
COMP1521 25T2

COMP1521 25T2

MIPS FUNctions

Week 3 Lecture 1

Adapted from Angela Finlayson, Abiram Nadarajah,
Hammond Pearce, Andrew Taylor and John Shepherd’s

slides

COMP1521 25T2

● Help Session schedule is out

○ COMP1521 25T2 — COMP1521 Help Sessions

○ Sessions started Today!

○ BYOD as they are not in labs

● Extra practice code for each topic

● Assignment 1 out later this week

Help Sessions and other admin

2

https://cgi.cse.unsw.edu.au/~cs1521/25T2/help-sessions/

COMP1521 25T2

Released: Thursday 3pm

Time limit: 1 hour

Due: Thursday Week 4 at 3pm. (And then another test comes out)

Submitted via give

You can get 50% max for questions submitted after the hour is up

Topic for week 3 test: MIPS basics, control.

Self-enforced exam conditions!

You can use mips documentation

Weekly Tests start this week

3

COMP1521 25T2

Today’s Lecture

● Recap last lecture

○ Arrays

○ structs

● Functions

4

COMP1521 25T2

char a[5] = {'a', 'z', 'b', 'f', 'G'};

Recap: Arrays of 1 byte elements

5

● If we have the address of the start of the array:
○ How can I work out the address of the a[3]?
○ How can I work out the address of the a[i]?

COMP1521 25T2

int a[5] = {16, 4, 1, 9, 2};

Recap: Arrays of 4 byte elements

6

● If we have the address of the start of the array:
○ How can I work out the address of the a[3]?
○ How can I work out the address of the a[i]?

COMP1521 25T2

char array: address of a[i] = address of a + i

integer array: address of a[i] = address of a + (i * 4)

In general:

address of element = address of array + index * sizeof(element)

Recap: Address of Array Elements

7

COMP1521 25T2

Recap: 2D Arrays in MIPS

8

Offset of start of relevant row:

(row * N_COLS) * sizeof(element)

Offset within row:

col * sizeof(element)

Total offset:

(row * N_COLS + col) * sizeof(element)

COMP1521 25T2

pointer.c

print5.c

flag.c

Many more examples at:

cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/

Try these for an exercise:

print2d.c

pointer5.c

Recap: MIPS array coding examples

9

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/flag.c
https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/flag.c
https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/flag.c
https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/
https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/print2d.c
https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/pointer5.c

COMP1521 25T2

struct person{

char first_initial;

char last_initial;

int age;

};

What size will this struct be?

What offsets will each field have?

Recap Structs:

10

COMP1521 25T2

struct person{

char first_initial;

char last_initial;

int age;

};

What size will this struct be?

What offsets will each field have?

Recap Structs:

11

0 1 2 3

4 5 6 7

COMP1521 25T2

struct person{

int age;

char first_initial;

char last_initial;

};

What if we do it like this?

Recap Structs:

12

COMP1521 25T2

struct person{

int age;

char first_initial;

char last_initial;

};

What if we do it like this?

Recap Structs:

13

4 5 6 7

0 1 2 3

COMP1521 25T2

struct person{

char first_initial;

int age;

char last_initial;

};

What if we do it like this?

Recap Structs:

14

COMP1521 25T2

struct person{

char first_initial;

int age;

char last_initial;

};

What if we do it like this?

Recap Structs:

15

0

8 10 11

4 5 6 7

9

2 31

COMP1521 25T2

struct student {

int zid; //Offset 0

char first[20]; //Offset 4

char last[20]; //Offset 24

int program; //Offset 44

char alias[10]; //Offset 48

};

Recap: Structs

16

structs are really just sets

of variables at known

offsets

COMP1521 25T2

C code:

cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/struct.c

We will jump straight to ASM today:

cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/struct.s

Recap: Structs

17

https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/struct.c
https://cgi.cse.unsw.edu.au/~cs1521/25T2/topic/mips_data/code/struct.s

COMP1521 25T2

Functions

18

COMP1521 25T2

● It takes an argument (x)

● It does some calculations

● It returns a value (two_x)

Here’s a function

19

int timesTwo(int x) {

int two_x = x*2;

return two_x;

}

COMP1521 25T2

● These define the number and types of parameters

● And define the type of the return value

When calling a function, we must supply an appropriate number of

values each with the correct type

(Some functions are special and can take “variable” numbers of arguments, e.g. printf - out of scope for

