
COMP1521 25T1

COMP1521 25T1

Course Introduction and
MIPS Introduction

Week 1 Lecture 1

COMP1521 25T1

Today’s Lecture
● Welcomes and Introductions
● How COMP1521 works
● How to get help
● How does a program run?
● A first look at MIPS assembler

Please join the Youtube chat
and ask questions :)

2

COMP1521 25T1

● All course information is on our
course website

○ Please bookmark it
● Please read the course outline

thoroughly
● We don’t use Moodle much. Just

blackboard collaborate for online
tutorials and help sessions

Course Website

3

https://cgi.cse.unsw.edu.au/~cs1521/25T1

https://cgi.cse.unsw.edu.au/~cs1521/25T1/

COMP1521 25T1

● Lecturer: Angela Finlayson
● Admins:

○ JJ Roberts-White
○ Anna Brew
○ Xavier Cooney
○ Abiram Nadarajah
○ Dylan Brotherston

● Lecture Moderators:
○ Tasfia Ahmed
○ JJ Roberts-White

● And an Amazing team of tutors!!!!

Course Staff: Who are we?

4

https://cgi.cse.unsw.edu.au/~cs1521/25T1/team/

https://cgi.cse.unsw.edu.au/~cs1521/25T1/team/

COMP1521 25T1

● Most students in this course have completed COMP1511 or
COMP1911 which covers fundamental C programming.

● This week's tuts and labs:
○ review/strengthen assumed C knowledge
○ cover non-assumed C knowledge including recursion

● For anyone who needs more practice with C fundamentals:
○ Revision sessions in week 2 will help you to revise important

concepts such as structs, pointers, malloc and recursion

COMP1521 Students: Who are you?

5

COMP1521 25T1

Design an algorithmic solution
Describe your solution in C code, using:

● variables, assignment, tests (==,!,<=,&&, etc)
● if, while, scanf(), printf()
● functions, return, prototypes, *.h, *.c
● arrays, structs, pointers, malloc(), free()

Assumed C Knowledge

6

COMP1521 25T1

We do not assume you know:
● Recursion, for loops

○ These will be covered in week 1 tutorials
● Bit operations, File operations

○ These will be major topics taught in this course
You do not need to know:

● Linked lists

Not Assumed Knowledge

7

COMP1521 25T1

COMP1511/1911 ...
● gets you thinking like a programmer

○ How can we write a program?
● solving problems by developing programs
● expressing your solution in the C language

COMP1521 …
● gets you thinking like a systems programmer

○ How can we create systems that can run a program?
● and better able to reason about your C programs

Course Goals

8

COMP1521 25T1

We also expect COMP1521 students to become more independent
with their programming:

● further develop linux/command line skills
● further develop coding and debugging skills
● become less reliant on autotests and think more about your

own test cases
● get used to reading manuals and documentation

Course Expectations

9

COMP1521 25T1

COMP1511/1911 COMP1521

10

COMP1521 25T1

The CSE Course Map

Course Context

11

https://media.csesoc.org.au/2021-fyg-cse-pathways/

COMP1521 25T1

Goal: you are able to understand execution of software in detail
● software components of modern computer systems
● how C programs execute (at the machine level)
● how to write (MIPS) assembly language
● how computers represent data including integers & floats &

emoji 😀🎈💻
● how operating systems are structured
● Unix/Linux system-level programming particularly file

operations
● introduction to processes, thread and concurrency

Major Themes

12

COMP1521 25T1

There is no prescribed textbook for
COMP1521.

Recommended reference:
Computer Systems: A Programmer's
Perspective, Bryant and O'Hallaron

● covers most topics, and quite well
● but uses a different machine code

Available in UNSW Bookshop

Textbook

13

COMP1521 25T1

● All tools available on the CSE lab machines (Debian Linux)
○ can use VLAB or SSH to connect to CSE from home

● Compilers:
○ dcc on CSE machines (clang or gcc elsewhere)

● Assembly language:
○ mipsy (mipsy_web online, vscode extension)

● Use your own favourite text editor:
○ vscode,ed, vim, emacs, nano, gedit etc.

