
COMP1521 25T2

COMP1521 25T2

MIPS: Control and Data

Week 2 Lecture 1

Adapted from Angela Finlayson, Abiram Nadarajah,
Hammond Pearce, Andrew Taylor and John Shepherd’s

slides

COMP1521 25T2

● Anna Brew has kindly arranged for C revision sessions to take

place Thu 12th June 10am-12pm via blackboard collaborate.

● More info on the forum under announcements

○ Week 2 Revision Lab + some resources for learning/revising C -

Announcements - COMP1521

C revision sessions

2

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/t/week-2-revision-lab-some-resources-for-learning-revising-c/77
https://discourse02.cse.unsw.edu.au/25T2/COMP1521/t/week-2-revision-lab-some-resources-for-learning-revising-c/77

COMP1521 25T2

Today’s Lecture

● Recap Lecture 2

● More on loops

○ break and continue

● Data and Memory

○ Global variables

○ Pointers

3

COMP1521 25T2

● We can write instructions that act on registers

● We can write instructions that perform simple arithmetic

● We can syscall to pass control to the Operating System (OS)

● We can convert constructs like “loops” and “conditionals” into

goto and branch

Recap of the Last Lecture

4

COMP1521 25T2

Recap: MIPS registers

5

COMP1521 25T2

● li (load immediate) is loading a fixed value into a register

○ li $t0, 7

● la (load address) is for loading a fixed address into a register

○ remember, labels really just represent addresses!

○ la $t0, my_label

● move is for copying value from a register into another register

○ move $t0, $t1

Recap: Putting data in registers

6

COMP1521 25T2

● I-type accepts immediate (constants in the instruction)

● R-type accepts registers

Recap: simple arithmetic

7

COMP1521 25T2

Recap: syscalls

8

COMP1521 25T2

Recap: jump and branch

9

COMP1521 25T2

Recap: Simplified C

int i = 0;
while (i < 10) {

printf("%d\n", i);
i++;

}

int i;
loop_i_to_10__init:

i = 0;
loop_i_to_10__cond:

if (i >= 10) goto loop_i_to_10__end;

loop_i_to_10__body:
printf("%d", i);
putchar('\n');

loop_i_to_10__step:
i = i + 1;
goto loop_i_to_10__cond;

loop_i_to_10__end:
// ...

COMP1521 25T2

Sidenote: C break
break can be used in a loop to exit the loop unconditionally.

The loop condition here makes this look like an infinite loop, but

break means it’s possible to leave the loop

while (1) {
int c = getchar();
if (c == EOF) break;

}

In simplified C, break is equivalent to going to the loop’s end label.

11

COMP1521 25T2

Sidenote: C break/continue

while (1) {
int c = getchar();
if (c == ‘n’) break;

}

int c;
get_char_loop:

c = getchar();
if_n:

if (c == ‘n’)
goto get_char_loop_end;

end_if_n:
goto get_char_loop;

get_char_loop_end:

COMP1521 25T2

Sidenote: C continue
continue proceeds to the next iteration of a for loop.

This [terrible] code prints even numbers:

In simplified C, continue is the equivalent to going to the loop’s

step label.

for (int i = 0; i < 10; i++) {
if (i % 2 != 0) continue;
printf("%d\n", i);

}

13

COMP1521 25T2

MIPS: Data and Memory

14

COMP1521 25T2

How do we store/use interesting data?

15

How does the data segment really work?

How do we:

● Store simple types like chars and ints?

● Store and increment a global variable?

● Work with pointers?

● Work with 1D arrays?

● Work with 2D arrays??

● C Structs !?

COMP1521 25T2 16

SO-DIMM RAMOn-board RAM

What AI

thinks RAM

looks like…

COMP1521 25T2

● MIPS addresses are 32 bits (4 bytes)

● Notes:

○ There is no heap like in C, but the data segment can expand (not

needed in this course except maybe challenge exercises)

○ The text segment is the only segment that is executable

○ The text segment is writable, unlike a real system

MIPS Memory Layout

17

COMP1521 25T2

● Data will live at an address in memory

● We can think of it like a large 1D array

● Each byte (usually 8 bits) has a unique address

○ So memory can be thought of as one large array of bytes

○ Address = index into the array

○ Eg. The byte at address 4 below has the value 26

Memory Addresses

18

COMP1521 25T2

Common Data types in C

19

Data Type Size in Bytes Location

char 1 Memory, Register

int 4 Memory, Register

pointer 4 (32 bit architectures) Memory, Register

array Sequence of basic type;

elements accessed by

calculated index

Memory

struct Set of data types; elements

accessed by calculated offset

Memory

Note: sizeof(dtv) in C will return the size, in bytes, of the data type or variable named ‘dtv’.

