
COMP1521 25T2

COMP1521 25T2

MIPS: Basics and Control

Week 1 Lecture 2

Adapted from slides by Angela Finlayson, Abiram
Nadarajah, Hammond Pearce, Andrew Taylor and

John Shepherd’s slides

COMP1521 25T2

● You may find the Computer Engineering Resource Page useful:

https://cgi.cse.unsw.edu.au/~compbh/

● It provides:

○ Advice on purchasing personal computers

○ How to structure your degree

○ Which electives to take

ATT: CompEng students

2

https://cgi.cse.unsw.edu.au/~compbh/

COMP1521 25T2

● Thursday 10am - 12pm week 2

● Online via BlackBoard Collaborate

Content:

○ C revision and recursion lab style based questions

○ Can also get help with regular lab week 1 if struggling

C Revision and recursion Lab Week 2

3

COMP1521 25T2

Today’s Lecture

● Recap Lecture 1

● System Calls

● Style

● Simplified C

○ and goto

● MIPS Control

○ if statements

○ boolean expressions

○ while loops/for loops

4

COMP1521 25T2

DISCLAIMER:

Code written in lectures may not
necessarily have the best style!

5

Refer to:

● C Style guide

● Assembly style guide

● Your tutor, tut solutions, lab solutions and assignment

resources.

https://cgi.cse.unsw.edu.au/~cs1521/25T2/resources/c_style_guide.html
https://jashankj.space/notes/cse-comp1521-better-assembly/

COMP1521 25T2

● Explored different types of storage/memory

● Loading programs into RAM for execution

● The different program segments (code, data, heap, stack)

● Hexadecimal number representation

● Machine instructions

● Unique to the Instruction Set Architecture (ISA) of the CPU

● E.g. (x86, MIPS, ARM, RISC-V)

● Assembly language (MIPS)

● MIPS emulation using mipsy_web (and others)

Recap of Lecture 1: Intro to MIPS

6

COMP1521 25T2

More about registers

7

Registers have symbolic names and also numeric names

$t0 is also known as $8

There are many registers we won’t learn about or use until week 3.

COMP1521 25T2

Back to mipsy

8

COMP1521 25T2

MIPS Computations with Registers

9

Almost all of our computations happen between registers!

Want to multiply 2 and 3 and store the result

li $t0, 2 # load 2 into register $t0

li $t1, 3 # load 3 into register $t1

mul $t2, $t0, $t1 # Store $t0 x $t1 into $t2

COMP1521 25T2

Your turn!

10

Code this up in mipsy_web.

○ Set $t0 to 10

○ Set $t1 to 7

○ Subtract $t1 from $t0 and store in $t2

○ Add 5 to $t2

What expression is this equivalent to?

Do you end up with the correct answer in $t2?

COMP1521 25T2

● Assembly instructions, each on their own line

● Generally a 1:1 mapping from assembly instructions to binary

instructions

● However, assemblers also provide pseudo-instructions for

convenience

● pseudo-instructions turn into 1-3 real CPU instructions

○ Example:

■ li $t0, 5 gets mapped to real equivalent CPU instruction

■ addi $t0, $zero, 5

○ You will see many more as you write more code in MIPS.

Assembly Syntax overview

11

COMP1521 25T2

● 32 bits long

● Specify:

○ An operation

■ (The thing to do)

○ 0 or more operands

■ (The thing to do it over)

● For example:

What do MIPS instructions look like?

12

00100001000010010000000000001100

addi $t1, $t0, 12

COMP1521 25T2

But how can we do input / output?

13

COMP1521 25T2

● None of the instructions we have access to can interact with

the outside world (eg. printing, scanning)

● Instead, we request the operating system to perform these

tasks for us - this process is called a system call

● The operating system can access privileged instructions on the

CPU (eg. communicating to other devices)

● mipsy simulates a very basic operating system

● We will explore real system calls in the second half of the

course

System calls

14

COMP1521 25T2

Common mipsy syscalls

15

COMP1521 25T2

More advanced syscalls

16

Probably only used for challenge exercises in COMP1521

COMP1521 25T2

Let’s try to print out the number 42

17

COMP1521 25T2 18

● We specify which system call we want in $v0

○ eg. print_int is syscall 1:

○ li $v0, 1
● We specify arguments (if any)

○ li $a0, 42
● We transfer execution to the operating system

○ The OS will fulfill our request if it looks sane

○ syscall

● Some syscalls may return a value - check syscall table

The system call workflow

COMP1521 25T2

Let’s try to print out the number 42

19

COMP1521 25T2

“Hello COMP1521!!”

