COMP1521 25T2

COMP1521 2572

Week 2 Lecture 1

MIPS: Control and Data

Adapted from Angela Finlayson, Abiram Nadarajah,
Hammond Pearce, Andrew Taylor and John Shepherd’s
slides

C revision sessions

e Anna Brew has kindly arranged for C revision sessions to take
place Thu 12t June 10am-12pm via blackboard collaborate.

e More info on the forum under announcements

o Week 2 Revision Lab + some resources for learning/revising C -
Announcements - COMP1521

COMP1521 25T2

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/t/week-2-revision-lab-some-resources-for-learning-revising-c/77
https://discourse02.cse.unsw.edu.au/25T2/COMP1521/t/week-2-revision-lab-some-resources-for-learning-revising-c/77

Today's Lecture

e Recap Lecture 2
e More on loops

o break and continue
e Data and Memory

o Global variables
o Pointers

COMP1521 25T2 3

Recap of the Last Lecture

e We can write instructions that act on registers

e We can write instructions that perform simple arithmetic

e Wecan syscall to pass control to the Operating System (0OS)

e We can convert constructs like “loops” and “conditionals” into
goto and branch

COMP1521 25T2

Recap: MIPS registers

COMP1521 25T2

Number Names Conventional Usage

0 zero Constant 0

1 at Reserved for assembler

2,3 vO,v1 Expression evaluation and results of a function
4.7 a0..a3 Arguments 1-4

8.16 10..t7 Temporary (not preserved across function calls)
16..23 s0..s7 Saved temporary (preserved across function calls)
24,25 18,19 Temporary (not preserved across function calls)
26,27 ko,k1 Reserved for Kernel use

28 gp Global Pointer

29 sp Stack Pointer

30 fp Frame Pointer

31 ra Return Address (used by function call instructions)

Recap: Putting data in registers

e li (load immediate) is loading a fixed value into a register
o 1li $tO0, 7
o la (load address) is for loading a fixed address into a register

o remember, labels really just represent addresses!

o la $t0, my label
e move is for copying value from a register into another register

o move $t0, Stl

COMP1521 25T2

Recap: simple arithmetic

e |-type accepts immediate (constants in the instruction)

e R-type accepts registers
assembly meaning

addry, r,,r, T g=r +Ty
subry, r,,r, ryg=r.-nr,
mulr,r,r, T g=r," "
rem7,7.,T;, Tg=T,%T,
divrygr,r, rg=r./r,
addir,, r,I r,=r +1I

COMP1521 25T2

Recap: syscalls

Service Svo Arguments Returns
printf("%d") 1 intin $a@

fputs 4 string in $a0@

scanf ("%d") 5 none intin $vO
fgets 8 line in $a0, length in $al

exit(0) 10 none

printf("%c" 1 charin $a0

scanf ("%c") 12 none charin $vO

COMP1521 25T2

Recap: jump and branch

assembler

meaning

j label
jal label

jrr,
jalrr,

pc = pc & 0xFO000000 | (X«2)
ra = pc+ 4

pc = pc & 0xFO000000 | (X«2)
pc = ?"S

ra = pc + 4

pc = ?“S

COMP1521 25T2

b label

beq r, r,, label
bne r, r,, label
ble r, r,, label
bgt r_, r,, label
blt r, r,, label
bge r_, r,, label
blez r, label
bgtz r, label
bltz r_ label
bgez r, label
bnez r_, label
beqz r_, label

pc += I«2
if (r, ==7,) pc += I«2
(rg 1= 1) pc+= I«2
(r, <=r,) pc += T«2
if (r, >r,) pc += 1«2
(ry <7p) pc += 1«2
if (r, >=7,) pc += I«2
if (r. <=0) pc += I«2
(r. >0)pc += I«2
if (r. <0)pc+=TI«2
(r.>=0) pc += 1«2
(r_!=0) pc += I«2
if (r. ==0) pc += I«2

Recap: Simplified C

int 1i;
loop_i_to_16__init:
1=0;
loop_i_to_160__cond:
if (i >= 10) goto loop_i_to_10__end;
int i = 0;
while (i . 18) { 1oop_iTto_1?;_?ody:
printf("%d\n", i); :j:> printf("%d", 1);
{4+ putchar('\n");
' loop_i_to_10__step:
} i=1+1;
goto loop_i_to_10__cond;
loop_i_to_16__end:

/] ...