● Other tools: make, man, bc -ql, python3, etc.
● Learn to love the shell and command-line ... very useful!

Systems and Tools

14

COMP1521 25T1

The linux manual (man) is divided into the following sections:
● Section 1: Executable programs or shell commands eg. ls, cp
● Section 2: System calls (we will be looking at many of these in

later weeks)
● Section 3: Library calls eg. strcpy, scanf

For example:
To find information about the C function getchar type
man 3 getchar

The Linux Manual (man)

15

COMP1521 25T1

● There are also other sections we won't be using so much
● You can find more information about man using the command

man man which shows the manual page about the manual.
● You can get more information about individual sections by

using man 1 intro, man 2 intro etc.

Advice: man will be available in the exam. Get used to using it!

The Linux Manual (man)

16

COMP1521 25T1

Course Format
● Weekly Lectures 2 x 2 hours
● Weekly tut/labs 3 hour blocks
● Weekly tests done in your own time starting in week 3
● 2 Major Assignments
● 1 Final Exam in person

17

COMP1521 25T1

Monday 14:00 - 16:00: Ainsworth G03 (K-J17-G03)
● In Person and Live Streamed via YouTube (with live chat)
● There is usually space in lecture hall so come along even if you

are in webstream!!

Wednesday 14:00 - 16:00:
● Live streamed via YouTube (with live chat)

All lectures recorded!

Lectures 2x2 Hours a Week

18

COMP1521 25T1

● Present a brief overview of theory
● Focus on practical demonstrations of coding

○ Problem-solving, testing, debugging
● If you have a question during the lecture:

○ Put your hand up and ask
○ Ask in live chat

● Please be respectful of others - everyone is here to learn
○ Don’t be noisy
○ Be kind to one another in the chat and of course in person too :)

Lectures 2x2 Hours a Week

19

COMP1521 25T1

● Resources:
○ All lectures recorded and linked from course home page.
○ Lecture slides available on the web before lecture.
○ Live code from lectures released during/after lecture
○ Each lecture topic has extra polished code examples and more

detailed course notes available too

Lectures 2x2 Hours a Week

20

COMP1521 25T1

● 3-hour tut-labs
○ start week 1
○ run each week (except week 6)

● Each class is a 1 hour tutorial, followed by a 2 hour lab
● Most of our tut-labs are face to face classes
● Online tut-labs are delivered via Blackboard Collaborate

(accessed via Moodle)

TODO public holiday means some people miss tutes on XDAY
Week X
 - An alternative time for your class will be arranged by your tutor

Tut-labs

21

COMP1521 25T1

● To get the best out of tutorials
○ attempt the problems yourself beforehand
○ not marked, and no submission
○ but you will learn more if you try the problems yourself
○ extra questions you can use for revision that won’t get covered in

class time

Do not keep quiet in tutorials: talk, discuss, ask questions, answer
questions

Tutorials

22

COMP1521 25T1

Each tutorial is followed by a two-hour lab class.
● Several exercises, mostly small coding tasks
● Build skills needed for assignments, exam
● Done individually

Submitted via give before Monday 12:00 (midday) in the following
week.

Lab 1 is an exception. It is due Monday 12:00 (midday) week 3.

Labs

23

COMP1521 25T1

Automarked (with partial marks) : 15% of final mark
● There will be seen autotests and unseen autotests

Labs may include challenge exercises:
● may be silly, confusing, or impossibly difficult
● almost full marks (95+%) possible without completing any

challenge exercises

Labs

24

COMP1521 25T1

Flex week (Week 6):
● No lectures, tutorials or labs
● There may be optional revision activities and help sessions

Public Holidays:
● Lecture will be pre-recorded to make up for Monday Week 10
● An alternative time for tutorials will be arranged by your tutor

and/or you may attend another tut/lab in the same week if for
Friday Week 9, Monday Week 10 and Friday Week 10.