20

COMP1521 25T2

● We need to define our string in the data section

● Then pass the address of our string to our system call in $a0

● We need to use the .data directive so we can create global

data in our program

● We need to use the .asciiz directive so we can define a

string and give the string a label!

● We need to use the la to load the address of the string!!

Printing Strings and the Data segment

21

COMP1521 25T2

.text

main:

li $v0, 4 # syscall 4: print_string

la $a0, hello_msg #

syscall # printf("Hello COMP1521!!\n");

li $v0, 0

jr $ra # return 0;

.data

hello_msg:

.asciiz "Hello COMP1521!!\n"

Hello COMP1521 revisited

22

COMP1521 25T2

// Translate into MIPS

int main(void) {

int a, b;

printf("Enter a number: ");

scanf("%d", &a);

printf("Enter another number: ");

scanf("%d", &b);

printf("The average is %d\n", (a + b)/ 2);

return 0;

}

Example: Integer Average

23

COMP1521 25T2

● li (load immediate) is loading a fixed value into a register

○ li $t0, 7

● la (load address) is for loading a fixed address into a register

○ remember, labels really just represent addresses!

○ la $t0, my_label

● move is for copying value from a register into another register

○ move $t0, $t1

Assembly Language Syntax Recap

24

COMP1521 25T2

● Labels

○ Appended with :

○ They represent memory addresses

● Comments

○ Start with #

● Directives

○ Symbols beginning with . eg .asciiz .text .data
● Constant definitions

○ Like #define in C e.g.

○ MAX_NUMBERS = 10

Assembly Language Syntax Recap

25

COMP1521 25T2

MIPS Control

COMP1521 25T2

● Our programs only execute linearly

● How can we conditionally execute

code?

● How can we loop over code?

So far

27

COMP1521 25T2

● We have many conditional branch instructions of the form:

○ “if condition is true, jump to offset”

● We have an unconditional branch instruction too

● Thankfully, offset and Address can be replaced by a label:

Branch Instructions

28

COMP1521 25T2

● Translating C code directly to MIPS is challenging

● Simplify your C code and then translate it to “simplified C”:

○ Each line of Simplified C to map to one MIPS instruction

○ Compile your simplified C and make sure it still works

○ Translate each line of simplified C to MIPS

Simplified C

29

COMP1521 25T2

In C, goto allows jumping to any arbitrary label within a program.

This means we can effectively jump around within a program

however we wish.

COMP1511 staff hid this simple trick!

30

COMP1521 25T2

int main(void) {

goto sleep;

printf("Please pay close attention\n");

sleep:

printf("You are getting sleepy\n");

goto sleep;

printf("Please wake up now!");

return 0;

}

What will this code do?

31

COMP1521 25T2 32

Go To Considered Harmful (1968)

With great power comes great responsibility

COMP1521 25T2

Don’t use it in your actual C programs.

● goto makes programs more difficult to read

● goto makes it hard for compilers to optimise code

● In general, do not use goto without good reason!

● We will use it in this course ONLY for writing simplified C to

translate into MIPS.

Don’t (ab)use goto

33

COMP1521 25T2

int main(void){

int n;

printf("Enter a number: ");

scanf("%d", &n);

if (n % 2 == 0) {

printf("even\n");

}

return 0;

}

Simplifying if-else statements

34

int main(void){

int n;

printf("Enter a number: ");

scanf("%d", &n);

int tmp = n % 2;

if (tmp != 0) goto if_even_end;

printf("even\n");

if_even_end:

return 0;

}

Now we can write it in MIPS.
Exercise: add an else statement for odd numbers

COMP1521 25T2

● Have equivalent C code as inline comments

● Huge recommendation: indent with 8-wide tabs

● We generally don’t indent to show structure

○ i.e no indenting within loops or if statements, etc.