COMP1521 25T2

Local Variables:

● Stored in registers (if possible) for speed:

● Otherwise stored on stack - we’ll revisit this next week

Global Variables:

● Stored in the in data segment

Local vs Global variables in MIPS

20

COMP1521 25T2

Using directives to initialise memory

.word 42 # initialises a 4 byte value to 42

.half 7 # initialises a 2 byte value to 7

.byte 'a' # initialises a 1 byte value to ‘a’

.asciiz "hello" # initialises a string

We can also just ask for some memory without initialising it

(typically we prefer to initialise it)

.space 8 # set aside 8 uninitialised bytes

Initialising Global Data

21

COMP1521 25T2

int a = 42; // .word 42
short b = 7; // .half 7
char c = 'a'; // .byte ‘a’
char d[6] = "hello"; // .asciiz "hello"

char space[8]; // .space 8

int main (void) {
return 0;

}

C equivalence

22

COMP1521 25T2

● Loading data:
○ To perform computations, data must first be transferred from

memory into the CPU registers

● Storing data:
○ Modified data is written back from the CPU registers to memory

Accessing Memory

23

COMP1521 25T2

● E.g Loading the byte from address 4 would load the byte

containing 26 in the specified register

Loading from Memory

24

COMP1521 25T2

● Typically, small groups of bytes can be loaded/stored at once

● E.g. in MIPS:

○ 1-byte (a byte) loaded/stored with ………………………….. lb/sb

○ 2-bytes (a half-word) loaded/stored with…………………… lh/sh

○ 4-bytes (a word) loaded/stored with………………………… lw/sw

Bytes, half-words, words

25

COMP1521 25T2

● Memory addresses in load/store instructions are the sum of:

○ Value in a specific register

○ And a 16-bit constant (often 0)

■ la $t0, 4

lb $t1, 0($t0)

Working with Memory Addresses in MIPS

26

COMP1521 25T2

Loading a byte (no labels)

Loading/Storing a byte from/to Memory

27

.text

main:

la $t1, 0x10010000

lb $t0, 0($t1)

.data

.byte 'Q'

.text

main:

li $t0, 'y'

la $t1, 0x10010000

sb $t0, 0($t1)

Storing a byte (no labels)

COMP1521 25T2

● We do NOT want to keep track of the memory locations and

hard code them ourselves.

● What if we add/remove variables as we develop our code?

● We use labels which are used by the assembler to represent

the memory locations.

Labels

28

COMP1521 25T2

loading a byte with labels

Loading/Storing a byte from/to Memory

29

storing a byte with labels

.text

main:

la $t1, my_letter

lb $t0, 0($t1)

.data

my_letter:

.byte 'Q'

.text

main:

li $t0, 'y'

la $t1, my_letter

sb $t0, 0($t1)

.data

my_letter:

.space 1

COMP1521 25T2

loading a word

Loading/Storing a word from/to Memory

30

storing a word

.text

main:

la $t1, my_word

lw $t0, 0($t1)

.data

my_word:

.word 10

.text

main:

li $t0, 9

la $t1, my_word

sw $t0, 0($t1)

.data

my_word:

.space 4

COMP1521 25T2

● We can just write constant memory address locations

● We don’t need to load to another register

Mipsy short cuts

31

.text

main:

li $t0, 42

sw $t0, my_label

.data

my_label:

.word 0

.text

main:

li $t0, 42

la $t1, my_label

sw $t0, 0($t1)

.data

my_label:

.word 0

COMP1521 25T2

Other assembler shortcuts

32

sb $t0, 0($t1) # store $t0 in byte at address in $t1

sb $t0, ($t1) # same

sb $t0, x # store $t0 in byte at address labelled x

sb $t1, x+15 # store $t1 15 bytes past address labelled x

sb $t2, x($t3) # store $t2 $t3 bytes past address labelled x

COMP1521 25T2

● Let’s write a program with a global variable and increment it

Demo program time - global_increment.c

33

#include <stdio.h>

int global_counter = 0;

int main(void) {

// Increment the global counter.