Flexibility Week and Public Holidays

25

COMP1521 25T1

From week 3, and every week after (including week 6):
● Released on Thursday 3pm
● due exactly one week later
● Submitted via give

Gives an immediate reality-check on your progress

Tests

26

COMP1521 25T1

Conditions:
● done in your own time under self-enforced exam conditions.
● time limit of 1 hour
● can keep working after hour for 50% cap on mark

Marking:
● automarked (with partial marks)
● best 6 of 8 tests contribute 10% of final mark
● any violation of test conditions -> 0 for whole component

Tests

27

COMP1521 25T1

Ass1: Assembly (MIPS) Programming, weeks 3 - 5, 15%

Ass2: C Systems Programming, weeks 7 - 9, 15%

Assignments give you experience with larger programming
problems than lab exercises

Assignments will be carried out individually

Assignments

28

COMP1521 25T1

● They always take longer than you expect.
● Don't leave them to the last minute.
● Get help from appropriate sources - help sessions, forum,

tutors in your lab
● Don’t copy or use generative AI
● Standard UNSW late penalties apply

○ 5% per day for 5 days, computed hourly
○ The penalty is 5% of the maximum possible assignment mark
○ The penalty is deducted from your actual mark

Assignment Tips

29

COMP1521 25T1

In-person 3-hour practical exam: in CSE labs, on CSE lab
computers
● You must be in Sydney to sit the exam during the exam period
● limited environment: you get the tools and software of a lab

computer, not your own computer
● You don't get access to your normal CSE account, so no custom

configuration files and no course website available.
● no dcc-help or autotest-help
● hurdle: you must score 18+/45 (40%) on the final exam to pass

course

Final Exam

30

COMP1521 25T1

● 15% Labs
● 10% Tests
● 15% Assignment 1 --- due end of week 5
● 15% Assignment 2 --- due start of week 10
● 45% Final Exam

Above marks may be scaled to ensure an appropriate distribution

Assessment

31

COMP1521 25T1

To pass, you must:
● score >= 50/100 overall
● score >= 18/45 on final exam

For example if you get:
● 55/100 overall in the course
● 17/45 on final exam

You will get a grade of 55 UF
You will not get a grade of 55 PS

Assessment Hurdle

32

COMP1521 25T1

● CSE offers and inclusive learning environment for all students
● In anything connected to UNSW, including social media, the

following are considered to be student misconduct and won’t
be tolerated
○ racist/sexist/offensive language or images
○ Sexually inappropriate behaviour
○ bullying , harassing or aggressive behaviour
○ Invasion of privacy

● Show respect to your fellow students and the course staff.

Code of Conduct

33

COMP1521 25T1

● Cheating of any kind constitutes academic misconduct and
carries a range of penalties

● Examples academic misconduct:
○ Groupwork on individual assignments (discussion OK)
○ Allowing another student to copy your work
○ Getting hacker cousin to code for you
○ Purchasing a solution to the assignment.

Plagiarism

34

COMP1521 25T1

● Labs, Tests and Assignments must be entirely your own work
○ You can not work on labs tests or assignments as a pair or in a

group
● Plagiarism will be checked and penalised

○ Plagiarism may result in suspension from UNSW
○ Scholarship students may lose scholarship
○ International students may lose visa
○ Supplying your work to any other person is also considered

plagiarism
● More information can be found in the course outline

Plagiarism

35

COMP1521 25T1

● You may be able to see the
issues with these AI
generated images
○ Will you see all issues with

AI generated MIPS or C
code ?

● Will AI generate the same
code for other students?

● What will you do in the final
exam without AI?

