
COMP1521 25T1

COMP1521 25T1

MIPS: Control and Data

Week 2 Lecture 1

Adapted from Abiram Nadarajah, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Today’s Lecture
● Recap Lecture 2
● Loops

○ needed for this week’s lab
○ for, while
○ break and continue

● Data and Memory
○ Global variables
○ Pointers

2

COMP1521 25T1

● We can write more fun assembly now!
● We can syscall things in and out of the “operating system”
● We can convert constructs like “loops” and “conditionals” into

goto and branch

Recap of the Last Lecture

3

COMP1521 25T1

● li (load immediate) is loading a fixed value into a register
○ li $t0, 7

● la (load address) is for loading a fixed address into a register

○ remember, labels really just represent addresses!

○ la $t0, my_label
● move is for copying value from a register into another register

○ move $t0, $t1

Recap: Putting data in registers

4

COMP1521 25T1

int main(void){

 int n;

 printf("Enter a number: ");

 scanf("%d",&n);

 if (n > MIN && n <= MAX){

 printf("In range\n");

 } else {

 printf("Out of range\n");

 }

 return 0;

}

Recap Exercise:

5

Translate to Simplified C
Then to MIPS

COMP1521 25T1

// What does this code do?

int main(void) {

 loop:

 printf("Forever and ever!\n");

 goto loop;

 return 0;

}

Recap Exercise: Translate to MIPS

6

COMP1521 25T1

Recap Counting: Debug MIPS version

int i = 0;
while (i < 10) {
 printf("%d\n", i);
 i++;
}

int i;
loop_i_to_10__init:
 i = 0;
loop_i_to_10__cond:
 if (i >= 10) goto loop_i_to_10__end;

loop_i_to_10__body:
 printf("%d", i);
 putchar('\n');
loop_i_to_10__step:
 i++;

goto loop_i_to_10__cond;
loop_i_to_10__end:
 // ...

COMP1521 25T1

Exercise: Sum 100 squares

int sum = 0;
for (int i = 1; i <= 100; i++) {
 sum += i * i;
}

Convert to Simplified C

COMP1521 25T1

Sidenote: C break/continue

break can be used in a loop to completely exit the loop.
The loop condition here makes this look like an infinite loop:

while (1) {
 int c = getchar();
 if (c == ‘n’) break;
}

but break means it’s possible for the loop to be exited.

In simplified C/MIPS, a break is really just equivalent to going to
the loop’s end label.

COMP1521 25T1

Sidenote: C break/continue

while (1) {
 int c = getchar();
 if (c == ‘n’) break;
}

int c;
get_char_loop:
 c = getchar();
if_n:
 if (c == ‘n’)

goto get_char_loop_end;
end_if_n:

goto get_char_loop;
get_char_loop_end:

COMP1521 25T1

Sidenote: C break/continue

continue can be used to proceed to the next iteration of a for
loop.
This would be a (terrible) way to print even numbers:

In simplified C/MIPS, a continue is really just equivalent to going
to the loop’s step label.
Beware: Writing this as a while loop in C needs care not to miss the
i++

for (int i = 0; i < 10; i++) {
 if (i % 2 != 0) continue;
 printf("%d\n", i);
}

COMP1521 25T1

MIPS: Data and Memory

12

COMP1521 25T1

How do we store/use interesting data?

13

How does the data segment really work?
How do we:
● Store simple types like chars and ints?
● Store and increment a global variable?
● Work with pointers?
● Work with 1D arrays?
● Work with 2D arrays??
● C Structs !?

COMP1521 25T1

● MIPS addresses are 32 bits (4 bytes)
● Notes:

○ There is no heap like in C, but the data segment can expand (not
needed in this course except maybe challenge exercises)

○ The text segment is the only segment that is executable
○ The text segment is writable, unlike a real system

MIPS Memory Layout

14

COMP1521 25T1

● Data will live at an address in memory
● We can think of it like a large 1D array
● Each byte (usually 8 bits) has a unique address

○ So memory can be thought of as one large array of bytes
○ Address = index into the array
○ Eg. The byte at address 4 below has the value 26

Memory Addresses

15

COMP1521 25T1

Recall Common Data Types in C

16

● What are the sizes in bytes of data we commonly used in C on
our system?
○ char = ? bytes
○ int = ? bytes
○ double = ? bytes
○ pointer = ? bytes

● We can find out using sizeof!
● These are the same as in MIPS except pointers since MIPS has

4 bytes. This is because MIPS is a 32 bit platform instead of 64
bit platform.