COMP1521 25T2

Sidenote: C break

break can be used in a loop to exit the loop unconditionally.

The loop condition here makes this look like an infinite loop, but
break means it's possible to leave the loop

while (1) {
int ¢ = getchar();
if (c == EOF) break;

}

In simplified C, break is equivalent to going to the loop’s end label.

COMP1521 25T2 11

Sidenote: C break/continue

int c;
get_char_loop:
c = getchar();
while (1) { if_n:

int ¢ = getchar(); :j>> if (c == 'n’)
if (¢ == ‘n’) break; goto get_char_loop_end;
) end_if_n:
goto get_char_loop;

get_char_loop_end:

COMP1521 25T2

Sidenote: C continue

continue proceeds to the next iteration of a for loop.

This [terrible] code prints even numbers:

for (int i = 0; i < 10; i++) {
if (i % 2 !'= @) continue;
printf("%d\n", 1i);

In simplified C, continue is the equivalent to going to the loop’s
step label.

COMP1521 25T2

13

COMP1521 25T2

MIPS: Data and Memory

14

How do we store/use interesting data?

How does the data segment really work?
How do we:
o Store simple types like chars and ints?
o Store and increment a global variable?
o Work with pointers?
e Work with 1D arrays?
o Work with 2D arrays??
e C Structs!?

COMP1521 25T2

15

On-board RAM SO-DIMM RAM

@

thinks RAM
looks like...

COMP1521 25T2 16

MIPS Memory Layout

[5]5]%]%]%] Ox10000000 Ox7ffffeff
i text data <4+— stack K text K data
o000 Ox 80000000 0x90000000 Oxfffffffc
o MIPS addresses are 32 bits (4 bytes)
e Notes:

o Thereis no heap like in C, but the data segment can expand (not
needed in this course except maybe challenge exercises)

o The text segment is the only segment that is executable

o The text segment is writable, unlike a real system

COMP1521 25T2

17

Memory Addresses

o Data will live at an address in memory
o We can think of it like a large 1D array
o Each byte (usually 8 bits) has a unique address
o So memory can be thought of as one large array of bytes

o Address = index into the array
o Eg. The byte at address 4 below has the value 26

26

Byte O Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

COMP1521 25T2

Common Data types inC

Note: sizeof(dtv) in C will return the size, in bytes, of the data type or variable named ‘dtv’.

Data Type
char
int
pointer

array

struct

COMP1521 25T2

Size in Bytes

1

4

4 (32 bit architectures)

Sequence of basic type;
elements accessed by
calculated index

Set of data types; elements
accessed by calculated offset

Location

Memory, Register
Memory, Register
Memory, Register

Memory

Memory

19

Local vs Global variables in MIPS

Local Variables:
o Stored in registers (if possible) for speed:
e Otherwise stored on stack - we'll revisit this next week

Global Variables:
e Stored in the in data segment

COMP1521 25T2

20

Initialising Global Data

Using directives to initialise memory

.word 42 # initialises a 4 byte value to 42
.half 7 # initialises a 2 byte value to 7
.byte 'a' # initialises a 1 byte value to ‘a’
.asciiz "hello" # initialises a string

We can also just ask for some memory without initialising it
(typically we prefer to initialise it)
.space 8 # set aside 8 uninitialised bytes

COMP1521 25T2

21

C equivalence

int a = 42;
short b =

char c =
char d[6]

)

n @O d -

)
v

char space[8];

int main (void) {
return 0;

}

COMP1521 25T2

"hello";

//
//
//
//

//

.byte ‘a
.asciiz

.word 42
.half 7

f

.Space 8

)

"hello"

22

Accessing Memory

e Loading data:
o To perform computations, data must first be transferred from
memory into the CPU registers

e Storing data:
o Modified data is written back from the CPU registers to memory

COMP1521 25T2

23

Loading from Memory

e E.g Loading the byte from address 4 would load the byte
containing 26 in the specified register

