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● You may find the Computer Engineering Resource Page useful:

https://cgi.cse.unsw.edu.au/~compbh/

● It provides:

○ Advice on purchasing personal computers

○ How to structure your degree

○ Which electives to take

ATT: CompEng students
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https://cgi.cse.unsw.edu.au/~compbh/
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● Thursday 10am - 12pm week 2

● Online via BlackBoard Collaborate

Content:

○ C revision and recursion lab style based questions

○ Can also get help with regular lab week 1 if struggling

C Revision and recursion Lab Week 2
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Today’s Lecture

● Recap Lecture 1

● System Calls

● Style

● Simplified C

○ and goto 

● MIPS Control

○ if statements

○ boolean expressions

○ while loops/for loops
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DISCLAIMER:

Code written in lectures may not 
necessarily have the best style!
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Refer to:

● C Style guide

● Assembly style guide

● Your tutor, tut solutions, lab solutions and assignment 

resources.

https://cgi.cse.unsw.edu.au/~cs1521/25T2/resources/c_style_guide.html
https://jashankj.space/notes/cse-comp1521-better-assembly/
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● Explored different types of storage/memory

● Loading programs into RAM for execution

● The different program segments  (code, data, heap, stack)

● Hexadecimal number representation

● Machine instructions

● Unique to the Instruction Set Architecture (ISA) of the CPU

● E.g. (x86, MIPS, ARM, RISC-V)

● Assembly language (MIPS)

● MIPS emulation using mipsy_web (and others)

Recap of Lecture 1: Intro to MIPS
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More about registers
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Registers have symbolic names and also numeric names

$t0 is also known as $8

There are many registers we won’t learn about or use until week 3.
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Back to mipsy
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MIPS Computations with Registers
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Almost all of our computations happen between registers!

Want to multiply 2 and 3 and store the result

li $t0, 2 # load 2 into register $t0

li $t1, 3 # load 3 into register $t1

mul $t2, $t0, $t1  # Store $t0 x $t1 into $t2
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Your turn!
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Code this up in mipsy_web.

○ Set $t0 to 10

○ Set $t1 to 7

○ Subtract $t1 from $t0 and store in $t2

○ Add 5 to $t2

What expression is this equivalent to?

Do you end up with the correct answer in $t2?
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● Assembly instructions, each on their own line

● Generally a 1:1 mapping from assembly instructions to binary 

instructions

● However, assemblers also provide pseudo-instructions for 

convenience

● pseudo-instructions turn into 1-3 real CPU instructions

○ Example: 

■ li $t0, 5 gets mapped to real equivalent CPU instruction

■ addi $t0, $zero, 5

○ You will see many more as you write more code in MIPS.

Assembly Syntax overview
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● 32 bits long

● Specify:

○ An operation

■ (The thing to do)

○ 0 or more operands

■ (The thing to do it over)

● For example:

What do MIPS instructions look like?
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00100001000010010000000000001100

addi $t1, $t0, 12
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But how can we do input / output?
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● None of the instructions we have access to can interact with 

the outside world (eg. printing, scanning)

● Instead, we request the operating system to perform these 

tasks for us - this process is called a system call

● The operating system can access privileged instructions on the 

CPU (eg. communicating to other devices)

● mipsy simulates a very basic operating system

● We will explore real system calls in the second half of the 

course

System calls
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Common mipsy syscalls
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More advanced syscalls 
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Probably only used for challenge exercises in COMP1521



COMP1521 25T2

Let’s try to print out the number 42
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● We specify which system call we want in $v0

○ eg. print_int is syscall 1:

○ li $v0, 1
● We specify arguments (if any)

○ li $a0, 42
● We transfer execution to the operating system

○ The OS will fulfill our request if it looks sane

○ syscall

● Some syscalls may return a value - check syscall table

The system call workflow
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Let’s try to print out the number 42
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“Hello COMP1521!!”
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● We need to define our string in the data section

● Then pass the address of our string to our system call in $a0

● We need to use the .data directive so we can create global 

data in our program

● We need to use the .asciiz directive so we can define a 

string and give the string a label!

● We need to use the la to load the address of the string!!

Printing Strings and the Data segment
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.text

main:

li $v0, 4 # syscall 4: print_string

la $a0, hello_msg      #

syscall # printf("Hello COMP1521!!\n");

li $v0, 0

jr $ra # return 0;

.data

hello_msg:

.asciiz "Hello COMP1521!!\n"

Hello COMP1521 revisited
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// Translate into MIPS

int main(void) {

int a, b;

printf("Enter a number: ");

scanf("%d", &a);

printf("Enter another number: ");

scanf("%d", &b);

printf("The average is %d\n", (a + b)/ 2);

return 0;

}

Example: Integer Average
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● li (load immediate) is loading a fixed value into a register 

○ li $t0, 7

● la (load address) is for loading a fixed address into a register

○ remember, labels really just represent addresses!