global_counter++;

printf("%d", global_counter);

putchar('\n');

}

COMP1521 25T2

● C standard and MIPS requires simple types of size N bytes to

be stored only at addresses which are divisible by N

○ a 4 byte int , must be stored at address divisible by 4

○ an 8 byte double, must be stored at address divisible by 8

○ Compound types (arrays, structs) must be aligned so their

components are aligned

● Example:

○ If you are using lw, or sw, you must be loading/storing the 4 bytes

from/to an address divisible by 4

Alignment

34

COMP1521 25T2

Alignment problem demo - sample_data.s

35

.text

main:

li $t0, 99

sw $t0, g # g = 99

li $v0, 0 # return 0

jr $ra

.data

f: .asciiz "hello" # char f[] = "hello";

g: .space 4 # int g;

COMP1521 25T2

.data

f: .asciiz "hello" # char f[] = "hello";

.space 2 # padding - we have to calculate the space

ourselves. Error prone. May break if we modify

our string “hello”

g: .space 4 # int g;

Padding with .space

Alignment Solutions

36

.data

f: .asciiz "hello" # char f[] = "hello";

.align 2 # align next object on 4 byte address (2 pow 2)

(2 to the power of 2) less error prone

g: .space 4 # int g;

Alignment fix with .align

COMP1521 25T2

Pointer Example

37

int answer = 42;

int main(void) {

int i;

int *p;

p = &answer;

i = *p;

printf("%d\n", i);

*p = 27;

printf("%d\n", answer);

return 0;

}

What would this print?

How could we write this in

MIPS?

COMP1521 25T2

● Suppose a CPU is released with an extension to the MIPS ISA.

○ Suppose syscall is a new instruction

○ Suppose an assembler that understands the encoding of syscall

has not yet been released!

Dealing with ISA extensions

38

COMP1521 25T2

● Directives are not limited to the .data section

● You could write your entire program in machine code!

(not recommended…)

Dealing with ISA extensions

39

.text

main:

li $a0, 42 # Prepare 42

li $v0, 1 # 1 is the syscall for print_int

.word 0x0000000C # syscall instruction

li $v0, 0 # Return 0

jr $ra

COMP1521 25T2 40

● MIPS

○ Recap of if statements

○ Loops

○ MIPS Data

■ loading and storing data

■ ints, chars, pointers

■ Alignment

● Next lecture:

○ 1D Arrays, 2D arrays (twice the fun), structs

What did we learn today?

COMP1521 25T2 41

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

42

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: C revision sessions
	Slide 3: Today’s Lecture
	Slide 4: Recap of the Last Lecture
	Slide 5: Recap: MIPS registers
	Slide 6: Recap: Putting data in registers
	Slide 7: Recap: simple arithmetic
	Slide 8: Recap: syscalls
	Slide 9: Recap: jump and branch
	Slide 10: Recap: Simplified C
	Slide 11: Sidenote: C break
	Slide 12: Sidenote: C break/continue
	Slide 13: Sidenote: C continue
	Slide 14: MIPS: Data and Memory
	Slide 15: How do we store/use interesting data?
	Slide 16
	Slide 17: MIPS Memory Layout
	Slide 18: Memory Addresses
	Slide 19: Common Data types in C
	Slide 20: Local vs Global variables in MIPS
	Slide 21: Initialising Global Data
	Slide 22: C equivalence
	Slide 23: Accessing Memory
	Slide 24: Loading from Memory
	Slide 25: Bytes, half-words, words
	Slide 26: Working with Memory Addresses in MIPS
	Slide 27: Loading/Storing a byte from/to Memory
	Slide 28: Labels
	Slide 29: Loading/Storing a byte from/to Memory
	Slide 30: Loading/Storing a word from/to Memory
	Slide 31: Mipsy short cuts
	Slide 32: Other assembler shortcuts
	Slide 33: Demo program time - global_increment.c
	Slide 34: Alignment
	Slide 35: Alignment problem demo - sample_data.s
	Slide 36: Alignment Solutions
	Slide 37: Pointer Example
	Slide 38: Dealing with ISA extensions
	Slide 39: Dealing with ISA extensions
	Slide 40: What did we learn today?
	Slide 41: Reach Out
	Slide 42: Student Support | I Need Help With…