● Instead:

○ don’t indent labels

○ indent instructions by one step

● For this course: focus on readable code, not reducing number

of registers used or lines of code

Style

35

COMP1521 25T2

More complex conditionals:

if (milk_age > 48 ||
milk_level < 10) {
printf("Replace milk\n");

} else {
printf("Milk okay!\n");

}
printf("Done!\n");

Split combined “or” conditions

36

COMP1521 25T2

More complex conditionals:

if (milk_age > 48 ||
milk_level < 10) {
printf("Replace milk\n");

} else {
printf("Milk okay!\n");

}
printf("Done!\n");

if (milk_age > 48) goto milk_replace;
if (milk_level < 10) goto milk_replace;

printf("Milk okay!\n");
goto milk_replace__end;

milk_replace:
printf("Replace milk\n");

milk_replace__end:
printf("Done!");

Split combined “or” conditions

37

COMP1521 25T2

More complex conditionals: &&

if (x >= 0 && x <= 100) {
// in bounds

} else {
// out of bounds

}

return 0;

Invert the condition to use || (De Morgan’s Law)

38

COMP1521 25T2

More complex conditionals: &&

if (x >= 0 && x <= 100) {
// in bounds

} else {
// out of bounds

}

return 0;

Invert the condition to use || (De Morgan’s Law)

(A && B) becomes !(!A || !B)

39

COMP1521 25T2

More complex conditionals: &&

if (x >= 0 && x <= 100) {
// in bounds

} else {
// out of bounds

}

return 0;

if (x < 0 || x > 100) {
// out of bounds

} else {
// in bounds

}

return 0;

Invert the condition to use || (De Morgan’s Law)

(A && B) becomes !(!A || !B)

40

COMP1521 25T2

More complex conditionals:

if (x < 0 || x > 100) {
// out of bounds

} else {
// in bounds

}

return 0;

Split into separate conditionals:

41

COMP1521 25T2

More complex conditionals:

if (x < 0 || x > 100) {
// out of bounds

} else {
// in bounds

}

return 0;

Split into separate conditionals:

if (x < 0) goto x_out_of_bounds;
if (x > 100) goto x_out_of_bounds;

// in bounds

goto epilogue;

x_out_of_bounds:
// out of bounds

epilogue:
return 0;

42

COMP1521 25T2

Your turn

43

if (y < 10 || z > 50) {

// condition met

} else {

// condition not met

}

return 1;

COMP1521 25T2

Your turn

44

if (y < 10 || z > 50) {

// condition met

} else {

// condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z > 50) goto condition_met;

goto condition_not_met;

condition_met:

// condition met

goto epilogue;

condition_not_met:

// condition not met

epilogue:

return 1;

COMP1521 25T2

Your turn

45

if (y < 10 || z > 50) {

// condition met

} else {

// condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z > 50) goto condition_met;

// condition not met

goto epilogue;

condition_met:

// condition met

epilogue:

return 1;

COMP1521 25T2

Your turn

46

if (y < 10 || (z > 50 && w < 5)) {

// condition met

} else {

// condition not met

}

return 1;

COMP1521 25T2

Your turn

47

if (y < 10 || (z > 50 && w < 5)) {

// condition met

} else {

// condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z <= 50) goto condition_not_met;

if (w >= 5) goto condition_not_met;

condition_met:

// condition met

goto epilogue;

condition_not_met:

// condition not met

epilogue:

return 1;

COMP1521 25T2

Simplifying loop structures

● for loops should be broken down to while loops

● while loops should be broken down into if/goto
General structure:

● loop_init:

● loop_condition: (do we need to exit the loop?)

● loop_body:

● loop_step:

● loop_end:

Use labels to show structure!