Generative AI

36

COMP1521 25T1

● Use of generative AI tools including GitHub Copilot, ChatGPT
not permitted in COMP1521
○ later courses will likely allow use of these tools

● dcc-help, autotest-help are specialized generative AI tools
designed for CSE students
○ use of dcc-help and autotest-help is permitted in COMP1521
○ however dcc-help and autotest-help will not be available in the

exam

Use of Generative AI Tools

37

COMP1521 25T1

● Generative AI tools, e.g. GitHub Copilot, ChatGPT have great
potential to assist coders however:
○ Code they generate often has subtle errors & security

vulnerabilities
○ often generate poor code or unusual code
○ expert coders (hopefully) can spot these problems
○ students learning something new don't yet have this

understanding
○ Use of tools such as Copilot, ChatGPT may slow you getting this

understanding

Use of Generative AI Tools

38

COMP1521 25T1

● coding is a skill that improves with practice
○ the more you practice, the easier you will find assignments/exams
○ do the lab exercises yourself
○ do the weekly tests yourself
○ do the assignments yourself
○ practice programming outside classes
○ do revision lab exercises
○ do extra revision tutorial questions like a mini prac exam

● Get help when needed from course staff!

How to Pass this Course

39

COMP1521 25T1

● Ask questions in lectures and
in lecture chat

● Ask Questions in tuts and labs!
● Forum:

○ Post all your questions here
○ Feel free to answer other’s

questions
○ Don’t post your code publicly

in the forum

Course Content Related Help

40

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/

COMP1521 25T1

● Help Sessions:
○ Good place to get one-on-one help outside of normal lab/tutorial

times
○ There are optional drop in sessions

● Revision Sessions:
○ Optional group sessions to revise relevant topics
○ Booking required
○ Week 2: C revision (2d arrays strings, pointers, structs, malloc)

and recursion
Schedules coming out soon

Course Content Related Help

41

COMP1521 25T1

● Course Administration Issues:
○ Email: cs1521@cse.unsw.edu.au

● Enrollment Issues:
○ https://nucleus.unsw.edu.au/en/contact-us

● cse course account issues: CSE Help Desk
http://www.cse.unsw.edu.au/~helpdesk/

● Special consideration:
○ https://student.unsw.edu.au/special-consideration

● Equitable Learning Plans:
○ https://www.student.unsw.edu.au/equitable-learning

Admin Related Help

42

mailto:cs1521@cse.unsw.edu.au
https://nucleus.unsw.edu.au/en/contact-us
http://www.cse.unsw.edu.au/~helpdesk/
https://student.unsw.edu.au/special-consideration
https://www.student.unsw.edu.au/equitable-learning

COMP1521 25T1

Course Material has been drawn from:

● Introduction to Computing Systems: from bits and gates to C
and beyond, Patt and Patel

● The Elements of Computer Systems: Building a modern
computer system from first principles, Nisan and Schocken

● COMP2121 Course Web Site, Parameswaran and Guo
● Past COMP1521 lecturers, admin, and tutors

Always give credit to your sources

Acknowledgement

43

COMP1521 25T1

MIPS: An Introduction

44

Adapted from Abiram Nadarajah, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

In COMP1511/1911:
● We run a compiler (dcc?)

○ dcc -o hello hello.c
● We run our program

○ ./hello

What’s going on here? What’s in hello? Where is it stored?

What is a program? How do they execute?

45

COMP1521 25T1

● A program is a set of instructions and data
○ In binary format (0s and 1s)

● A program is often stored as a file on a “hard disk drive” (HDD)
or “solid state drive” (SSD)
○ Long-term, non-volatile (keeps contents when power goes off)

What is a program? Where is it stored?

46

HDD SSD

COMP1521 25T1

● The program needs to be loaded into memory - RAM!
○ RAM is like a massive 1D array
○ It has addresses, which are like indexes into that array
○ RAM is much faster than SSD or HDD, but more expensive
○ RAM is volatile

■ Power goes off and everything is lost from RAM

So how do we execute the program?