COMP1521 25T1

Common Data types in MIPS

17

Data Type Size in Bytes Location

char 1 Memory, Register

int 4 Memory, Register

pointer 4 Memory, Register

array sequence of bytes, elements
accessed by calculated index

Memory

struct sequence of bytes, elements
accessed by calculated offset

Memory

COMP1521 25T1

Local Variables:
● Stored in registers (if possible) for speed:

○ Single values: int, char, pointer etc
○ Not stored in registers if there’s a pointer to it

● Otherwise stored on stack - we’ll revisit this next week

Global Variables:
● Stored in the in data segment

Local vs Global variables in MIPS

18

COMP1521 25T1

We can use directives to initialise memory in the .data section
.word 42 # initialises a 4 byte value to 42
.half 7 # initialises a 2 byte value to 7

.byte 'a' # initialises a 1 byte value to ‘a’

We can also just ask for some memory without initialising it
(typically we prefer to initialise it)

.space 8 # sets aside 8 uninitialised bytes

But where does this live and how can we access it?

Initialising Global Data

19

COMP1521 25T1

● Loading data:
○ To perform computations, data must be transferred from memory

into the CPU registers

● Storing data:
○ Modified data must be written back from the CPU registers to

memory

● Typically memory systems let us load and store bytes (not bits)
○ We load bytes from RAM into CPU registers
○ We store bytes to RAM from CPU registers

Accessing Memory

20

COMP1521 25T1

● E.g Loading the byte from address 4 would load the byte
containing 26 in the specified register

Loading from Memory

21

COMP1521 25T1

● Typically, small groups of bytes can be loaded/stored at once
● E.g. in MIPS:

○ 1-byte (a byte) loaded/stored with ………………………….. lb/sb
○ 2-bytes (a half-word) loaded/stored with…………………… lh/sh
○ 4-bytes (a word) loaded/stored with………………………… lw/sw

Bytes, half-words, words

22

COMP1521 25T1

● Memory addresses in load/store instructions are the sum of:
○ Value in a specific register
○ And a 16-bit constant (often 0)

■ la $t0, 4
lb $t1, 0($t0)

Working with Memory Addresses in MIPS

23

COMP1521 25T1

 Loading a byte (no labels)

Loading/Storing a byte from/to Memory

24

 .text

main:

 la $t1, 0x10010000

 lb $t0, 0($t1)

 .data

 .byte 'Q'

 .text

main:

 li $t0, 'y'

 la $t1, 0x10010000

 sb $t0, 0($t1)

Storing a byte (no labels)

To save space, I have omitted return 0 equivalent code.

COMP1521 25T1

● We do NOT want to keep track of the memory locations and
hard code them ourselves.

● What if we add/remove variables as we develop our code?
● We use labels which are used by mipsy to represent the

memory locations.

Labels

25

COMP1521 25T1

loading a byte with labels

Loading/Storing a byte from/to Memory

26

storing a byte with labels

 .text

main:

 la $t1, my_letter

 lb $t0, 0($t1)

.data

my_letter:

.byte 'Q'

 .text

main:

 li $t0, 'y'

 la $t1, my_letter

 sb $t0, 0($t1)

.data

my_letter:

.space 1

COMP1521 25T1

loading a word

Loading/Storing a word from/to Memory

27

storing a word

 .text

main:

 la $t1, my_word

 lw $t0, 0($t1)

.data

my_word:

.word 10

 .text

main:

 li $t0, 9

 la $t1, my_word

 sw $t0, 0($t1)

.data

my_word:

.space 4

COMP1521 25T1

● We can just write constant memory address locations
● We don’t need to load to another register

Mipsy short cuts

28

.text

main:

 li $t0, 0x12345678

 sw $t0, my_label

.data

my_label:

 .word 0

.text

main:

 li $t0, 0x12345678

 la $t1, my_label

 sw $t0, 0($t1)

.data

my_label:

 .word 0

COMP1521 25T1

Other assembler shortcuts

29

sb $t0, 0($t1) # store $t0 in byte at address in $t1

sb $t0, ($t1) # same

sb $t0, x # store $t0 in byte at address labelled x

sb $t1, x+15 # store $t1 15 bytes past address labelled x

sb $t2, x($t3) # store $t2 $t3 bytes past address labelled x

COMP1521 25T1

● Let’s write a program with a global variable and increment it

Demo program time - global_increment.c

30

#include <stdio.h>

int global_counter = 0;

int main(void) {

 // Increment the global counter.