48

COMP1521 25T2

Simplifying for loops: Counting

for (int i = 0; i < 10; i++) {
printf("%d\n", i);

}

int i = 0;
while (i < 10) {

printf("%d\n", i);
i++;

}

49

COMP1521 25T2

Simplifying for loops: Counting

for (int i = 0; i < 10; i++) {
printf("%d\n", i);

}

int i = 0;
while (i < 10) {

printf("%d\n", i);
i++;

}

50

Beware: Don’t forget the i++ when converting to a while loop

COMP1521 25T2

Counting

int i = 0;
while (i < 10) {

printf("%d\n", i);
i++;

}

int i;
loop_i_to_10_init:

i = 0;
loop_i_to_10_cond:

if (i >= 10) goto loop_i_to_10_end;

loop_i_to_10_body:
printf("%d", i);
putchar('\n');

loop_i_to_10_step:
i++;
goto loop_i_to_10_cond;

loop_i_to_10_end:
// ...

51

COMP1521 25T2

Exercise: Sum 100 squares

int sum = 0;
for (int i = 1; i <= 100; i++) {

sum += i * i;
}

Convert to MIPS

52

COMP1521 25T2

Sidenote: C break/continue

break can be used in a loop to completely exit the loop.

The loop condition here makes this look like an infinite loop:

while (1) {
int c = getchar();
if (c == EOF) break;

}

but break means it’s possible for the loop to be exited.

In simplified C/MIPS, a break is really just equivalent to going to

the loop’s end label.

53

COMP1521 25T2

Sidenote: C break/continue

continue can be used to proceed to the next iteration of a for

loop.

This would be a (terrible) way to print even numbers:

In simplified C/MIPS, a continue is really just equivalent to going

to the loop’s step label.

for (int i = 0; i < 10; i++) {
if (i % 2 != 0) continue;
printf("%d\n", i);

}

54

COMP1521 25T2 55

● MIPS

○ Recap of basics from lecture 1

○ System calls

■ printing out and reading in integers, and chars

■ printing out strings

○ Branches

○ Simplified C

○ Control

■ goto statements

■ if statements,

■ loops

What did we learn today?

COMP1521 25T2 56

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T2

Student Support | I Need Help With…

57

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support

Line

Outside Australia

Afterhours 24-hour

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

	Slide 1: COMP1521 25T2
	Slide 2: ATT: CompEng students
	Slide 3: C Revision and recursion Lab Week 2
	Slide 4: Today’s Lecture
	Slide 5: DISCLAIMER:
	Slide 6: Recap of Lecture 1: Intro to MIPS
	Slide 7: More about registers
	Slide 8: Back to mipsy
	Slide 9: MIPS Computations with Registers
	Slide 10: Your turn!
	Slide 11: Assembly Syntax overview
	Slide 12: What do MIPS instructions look like?
	Slide 13: But how can we do input / output?
	Slide 14: System calls
	Slide 15: Common mipsy syscalls
	Slide 16: More ✨advanced✨ syscalls
	Slide 17
	Slide 18: The system call workflow
	Slide 19
	Slide 20: “Hello COMP1521!!”
	Slide 21: Printing Strings and the Data segment
	Slide 22: Hello COMP1521 revisited
	Slide 23: Example: Integer Average
	Slide 24: Assembly Language Syntax Recap
	Slide 25: Assembly Language Syntax Recap
	Slide 26: MIPS Control
	Slide 27: So far
	Slide 28: Branch Instructions
	Slide 29: Simplified C
	Slide 30: COMP1511 staff hid this simple trick!
	Slide 31: What will this code do?
	Slide 32: With great power comes great responsibility
	Slide 33: Don’t (ab)use goto
	Slide 34: Simplifying if-else statements
	Slide 35: Style
	Slide 36: More complex conditionals:
	Slide 37: More complex conditionals:
	Slide 38: More complex conditionals: &&
	Slide 39: More complex conditionals: &&
	Slide 40: More complex conditionals: &&
	Slide 41: More complex conditionals:
	Slide 42: More complex conditionals:
	Slide 43: Your turn
	Slide 44: Your turn
	Slide 45: Your turn
	Slide 46: Your turn
	Slide 47: Your turn
	Slide 48: Simplifying loop structures
	Slide 49: Simplifying for loops: Counting
	Slide 50: Simplifying for loops: Counting
	Slide 51: Counting
	Slide 52: Exercise: Sum 100 squares
	Slide 53: Sidenote: C break/continue
	Slide 54: Sidenote: C break/continue
	Slide 55: What did we learn today?
	Slide 56: Reach Out
	Slide 57: Student Support | I Need Help With…