47

RAM

COMP1521 25T1

And then… the CPU executes the program!

48

COMP1521 25T1

● Programs contain information that needs to be loaded into the
appropriate segments of memory so the program can execute.

● Segments include
○ Text/code segments:

■ Stores program instructions
■ Typically readonly and fixed size

○ Data segments:
■ Readonly section for string literals
■ Writable section for global variables
■ Fixed size

Loading our C program into Memory

49

COMP1521 25T1

○ Heap:
■ dynamically allocated memory
■ may grow when we malloc
■ may shrink when we free

○ Stack:
■ local variables, parameters automatically managed
■ grows when functions are called
■ shrinks when functions return

C Memory during Program execution

50

COMP1521 25T1

C Program Memory Map

51

0x00000000 0xF77777777

Read only

text/code data heap stack
machine code
for program
instructions

global vars
and string
literals

malloced
things

local vars
and
parameters

COMP1521 25T1

int main(void) {

 int n, m;

 n = 5;

 m = f(n);

 return 0;

}

int f(int x) {

 return g(x);

}

The Stack

52

int g(int y) {

 int r = 4 * h(y);

 return r;

}

int h(int z) {

 int i;

 int p = 1;

 for (i = 1; i < z; i++) {

 p = p * i;

 }

 return p;

}

COMP1521 25T1

A “good” way to use up the stack and crash your program is to
“accidentally” create “infinite” recursion.

Recursion is when a function directly (or indirectly) calls itself

Infinite Recursion Demo

53

// A recursive function that has no stopping condition

void f(int x) {

 printf(“%d\n”, x);

 f(x + 1);

}

COMP1521 25T1

● We have our instructions in memory (RAM)
● The CPU can

○ fetch an instruction from memory
○ decodes the instructions to work out what it should do
○ executes the instruction!

The CPU

54

COMP1521 25T1

A day in the life of a CPU - as C code

int program_counter = START_ADDRESS;

while (1) {
 // Fetch an instruction from memory
 int instruction = memory[program_counter];
 // Move to the next instruction
 program_counter++;
 // Execute the next instruction
 execute(instruction, &program_counter);
 // ^ note: some instructions may
 // modify the program counter
}

It’s more
fun

than it sounds
I swear

COMP1521 25T1

● Computations: eg. add, subtract, multiply, divide, bitwise
● Load/store: Load data from RAM! Store data to RAM!
● Branch: jump to execute different instructions

○ Can’t have logic (eg. if statements, while loops) if our program
continues linearly

● System calls: request to the operating system to do something
● Many more things too!

What can instructions do?

56

COMP1521 25T1

Machine Code Instructions are really just 0s and 1s (binary data)
● Would be a pain to read/write literal instructions
● Instead, we use assembly language to form a human-readable

representation of each instruction

○ Each instruction we write in assembly code typically represents a
single CPU instruction

○ An assembler translates the assembly code to binary CPU
instructions

Machine Code vs Assembly Code

57

COMP1521 25T1

● For example: We might write in assembly:
 addi $t1, $t0, 12

● And the assembler might generate the following machine code
instruction:
00100001000010010000000000001100

● CPUs can’t run assembly code directly; they can only execute
machine code

Example Assembly Code Instruction

58

COMP1521 25T1

● We usually just compile our code in one step to create our
executable program.
○ gcc -o hello hello.c

● When we compile our code, the compiler first generates
assembly code.

● To see this intermediate step we can type in:
○ gcc -s hello.c
○ and the assembly code it produces is in hello.s

● Will this generate the same assembly code on a different
machine?

Compiling to Assembly Code

59

COMP1521 25T1

● We have a program in some language (e.g. C)
● We compile the program into assembly and it is assembled

into a binary
● The binary is stored to a file

Then to execute it…
● The program is loaded into memory
● The CPU is pointed at the memory
● And we are off!