Load byte at

byte 4 ‘ ‘ 26
26

ByteO Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

COMP1521 25T2

24

Bytes, half-words, words

o Typically, small groups of bytes can be loaded/stored at once
e E.g.In MIPS:
o T-byte (a byte) loaded/stored withccccoerrrrnneen. 1b/sb
o 2-bytes (a half-word) loaded/stored with...................... 1h/sh

o 4-bytes (a word) loaded/stored with.............cccccouenn...... 1lw/sw

Load half-word

atbyte 4 ‘ ‘ 5
26 32

Byte 0O Byte1 Byle2 Byle3 Byle4 Byte5 Byte6 Byte7

COMP1521 25T2

25

Working with Memory Addresses in MIPS

e Memory addresses in load/store instructions are the sum of:
o Value in a specific register
o And a 16-bit constant (often 0)

m la $t0, 4
1b Stl, 0($tO0)
Load byte at

byte 4 ‘ ‘ 26
26

ByteO Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7

COMP1521 25T2

26

Loading/Storing a byte from/to Memory

Loading a byte (no labels)

Storing a byte (no labels)

main:

.text

la $tl,
1b $t0,
.data

.byte 'Q’

0x10010000
0($tl)

main:

.text

1i $to, 'y'

la $tl, 0x10010000
sb $t0, 0($tl)

COMP1521 25T2

27

Labels

e We do NOT want to keep track of the memory locations and
hard code them ourselves.

e What if we add/remove variables as we develop our code?

o We use labels which are used by the assembler to represent
the memory locations.

COMP1521 25T2

28

Loading/Storing a byte from/to Memory

loading a byte with labels

. text

main:
la $tl, my letter
1b St0, 0($tl)
.data

my letter:
.byte 'Q'

storing a byte with labels

. text

main:
1i $to, 'y'
la $tl, my letter
sb $t0, 0($tl)
.data

my letter:
.space 1

COMP1521 25T2

29

Loading/Storing a word from/to Memory

loading a word

storing a word

. text
main:

la

lw

.data
my word:

.word 10

$tl, my word
$t0, 0(Stl1)

. text

main:
1i $to0, 9
la $tl, my word
sw $t0, 0($tl)
.data

my word:
.space 4

COMP1521 25T2

30

Mipsy short cuts

e We can just write constant memory address locations
e We don't need to load to another register

. text

main:
1i $t0, 42
la Stl, my label
sw $t0, 0(Stl)
.data

my label:

.word O

COMP1521 25T2

. text
main:
1i $t0, 42
sw St0, my label
.data
my label:

.word O

31

Other assembler shortcuts

sb $t0, 0($tl)
sb $t0, (S$tl1)

sb $t0, x
sb $tl1, x+15
sb $t2, x($t3)

COMP1521 25T2

#

#

store

same

store
store

store

$to0

$t0
$tl
$t2

in byte at address in $tl

in byte at address labelled x
15 bytes past address labelled x
$t3 bytes past address labelled x

32

Demo program time - global_increment.c

o Let's write a program with a global variable and increment it

#include <stdio.h>
int global counter = 0;

int main(void) {
// Increment the global counter.
global counter++;
printf ("%d", global counter);
putchar('\n') ;

}

COMP1521 25T2

33

Alignment

e C standard and MIPS requires simple types of size N bytes to

be stored only at addresses which are divisible by N

o a4 byteint, must be stored at address divisible by 4

o an 8 byte double, must be stored at address divisible by 8

o Compound types (arrays, structs) must be aligned so their
components are aligned

o Example:

o If you are using Iw, or sw, you must be loading/storing the 4 bytes

from/to an address divisible by 4

COMP1521 25T2 34

Alignment problem demo - sample_data.s

main:

.text

1i

SW

1i
jr

.data

$t0, 99
$to, g
$vo, O

Sra

.asciiz "hello"

.space 4

g = 99

return O

char f[] = "hello";

int g;

COMP1521 25T2

35

Alignment Solutions

.data . .
f: .asciiz "hello" # char £f[] = "hello"; Paddlng Wlth -Space
.space 2 # padding - we have to calculate the space
ourselves. Error prone. May break if we modify
our string “hello”
g: .space 4 # int g;
.data
f: .asciiz "hello" # char £[] = "hello"; A“gnment fix with 'ahgn
.align 2 # align next object on 4 byte address (2 pow 2)
(2 to the power of 2) less error prone
g: .space 4 # int g;

COMP1521 25T2

36

Pointer Example

int answer = 42;

int main(void) {
int 1i;
int *p;
p = &answer;
i = *p;
printf ("%d\n", 1i);
*p = 27;
printf ("%$d\n", answer);
return O;
}

COMP1521 25T2

What would this print?
How could we write this in
MIPS?

