameter
Control flow transfers to the body of func
Local variables are created for func
A return value is computed

Control flow transfers to the caller which can make use of
result

a b~ DN

COMP1521 25T3

22

Here's a very basic program with a function

#include <stdio.h>

void f (void) ; - Declaration comes first

int main(void) {
printf ("calling function £\n");
£0
printf ("back from function f\n");

return O;

void f (void) { < Definition comes later

printf ("in function f\n");

}

COMP1521 25T3

What if we want to call the function again???

#include <stdio.h>

void f (void) ; -

int main(void) {
printf ("calling function £\n");
£();

printf ("back from function f\n");

Declaration comes first

£0); <
printf ("back from function f again\n");

return O;

COMP1521 25T3

Calling function again

24

How do we actually call other functions?

o We use the jal instruction to call functions
o jal is a special version of the j

o It also jumps to the given label

o However, it also sets Sra (return address) to point to the next
instruction before jumping

o This gives us a mechanism to return to the caller function!
o However, this presents a problem...

o Let's try run our program!

COMP1521 25T3

25

Clobbering the Sra register

o We are overwriting the Sra register when we use jal
o We can't return properly from the main function!
o We end up in an infinite loop!

o Maybe we could temporarily save it in a register, like St0 and
then restore it when we need it again?

COMP1521 25T3

26

Clobbering the Sra register

e We are overwriting the Sra register when we use jal
o We can't return properly from the main function!
o We end up in an infinite loop!
o Maybe we could temporarily save it in a register, like St0 and

then restore it when we need it again?
o Yes.... But...

o Function could change S$t0
s Functions can call functions that can call functions.
= We have recursive functions too.
= How many registers would we need? We have 32 registers max...

COMP1521 25T3

27

Solution: Save and restore on the stack

o Solution: functions can temporarily make changes to registers,
as long as they save them first and restore them afterwards.

e How do we do this?

o Save the register’s original value to RAM (the stack) at the start of
the function

o Restore the register’s original value from RAM (the stack) once
complete

COMP1521 25T3 28

Saving to the Stack

The stack

e Is aregion of memory which we
can grow and expand

o Uses the Ssp (stack pointer)
register to keep track of the top of
the stack

e We can modify the stack pointer
to allocate more room on the
stack for us to store values

COMP1521 25T3

|
Ox7FFFFFFC

$sp
’ '

0x10000000

0x00400000 |

| ieserved |
0x00000000 '---------------=----- '

3

29

main()
calls f()

Stack frame
for main()

f()
calls g()

g()
calls h()

The stack: growing and shrinking

h()

returns

This is how the stack changes as functions are called and return:

gl)
returns

Stack frame
for f()

Stack frame
for main()

Stack frame
for main()

Stack frame
for main()

Stack frame
for main()

$sp

COMP1521 25T3

Stack frame

Stack frame

Stack frame

Stack frame

for ()

for f() for f() for f()
Stack frame Stack frame Stack frame
for g() for g() for g()
$sp $sp
Stack frame
for h()
$sp

$sp

The MIPS calling conventions - Ssp

e Functions are free to use the stack as they need - as long as
they restore Ssp to its original value once done

o Thatis, a function must restore the stack to its original size

o Failure to do so may lead to disastrous consequences

COMP1521 25T3 31

Example - Ssp and the stack (the hard way)

If | subtract a total of 8 from Ssp at the start of my function, and store Sra and SsO

addi Ssp, Ssp, -8
sw Sra, 9(Ssp)
sw Ss@, 4(Ssp)

| must reverse this by adding a total of 8 from Ssp and restore Ss0 and Sra at the end of the
function

lw Ss0@, 4(Ssp)
lw Sra, 0(Ssp)
addi Ssp, Ssp, 8

COMP1521 25T3

32

Example - Ssp and the stack (the easy way)

e For convenience, mipsy provides us with two pseudo-
instructions for stack interaction: push and pop
e push R,

o ‘allocates’ 4 bytes on the stack (Ssp = Ssp - 4)

o stores the value of R, 1o the stack
o restores the value on the top of the stack into R,

o ‘deallocates’ 4 bytes on the stack ($sp = Ssp + 4)

COMP1521 25T3

33

Example - Ssp and the stack (the easy way)

e push/pop are pseudo-instructions provided by mipsy

o They won't work on other MIPS emulators

e This means that you can get through this course without ever
directly interacting with Ssp

COMP1521 25T3

34

Prologues and Epilogues

Prologues: the start of a

function’s story
e We use the begin instruction
(more on this soon)
e We need to push Sra onto the
stack
e We push the values of any Ss
registers we want to use

COMP1521 25T3

Epilogues: the end of a function’s

story

e We restore (pop) any Ss registers
we saved to the stack, in reverse
order

e We pop Sra

e We use the end instruction (more
on this soon)

e We then return to the caller with
jr Sra

35

Why only Ss?

e Thisis by convention

e Burdensome for callee to save/restore all registers that it
clobbers

e Convention:

o Choose a limited number of registers and agree across all
functions that the value in those registers must be preserved

o Registers 16..23 ($s0..Ss7) must be preserved by the callee

o Caller must assume that other registers will be clobbered

COMP1521 25T3

36

But my function doesn’t actually clobber
values in $t0 ...

e T00 bad-we MUST treat other functions like black boxes

o We have to assume they will delete everything in our St registers.

e Infact, ‘strict’ autotesting for assignment 1 will intentionally
destroy the existing values in your St registers.