So, to recap: how do we make a program?

60

COMP1521 25T1

● Usually we tend to write in a higher-level compiled language

○ C, C++, Go, Rust, Java, Swift, and many more…

○ A compiler will input programs in these languages and output the
corresponding assembly instructions

● In this course we write assembly code ourselves
○ The main reason in this course is to understand how a compiled

program executes
■ Can be helpful when debugging
■ Also handy to identify security vulnerabilities and exploit binaries (see

COMP6447)

Writing Assembly code

61

COMP1521 25T1

● Other reasons for writing assembly code:
○ To optimise code for performance

■ Less instructions = faster to execute = saving picoseconds!
○ Sometimes it’s necessary

■ eg. writing code to interact directly with a device (i.e. drivers)
○ And sometimes, someone has to!

■ e.g. who’s going to make your compiler in the first place?

Writing Assembly Code

62

COMP1521 25T1

● Different types of CPUs implement different Instruction Set
Architectures (ISAs)
○ In other words different types of CPUs may speak different

languages or understand different sets of instructions
● ISAs define a finite set of instructions

○ These “simple” instructions can be combined to compute
anything

● Examples of ISAs are
○ x86, ARM, RISC-V, MIPS

Instruction Set Architectures (ISAs)

63

COMP1521 25T1

MIPS

64

MIPS?
… but why?

COMP1521 25T1

● In COMP1521 we learn the MIPS instruction set architecture
● Once used from game consoles to supercomputers

○ Still used in routers and TVs

● Considerable learning resources available

● Inspired many other ISAs

○ If you know MIPS, you can easily branch to ARM, RISC-V, and others

● MIPS is simple yet powerful - good foundation for knowledge

So why MIPS?

65

https://ukikipedia.net/wiki/MIPS

COMP1521 25T1

● True (probably).
● Your laptop probably has x86 (PCs or older Mac) or ARM (newer

Mac)
● We can’t run our MIPS instructions directly on our CPUs.
● But, we can emulate them using mipsy

○ software that recreates the behaviour of a real MIPS CPU
○ written by Zac* (past course admin, now graduated/lecturing COMP6991)
○ can run on CSE machines (including vlab)
○ can also download on your own machine: https://github.com/insou22/mipsy/
○ comes with a command-line interface to run in your terminal

But I don’t have a MIPS CPU!

66

https://github.com/insou22/mipsy/

COMP1521 25T1

● mipsy command line
○ 1521 mipsy hello.s

● mipsy_web runs entirely in your browser
○ by Shrey*, on course website:

https://cgi.cse.unsw.edu.au/~cs1521/mipsy
● vscode extension

○ written by Xavier 🎉 - can download the ‘mipsy editor features’
extension

Running a mips program

67

* some contributions from Josh Harcombe, Dylan Brotherston and Abiram

https://cgi.cse.unsw.edu.au/~cs1521/mipsy

COMP1521 25T1

Can we write some MIPS?

68

COMP1521 25T1

Soon™

69

COMP1521 25T1

● a set of data registers

● a set of control registers

● a control unit

● an arithmetic-logic unit

● a floating-point unit

● caches

● connection to Memory/RAM

What’s in a MIPS CPU?

70

COMP1521 25T1

● Most CPU architectures perform operations over registers

● They are part of the processor itself, not the memory

● Speed advantages:

○ Memory is fast, CPU is faster!

● There are only a small number of registers

● Values stored in memory must be loaded into registers for the
CPU to perform computations on them.

Registers

71

COMP1521 25T1

● MIPS specifies 32 general-purpose registers

○ 32-bits each, same size as a typical C integer - coincidence?