37

Dealing with ISA extensions

e Suppose a CPU is released with an extension to the MIPS ISA.
o Suppose syscall is a new instruction

o Suppose an assembler that understands the encoding of syscall
has not yet been released!

COMP1521 25T2

38

Dealing with ISA extensions

e Directives are not limited to the .data section

. text
main:
1i $a0, 42 # Prepare 42
1i $vO0, 1 # 1 is the syscall for print int

.word 0x0000000C # syscall instruction

1i $vO0, O # Return 0

jr Sra

e You could write your entire program in machine code!
(not recommended...)

COMP1521 25T2

What did we learn today?

e MIPS
o Recap of if statements
o Loops
o MIPS Data
s loading and storing data

m ints, chars, pointers
n Alignment

o Next lecture:
o 1D Arrays, 2D arrays (twice the fun), structs

COMP1521 25T2

40

'nﬂﬂ",

S Y

PO Q=D laSmlma

Reach Out

Content Related Questions:

Forum

ﬂ 0 ””!ﬂﬂlﬂ a l l

Ve hm (Bl A=
BIQOIIQ.\LIF Iolnlolﬁ 0 ulDl
4

lﬂﬂ!w
=9 00:!'00

Admin related Questions email:

cs1521@cse.unsw.edu.au

41

COMP1521 25T2

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

Student Support | | Need Help With...

student.unsw.edu.au/counselling a In Australia Call Afterhours 1300 787 026
_ @ E'::;Z'c':ea'th Telehealth RS UNSW Mental Health Support 5pm-9am
My Feelings and Mental Line
Health q student.unsw.edu.au/mind-hub Outside Australia
Managing Low Mood, Unusual Feelings & Depression Mind Online Self-Help Resources @ Afterhours 24-hour +61 (2) 8905 0307
HUB Medibank Hotline
m Student Support — student.unsw.edu.au/advisors
' Indigenous Student
Support
Reporting Sexual Assault/Harassment Equity Diversity and Inclusion — edi.unsw.edu.au/sexual-misconduct
(EDI)
Educational Adjustments q q .
To Manage my Studies and Disability / Health Condition Equitable Learning Service — student.unsw.edu.aulels
(ELS)
Academic and Study Skills Academic Language — student.unsw.edu.au/skills
Skills
Sppeel Lencld e Special Consideration — student.unsw.edu.au/special-consideration

Because Life Impacts our Studies and Exams

COMP1521 25T2

	Slide 1: COMP1521 25T2
	Slide 2: C revision sessions
	Slide 3: Today’s Lecture
	Slide 4: Recap of the Last Lecture
	Slide 5: Recap: MIPS registers
	Slide 6: Recap: Putting data in registers
	Slide 7: Recap: simple arithmetic
	Slide 8: Recap: syscalls
	Slide 9: Recap: jump and branch
	Slide 10: Recap: Simplified C
	Slide 11: Sidenote: C break
	Slide 12: Sidenote: C break/continue
	Slide 13: Sidenote: C continue
	Slide 14: MIPS: Data and Memory
	Slide 15: How do we store/use interesting data?
	Slide 16
	Slide 17: MIPS Memory Layout
	Slide 18: Memory Addresses
	Slide 19: Common Data types in C
	Slide 20: Local vs Global variables in MIPS
	Slide 21: Initialising Global Data
	Slide 22: C equivalence
	Slide 23: Accessing Memory
	Slide 24: Loading from Memory
	Slide 25: Bytes, half-words, words
	Slide 26: Working with Memory Addresses in MIPS
	Slide 27: Loading/Storing a byte from/to Memory
	Slide 28: Labels
	Slide 29: Loading/Storing a byte from/to Memory
	Slide 30: Loading/Storing a word from/to Memory
	Slide 31: Mipsy short cuts
	Slide 32: Other assembler shortcuts
	Slide 33: Demo program time - global_increment.c
	Slide 34: Alignment
	Slide 35: Alignment problem demo - sample_data.s
	Slide 36: Alignment Solutions
	Slide 37: Pointer Example
	Slide 38: Dealing with ISA extensions
	Slide 39: Dealing with ISA extensions
	Slide 40: What did we learn today?
	Slide 41: Reach Out
	Slide 42: Student Support | I Need Help With…