COMP1521 but feel free to Google! varargs c)

Functions have “prototypes”

20

//timesTwo takes an int argument and returns an int result

int timesTwo(int x);

COMP1521 25T2

A Typical Function Call

21

result = func(expr1, expr2, ...);

● Expressions are evaluated and associated with each parameter

● Control flow transfers to the body of func

● Local variables are created for func

● A return value is computed

● Control flow transfers to the caller which can make use of
result

COMP1521 25T2

Here’s a very basic program with a function

22

#include <stdio.h>

void f(void);

int main(void) {

printf("calling function f\n");

f();

printf("back from function f\n");

return 0;

}

void f(void) {

printf("in function f\n");

}

Declaration comes first

Definition comes later

COMP1521 25T2

Let’s write it in assembly

23

COMP1521 25T2

What if we want to call the function again???

24

#include <stdio.h>

void f(void);

int main(void) {

printf("calling function f\n");

f();

printf("back from function f\n");

f();

printf("back from function f again\n");

return 0;

}

Declaration comes first

Calling function again

COMP1521 25T2

How do we actually call other functions?

● We use the jal instruction to call functions

● jal is a special version of the j (or pseudo-instruction b)

○ It also jumps to the given label

○ However, it also sets $ra (return address) to point to the next

instruction before jumping

○ This gives us a mechanism to return to the caller function!

● However, this presents a problem…

○ Let’s try run our program!

25

COMP1521 25T2

● We are overwriting the $ra register when we use jal
○ We can’t return properly from the main function!

○ We end up in an infinite loop!

● Maybe we could temporarily save it in a register, like $t0 and

then restore it when we need it again?

Clobbering the $ra register

26

COMP1521 25T2

● We are overwriting the $ra register when we use jal
○ We can’t return properly from the main function!

○ We end up in an infinite loop!

● Maybe we could temporarily save it in a register, like $t0 and

then restore it when we need it again?

○ Yes.... But...

○ Function could change $t0

■ Functions can call functions that can call functions.

■ We have recursive functions too.

■ How many registers would we need? We have 32 registers max…

Clobbering the $ra register

27

COMP1521 25T2

● Solution: functions can temporarily make changes to registers,

as long as they save them first and restore them afterwards.

● How do we do this?

○ Save the register’s original value to RAM (the stack) at start of the

function

○ Restore the register’s original value from RAM (the stack) once

complete

Solution: Save and restore on the stack

28

COMP1521 25T2

The stack

● Is a region of memory which we

can grow and expand

● Uses the $sp (stack pointer)

register to keep track of the top of

the stack

● We can modify the stack pointer

to allocate more room on the

stack for us to store values

Saving to the Stack

29

COMP1521 25T2

The stack: growing and shrinking

This is how the stack changes as functions are called and return:

30

COMP1521 25T2

● Functions are free to use the stack as they need - as long as

they restore $sp to its original value once done

○ That is, a function must restore the stack to its original size

● Failure to do so may lead to disastrous consequences

The MIPS calling conventions - $sp

31

COMP1521 25T2

Example - $sp and the stack (the hard way)

If I subtract a total of 8 from $sp at the start of my function, and store $ra and $s0

addi $sp, $sp, -8
sw $ra, 0($sp)
sw $s0, 4($sp)

I must reverse this by adding a total of 8 from $sp and restore $s0 and $ra at the end of the

function

lw $s0, 4($sp)
lw $ra, 0($sp)
addi $sp, $sp, 8

32

COMP1521 25T2

Example - $sp and the stack (the easy way)
● For convenience, mipsy provides us with two pseudo-

instructions for stack interaction: push and pop
● push Rt

○ ‘allocates’ 4 bytes on the stack ($sp = $sp - 4)

○ stores the value of Rt to the stack

● pop Rt
○ restores the value on the top of the stack into Rt

○ ‘deallocates’ 4 bytes on the stack ($sp = $sp + 4)

33

COMP1521 25T2

● These are pseudo-instructions provided by mipsy

○ They won’t work on other MIPS emulators

● This means that you can get through this course without ever

directly interacting with $sp

Example - $sp and the stack (the easy way)

34

COMP1521 25T2

Prologues: the start of a

function’s story
● We use the begin instruction

(more on this soon)

● We need to push $ra onto the

stack

● We push the values of any $s

registers we want to use

Prologues and Epilogues

35

Epilogues: the end of a function’s

story

● We restore (pop) any $s registers

we saved to the stack, in reverse

order

● We pop $ra

● We use the end instruction (more

on this soon)

● We then return to the caller with

jr $ra

COMP1521 25T2

Why only $s?