 global_counter++;

 printf("%d", global_counter);

 putchar('\n');

}

COMP1521 25T1

● C standard and MIPS requires simple types of size N bytes to
be stored only at addresses which are divisible by N
○ a 4 byte int , must be stored at address divisible by 4
○ an 8 byte double, must be stored at address divisible by 8
○ Compound types (arrays, structs) must be aligned so their

components are aligned
● Example:

○ If you are using lw, or sw, you must be loading/storing the 4 bytes
from/to an address divisible by 4

Alignment

31

COMP1521 25T1

Alignment problem demo - sample_data.s

32

 .text

main:

 li $t0, 99

 sw $t0, g # g = 99

 li $v0, 0 # return 0

 jr $ra

 .data

f: .asciiz "hello" # char f[] = "hello";

g: .space 4 # int g;

COMP1521 25T1

 .data

f: .asciiz "hello" # char f[] = "hello";

 .space 2 # padding - we have to calculate the space

ourselves. Error prone. May break if we modify

our string “hello”

g: .space 4 # int g;

Padding with .space

Alignment Solutions

33

 .data

f: .asciiz "hello" # char f[] = "hello";

 .align 2 # align next object on 4 byte address (2 pow 2)

(2 to the power of 2) less error prone

g: .space 4 # int g;

Alignment fix with .align

COMP1521 25T1

Pointer Example

34

int answer = 42;

int main(void) {

 int i;

 int *p;

 p = &answer;

 i = *p;

 printf("%d\n", i);

 *p = 27;

 printf("%d\n", answer);

 return 0;

}

What would this print?
How could we write this in
MIPS?

COMP1521 25T1 35

● MIPS
○ recap of if statements
○ loops
○ MIPS Data

■ loading and storing data
■ ints, chars, pointers
■ alignment

● Next lecture:
○ 1d Arrays, 2d arrays, structs

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

36

https://forms.office.com/r/VbzTZmHCyL

COMP1521 25T1 37

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

38

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

COMP1521 25T1

🔴⚫ Recruitment for UNSW Redback Racing is ON 🔴⚫

39

COMP1521 25T1

● Thinking of a new society to join?
● Looking for a place to put your skills to the test on a big project?
● Maybe you want to be a part of the team, make those connections

and just have fun.
● For all that and more, UNSW Redback Racing gives you the

chance to really make the most of your time, letting you use some
of that classroom knowledge or learn new skills entirely.

● There’s a place in the team for anyone of every discipline and to
find out a bit more about what we do, check out the socials !!

🔴⚫ Recruitment for UNSW Redback Racing is ON 🔴⚫

40

COMP1521 25T1

Applications are open now and close Friday Week 2!!
Explore further details about available roles and their requirements:
Business:

https://drive.google.com/file/d/1jd5kNfXYdzqbDmEZ8DNopaizQOuCFSGb/view?usp=drive_link

Technical:

https://drive.google.com/file/d/1-D4i0wHPomr1NCWz2EWeADmIamVVu0wr/view?usp=drive_link

Ready to start racing? Apply Here:

https://forms.office.com/pages/responsepage.aspx?id=pM_2PxXn20i44Qhnufn7o8nnKd_rq0NAkw

Mwa2z2T1pUMEpLS0hGMExJUVlXRTRVTENDV0oxV0JUNy4u&route=shorturl

🔴⚫ Recruitment for UNSW Redback Racing is ON 🔴⚫

41

https://drive.google.com/file/d/1jd5kNfXYdzqbDmEZ8DNopaizQOuCFSGb/view?usp=drive_link
https://drive.google.com/file/d/1-D4i0wHPomr1NCWz2EWeADmIamVVu0wr/view?usp=drive_link
https://forms.office.com/pages/responsepage.aspx?id=pM_2PxXn20i44Qhnufn7o8nnKd_rq0NAkwMwa2z2T1pUMEpLS0hGMExJUVlXRTRVTENDV0oxV0JUNy4u&route=shorturl
https://forms.office.com/pages/responsepage.aspx?id=pM_2PxXn20i44Qhnufn7o8nnKd_rq0NAkwMwa2z2T1pUMEpLS0hGMExJUVlXRTRVTENDV0oxV0JUNy4u&route=shorturl