● Floating point registers (not used in COMP1521)

● Hi/Lo special registers for multiply and divide (not important in
this course)

● Program counter

○ Keeps track of which instruction to fetch and execute next

○ Modified by branch and jump instructions

MIPS registers

72

COMP1521 25T1

MIPS registers to use for now

73

● For now we will mainly use $t0 to $t9 registers for general
purpose calculations

● Will also need $v0, $a0 for certain things too.

● $zero ($0) is special!
○ Always has the value 0 -> attempts to change it have no effect

● $ra is also special!
○ We use it at the end of every program

COMP1521 25T1

MIPS Computations with Registers

Almost all of our computations happen between registers!
Want to multiply 2 and 3 and store the result
Load 2 and 3 into registers:

li $t0, 2

li $t1, 3

And store the result:

mul $t2, $t0, $t1

COMP1521 25T1

Let’s try it!
Open up mipsy_web and code along!

75

COMP1521 25T1

Here is a bare bones template to put instructions in to run them:

Simple Program Template

76

main:

 # YOUR CODE GOES IN HERE

 li $v0 # return 0

 jr $ra

COMP1521 25T1

Your turn

77

● Code this up in mipsy_web.

○ Set $t0 to 10

○ Set $t1 to 7

○ Subtract $t1 from $t0 and store in $t2

○ Add 5 to $t2

What expression is this equivalent to?

Do you end up with the correct answer in $t2?

COMP1521 25T1

But how can we do input and output?

78

COMP1521 25T1

● None of the instructions we have access to can interact with
the outside world (eg. printing, scanning)

● Instead, we request the operating system to perform these
tasks for us - this process is called a system call

● The operating system can access privileged instructions on the
CPU (eg. communicating to other devices)

● mipsy simulates a very basic operating system

● Will explore real system calls in the second half of the course

System calls

79

COMP1521 25T1

We don’t use syscalls 8 and 12 much in COMP1521
Most input will be integers

Common mipsy syscalls

80

COMP1521 25T1

More ✨advanced✨ syscalls

81

Probably only used for challenge exercises in COMP1521

COMP1521 25T1

Let’s try to print out the number 42

82

COMP1521 25T1 83

● We specify which system call we want in $v0

○ eg. print_int is syscall 1:
○ li $v0, 1

● We specify arguments (if any)

○ li $a0, 42
● We transfer execution to the operating system

○ The OS will fulfill our request if it looks sane
○ syscall

● Some syscalls may return a value - check syscall table

The system call workflow

COMP1521 25T1

MIPS and mipsy documentation
Literally your best friend (it’ll even be there for you in the exam 🥺)

https://cgi.cse.unsw.edu.au/~cs1521/25T1/resources/mips-guide.html

COMP1521 25T1

0x in C and mipsy
means hexadecimal.

Hexadecimal uses 16
digits. It uses 0-9
then A-F

We will learn more
about this later in the
course.

Aside: Hexadecimal

85

Decimal Hexadecimal Decimal Hexadecimal

0 0 10 A

1 1 11 B

2 2 12 C

3 3 13 D

4 4 14 E

5 5 15 F

6 6 16 10

7 7 17 11

8 8 18 12

9 9 19 13

COMP1521 25T1

We often use Hexadecimal to represent addresses and other binary
data like instructions.

● Easier for humans to read than binary
○ 8 hex digits can represent 32 bits

● Maps more nicely to binary than decimal

Aside: Hexadecimal

86

COMP1521 25T1 87

● Admin: How the course is run
● Concepts: How programs run!
● Introduction to MIPS:

○ Running MIPS programs
○ Writing simple programs with simple instructions
○ Simple system calls to print out data

What did we learn today?

COMP1521 25T1 88

● MIPS Basics:
○ More MIPS instructions and examples
○ Using system calls to read in integer and character data
○ Understanding how to work with strings and how hello.s works

● MIPS Control:
○ if statements
○ loops

What will we learn next lecture

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

89

https://forms.office.com/r/KYZBvyLhED

COMP1521 25T1 90

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

91

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