● This is by convention

● Burdensome for callee to save/restore all registers that it

clobbers

● Convention:

○ Choose a limited number of registers and agree across all

functions that the value in those registers must be preserved

○ Registers 16..23 ($s0..$s7) must be preserved by the callee

○ Caller must assume that other registers will be clobbered

36

COMP1521 25T2

● Too bad - we MUST treat other functions like black boxes

○ We have to assume they will delete everything in our $t registers.

● In fact, ‘strict’ autotesting for assignment 1 will intentionally

destroy the existing values in your $t registers.

Hey, but my function doesn’t actually clobber
values in $t0 …

37

COMP1521 25T2

● Are functions that don’t call any other functions

● Leaf functions don’t need to preserve $ra

○ They don’t use jal, so they never actually modify $ra

● Leaf functions shouldn’t need to even use $s registers

○ We only use $s registers when we want to preserve a value

across a function call

○ Leaf functions don’t have any function calls within them (by

definition), so they can assume $t registers are never clobbered

● So leaf functions do not need a prologue and epilogue

Leaf Functions

38

COMP1521 25T2

● $fp is another register that points to the stack

○ It points to the bottom of a given function’s stack frame

○ In other words, it points to the same value as $sp before a function does

any pushes/pops

● Used by debuggers to analyse the stack

○ The frame pointer, combined with saving older values of $fp to the stack

essentially forms a linked list of stack frames

The Frame Pointer

39

COMP1521 25T2

● Using a frame pointer is optional (both in COMP1521 and generally)

○ Compilers omit the use of a frame pointer when fast execution/smaller

code is a priority

● Since the frame pointer tracks the original value of the stack pointer

(at the start of the function), it gives us a mechanism to prevent

chaos if a function pushes/pops too much

● We don’t expect you to fully understand the frame pointer in

COMP1521

● Instead, we provide you with two pseudo-instructions in mipsy

○ begin and end

The Frame Pointer

40

COMP1521 25T2

● begin
○ saves the old $fp to the stack (keep track of the previous stack frame)

○ sets $fp to the current $sp

○ should be the first thing in the prologue

● end
○ restore $sp to point to the top of the previous stack frame

○ restore the $fp to point to the previous value of $fp (bottom of the
previous stack frame)

○ should be right before jr $ra

● Not necessary but makes debugging in situations where you push and

pop much much easier - strongly advised

The Frame Pointer: Easy Mode

41

COMP1521 25T2

Function Skeleton
func:

[header comment]
func__prologue:

begin
push $ra
push $s0
push $s1

func__body:
do stuff

li $a0, 42
jal foo # foo(42)

foo return val in $v0

at the end of the function
func__epilogue:

pop $s1
pop $s0
pop $ra
end

jr $ra
42

COMP1521 25T2

Passing arguments and returning values

43

COMP1521 25T2

● Registers keep their value across function calls

● We could use any registers that we like to pass values!

○ What if all functions expected arguments in different registers?

○ What if we edit a function to use different registers?

○ This could lead to confusion...

○ And fragile code...

How do we pass data to/from a function??

44

COMP1521 25T2

● Lay out rules on how we should be using registers when

interfacing between different functions

● Forms the MIPS ABI (application binary interface), which lays

out how different code should interact with each other

The MIPS calling conventions

45

COMP1521 25T2

● $t registers are free real estate for a function

○ Functions can clobber any existing values in a $t register

○ Callers must assume that called functions have clobbered $t

The MIPS calling conventions - $t registers

46

COMP1521 25T2

● Functions cannot permanently change the value of a $s register

● This means that we can rely on our callee functions save

values in $s registers before they are used and restore them

before returning.

The MIPS calling convention - $s registers

47

COMP1521 25T2

● We use the $a registers to pass in arguments

○ We have $a0 - $a3 – four registers to pass in arguments

Out of scope for COMP1521:

● Using the stack if we have more than 4 arguments, or

arguments don’t fit in a register (structs).