COMP1521 25T3 37

Leaf Functions

o Are functions that don't call any other functions
e Leaf functions don’t need to preserve Sra

o They don't use jal, so they never actually modify Sra
e Leaf functions shouldn’t need to use Ss registers

o We only use Ss registers when we want to preserve a value
across a function call

o Leaf functions don’t have any function calls within them (by
definition), so they can assume St registers are never clobbered
e So leaf functions do not need a prologue and epilogue

COMP1521 25T3

38

The Frame Pointer

e Sfpis another register that points to the stack
o It points to the bottom of a given function’s stack frame

o In other words, it points to the same value as Ssp before a function does
any pushes/pops
e Used by debuggers to analyse the stack

o The frame pointer, combined with saving older values of $fp to the stack
essentially forms a linked list of stack frames

COMP1521 25T3

39

The Frame Pointer

e Using a frame pointer is optional (both in COMP1521 and in general)

o Compilers omit the use of a frame pointer when fast execution/smaller
code is a priority
e Since the frame pointer tracks the original value of the stack pointer
(at the start of the function), it gives us a mechanism to prevent
chaos if a function pushes/pops too much
e We don't expect you to fully understand the frame pointer in
COMP1521

e Instead, we provide you with two pseudo-instructions in mipsy

o begin and end

COMP1521 25T3 40

The Frame Pointer: Easy Mode

e begin
o saves the old S$fp to the stack (keep track of the previous stack frame)

o sets Sfp to the current Ssp

o should be the first thing in the prologue
e end
o restore Ssp to point to the top of the previous stack frame

o restore the Sfp to point to the previous value of Sfp (bottom of the
previous stack frame)

o should be right before jr Sra

e Not necessary but makes debugging in situations where you push and
pop much much easier - strongly advised

COMP1521 25T3

41

Function Skeleton

func:
[header comment]
func__prologue:

begin
push Sra
push $s0
push Ss1
func__body:
do stuff
1i Sa0, 42
jal foo # foo(42)

foo return val in Sv@

at the end of the function
func__epilogue:

pop Ss1
pop Ss@
pop Sra
end

ir Sra

COMP1521 25T3

42

Passing arguments and returning values

COMP1521 25T3

43

How do we pass data to/from a function??

o Registers keep their value across function calls
e We could use any registers that we like to pass values!

O

O

O

O

COMP1521 25T3

What if all functions expected arguments in different registers?
What if we edit a function to use different registers?
This could lead to confusion...

And fragile code...

44

The MIPS calling conventions

e Lay out rules on how we should be using registers when
interfacing between different functions

e Forms the MIPS ABI (application binary interface), which lays
out how different code should interact with each other

COMP1521 25T3

45

The MIPS calling conventions - St registers

o Stregisters are free real estate for a function
o Functions can clobber any existing values in a St register

o Callers must assume that called functions have clobbered St

COMP1521 25T3

46

The MIPS calling convention - Ss registers

e Functions cannot permanently change the value of an Ss register
e This means that we can rely on our callee functions to save

values in Ss registers before they are used and restore them
before returning.

COMP1521 25T3 47

Passing data to a function

e We use the Sa registers to pass in arguments

o We have $Sa0 - Sa3 - four registers to pass in arguments

Out of scope for COMP1521:
e Using the stack if we have more than 4 arguments, or
arguments don't fit in a register (structs).
o Floating point registers to pass/return floats/doubles

COMP1521 25T3

48

Implement this: Arguments

void f (int x);

int main(void) {
printf ("calling function f\n");
£(22);
printf ("back from function f£\n");
return O;

void f (int x) {
printf("in function £\n");
printf ("%d", x);
putchar('\n');

}

COMP1521 25T3

49

How do functions return values?

e We can use the Sv registers to retrieve a function’s result
o Values of 32-bits (or fewer) should be returned using Sv0

o Values of 64-bits should also use Sv1
(But we don’t have to deal with Sv1 in COMP1521)

COMP1521 25T3

50

Implement this: return value

int f(int x);

int main(void) {
printf("calling function £f\n");
int result = £(22);
printf ("back from function f\n");
printf ("%d", result);
putchar('\n') ;

return 0;