● Floating point registers to pass/return floats/doubles

Passing data to a function

48

COMP1521 25T2

Implement this: Arguments

49

void f(int x);

int main(void) {

printf("calling function f\n");

f(22);

printf("back from function f\n");

return 0;

}

void f(int x) {

printf("in function f\n");

printf("%d", x);

putchar('\n');

}

COMP1521 25T2

How do functions return values?

50

● We can use the $v registers to retrieve a function’s result

○ Values of 32-bits (or fewer) should be returned using $v0

○ Values of 64-bits should also use $v1

(But we don’t have to deal with $v1 in COMP1521)

COMP1521 25T2

Implement this: return value

51

int f(int x) {

printf("in function f\n");

printf("%d", x);

putchar('\n');

x = x + 1;

return x;

}

int f(int x);

int main(void) {

printf("calling function f\n");

int result = f(22);

printf("back from function f\n");

printf("%d", result);

putchar('\n');

return 0;

}

COMP1521 25T2

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments ($a0 - $a3)

○ Perform computations using those arguments (add/mul/etc)

○ And return a value to a caller ($v0)

Functions - a summary

52

COMP1521 25T2

● $t registers are free real estate

○ So we must assume that other functions destroy them

● A function must restore the original values of $sp, $fp, $s0..$s7
○ So we can assume that any function we call leaves these

registers unchanged

● Functions need to preserve $ra if they overwrite it (e.g. using jal)

○ Otherwise, our function will lose track of where to return to

● $a0..$a3 contain arguments -

○ these are also not preserved by callees (like $t)

● $v0 contains the return value

MIPS ABI: Summary

53

COMP1521 25T2 54

● MIPS

○ Recap arrays, structs

○ Functions in MIPS

● Next lecture:

○ More examples of functions in MIPS

○ A MIPS application, putting everything together

What did we learn today?

COMP1521 25T2 55

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

56

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: Help Sessions and other admin
	Slide 3: Weekly Tests start this week
	Slide 4: Today’s Lecture
	Slide 5: Recap: Arrays of 1 byte elements
	Slide 6: Recap: Arrays of 4 byte elements
	Slide 7: Recap: Address of Array Elements
	Slide 8: Recap: 2D Arrays in MIPS
	Slide 9: Recap: MIPS array coding examples
	Slide 10: Recap Structs:
	Slide 11: Recap Structs:
	Slide 12: Recap Structs:
	Slide 13: Recap Structs:
	Slide 14: Recap Structs:
	Slide 15: Recap Structs:
	Slide 16: Recap: Structs
	Slide 17: Recap: Structs
	Slide 18: Functions
	Slide 19: Here’s a function
	Slide 20: Functions have “prototypes”
	Slide 21: A Typical Function Call
	Slide 22: Here’s a very basic program with a function
	Slide 23: Let’s write it in assembly
	Slide 24: What if we want to call the function again???
	Slide 25: How do we actually call other functions?
	Slide 26: Clobbering the $ra register
	Slide 27: Clobbering the $ra register
	Slide 28: Solution: Save and restore on the stack
	Slide 29: Saving to the Stack
	Slide 30: The stack: growing and shrinking
	Slide 31: The MIPS calling conventions - $sp
	Slide 32: Example - $sp and the stack (the hard way)
	Slide 33: Example - $sp and the stack (the easy way)
	Slide 34: Example - $sp and the stack (the easy way)
	Slide 35: Prologues and Epilogues
	Slide 36: Why only $s?
	Slide 37: Hey, but my function doesn’t actually clobber values in $t0 …
	Slide 38: Leaf Functions
	Slide 39: The Frame Pointer
	Slide 40: The Frame Pointer
	Slide 41: The Frame Pointer: Easy Mode
	Slide 42: Function Skeleton
	Slide 43: Passing arguments and returning values
	Slide 44: How do we pass data to/from a function??
	Slide 45: The MIPS calling conventions
	Slide 46: The MIPS calling conventions - $t registers
	Slide 47: The MIPS calling convention - $s registers
	Slide 48: Passing data to a function
	Slide 49: Implement this: Arguments
	Slide 50: How do functions return values?
	Slide 51: Implement this: return value
	Slide 52: Functions - a summary
	Slide 53: MIPS ABI: Summary
	Slide 54: What did we learn today?
	Slide 55: Reach Out
	Slide 56: Student Support | I Need Help With…