COMP1521 25T3

int £(int x) {
printf ("in function £f\n");
printf ("%d", x);
putchar('\n"');
x=x+1;

return x;

51

Functions - a summary

e Functions are named pieces of code (labels)
o Which you can call (jal)
o Which you can (optionally) supply arguments ($Sa@ - Sa3)
o Perform computations using those arguments (add/mul/etc)

o And return a value to a caller (Sv0)

COMP1521 25T3

52

MIPS ABI: Summary

o St registers are free real estate
o So we must assume that other functions destroy them

e A function must restore the original values of Ssp, Sfp, $s0..Ss7
o So we can assume that any function we call leaves these

registers unchanged

e Functions need to preserve Sra if they overwrite it (e.g. using jal)
o Otherwise, our function will lose track of where to return to

e Sa0..Sa3 contain arguments -

o these are also not preserved by callees (like St)
e Sv0 contains the return value

COMP1521 25T3

53

What did we learn today?

e MIPS

o Recap arrays
o 2D arrays, structs
o Functions in MIPS

e Next lecture:;

o More examples of functions in MIPS
o A MIPS application, putting everything together

COMP1521 25T3

54

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1521(@cse.unsw.edu.au

COMP1521 25T3

55

https://cgi.cse.unsw.edu.au/~cs1521/25T3/resources/forum.html
mailto:cs1521@cse.unsw.edu.au

Student Support | | Need Help With...

student.unsw.edu.au/counselling a In Australia Call Afterhours 1300 787 026
_ @ E'::;Z'c':ea'th Telehealth RS UNSW Mental Health Support 5pm-9am
My Feelings and Mental Line
Health q student.unsw.edu.au/mind-hub Outside Australia
Managing Low Mood, Unusual Feelings & Depression Mind Online Self-Help Resources @ Afterhours 24-hour +61 (2) 8905 0307
HUB Medibank Hotline
m Student Support — student.unsw.edu.au/advisors
' Indigenous Student
Support
Reporting Sexual Assault/Harassment Equity Diversity and Inclusion — edi.unsw.edu.au/sexual-misconduct
(EDI)
Educational Adjustments q q .
To Manage my Studies and Disability / Health Condition Equitable Learning Service — student.unsw.edu.aulels
(ELS)
Academic and Study Skills Academic Language — student.unsw.edu.au/skills
Skills
Sppeel Lencld e Special Consideration — student.unsw.edu.au/special-consideration

Because Life Impacts our Studies and Exams

COMP1521 25T3

	Slide 1: COMP1521 25T3
	Slide 2: Announcements
	Slide 3: Weekly Tests start this week
	Slide 4: Today’s Lecture
	Slide 5: Mipsy assembler directives
	Slide 6: Recap: Address of Array Elements
	Slide 7: 2D Arrays in MIPS
	Slide 8: 2D Arrays in MIPS
	Slide 9: MIPS 2d array coding examples (flag.c)
	Slide 10: Structs
	Slide 11: Structs
	Slide 12: Structs
	Slide 13: Structs
	Slide 14: Structs
	Slide 15: Structs
	Slide 16: Structs
	Slide 17: Structs
	Slide 18: More MIPS array and struct coding examples
	Slide 19: Functions
	Slide 20: Here’s a function
	Slide 21: Functions have “prototypes”
	Slide 22: A Typical Function Call
	Slide 23: Here’s a very basic program with a function
	Slide 24: What if we want to call the function again???
	Slide 25: How do we actually call other functions?
	Slide 26: Clobbering the $ra register
	Slide 27: Clobbering the $ra register
	Slide 28: Solution: Save and restore on the stack
	Slide 29: Saving to the Stack
	Slide 30: The stack: growing and shrinking
	Slide 31: The MIPS calling conventions - $sp
	Slide 32: Example - $sp and the stack (the hard way)
	Slide 33: Example - $sp and the stack (the easy way)
	Slide 34: Example - $sp and the stack (the easy way)
	Slide 35: Prologues and Epilogues
	Slide 36: Why only $s?
	Slide 37: But my function doesn’t actually clobber values in $t0 …
	Slide 38: Leaf Functions
	Slide 39: The Frame Pointer
	Slide 40: The Frame Pointer
	Slide 41: The Frame Pointer: Easy Mode
	Slide 42: Function Skeleton
	Slide 43: Passing arguments and returning values
	Slide 44: How do we pass data to/from a function??
	Slide 45: The MIPS calling conventions
	Slide 46: The MIPS calling conventions - $t registers
	Slide 47: The MIPS calling convention - $s registers
	Slide 48: Passing data to a function
	Slide 49: Implement this: Arguments
	Slide 50: How do functions return values?
	Slide 51: Implement this: return value
	Slide 52: Functions - a summary
	Slide 53: MIPS ABI: Summary
	Slide 54: What did we learn today?
	Slide 55: Reach Out
	Slide 56: Student Support | I Need Help With…