○ la $t0, my_label

● move is for copying value from a register into another register

○ move $t0, $t1

Assembly Language Syntax Recap
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● Labels

○ Appended with : 

○ They represent memory addresses

● Comments

○ Start with #

● Directives

○ Symbols beginning with .  eg .asciiz .text .data
● Constant definitions

○ Like #define in C e.g.

○ MAX_NUMBERS = 10

Assembly Language Syntax Recap
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MIPS Control
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● Our programs only execute linearly

● How can we conditionally execute 

code?

● How can we loop over code?

So far
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● We have many conditional branch instructions of the form:

○ “if condition is true, jump to offset”

● We have an unconditional branch instruction too

● Thankfully, offset and Address can be replaced by a label:

Branch Instructions
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● Translating C code directly to MIPS is challenging

● Simplify your C code and then translate it to “simplified C”:

○ Each line of Simplified C to map to one MIPS instruction

○ Compile your simplified C and make sure it still works

○ Translate each line of simplified C to MIPS

Simplified C
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In C, goto allows jumping to any arbitrary label within a program.

This means we can effectively jump around within a program 

however we wish.

COMP1511 staff hid this simple trick!
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int main(void) {

goto sleep;

printf("Please pay close attention\n");

sleep:

printf("You are getting sleepy\n");

goto sleep;

printf("Please wake up now!");

return 0;

}

What will this code do?
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Go To Considered Harmful (1968)

With great power comes great responsibility
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Don’t use it in your actual C programs.

● goto makes programs more difficult to read

● goto makes it hard for compilers to optimise code

● In general, do not use goto without good reason!

● We will use it in this course ONLY for writing simplified C to 

translate into MIPS.

Don’t (ab)use goto
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int main(void){

int n;

printf("Enter a number: ");

scanf("%d", &n);

if (n % 2 == 0) {

printf("even\n");

}

return 0;

}

Simplifying if-else statements
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int main(void){

int n;

printf("Enter a number: ");

scanf("%d", &n);

int tmp = n % 2;

if (tmp != 0) goto if_even_end;

printf("even\n");

if_even_end:

return 0;

}

Now we can write it in MIPS. 
Exercise: add an else statement for odd numbers
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● Have equivalent C code as inline comments

● Huge recommendation: indent with 8-wide tabs

● We generally don’t indent to show structure

○ i.e no indenting within loops or if statements, etc.

● Instead:

○ don’t indent labels

○ indent instructions by one step

● For this course: focus on readable code, not reducing number 

of registers used or lines of code

Style
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More complex conditionals: 

if (milk_age > 48 ||
milk_level < 10) {
printf("Replace milk\n");

} else {
printf("Milk okay!\n");

}
printf("Done!\n");

Split combined “or” conditions

36
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More complex conditionals: 

if (milk_age > 48 ||
milk_level < 10) {
printf("Replace milk\n");

} else {
printf("Milk okay!\n");

}
printf("Done!\n");

if (milk_age > 48) goto milk_replace;
if (milk_level < 10) goto milk_replace;

printf("Milk okay!\n");
goto milk_replace__end;

milk_replace:
printf("Replace milk\n");

milk_replace__end:
printf("Done!");

Split combined “or” conditions
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More complex conditionals: &&

if (x >= 0 && x <= 100) {
// in bounds

} else {
// out of bounds

}

return 0;

Invert the condition to use || (De Morgan’s Law)
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More complex conditionals: &&

if (x >= 0 && x <= 100) {
// in bounds

} else {
// out of bounds

}

return 0;

Invert the condition to use || (De Morgan’s Law)

(A && B) becomes !(!A || !B)

39



COMP1521 25T2

More complex conditionals: &&

if (x >= 0 && x <= 100) {
// in bounds

} else {
// out of bounds

}

return 0;

if (x < 0 || x > 100) {
// out of bounds

} else {
// in bounds

}

return 0;

Invert the condition to use || (De Morgan’s Law)

(A && B) becomes !(!A || !B)
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More complex conditionals: 

if (x < 0 || x > 100) {
// out of bounds

} else {
// in bounds

}

return 0;

Split into separate conditionals:
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More complex conditionals: 

if (x < 0 || x > 100) {
// out of bounds

} else {
// in bounds

}

return 0;

Split into separate conditionals:

if (x < 0) goto x_out_of_bounds;
if (x > 100) goto x_out_of_bounds;

// in bounds

goto epilogue;

x_out_of_bounds:
// out of bounds

epilogue:
return 0;
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Your turn
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if (y < 10 || z > 50) {

// condition met

} else {

// condition not met

}

return 1;
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Your turn
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if (y < 10 || z > 50) {

// condition met

} else {

// condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z > 50) goto condition_met;

goto condition_not_met;

condition_met:

// condition met

goto epilogue;

condition_not_met:

// condition not met

epilogue:

return 1;
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Your turn
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if (y < 10 || z > 50) {

// condition met

} else {

// condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z > 50) goto condition_met;

// condition not met

goto epilogue;

condition_met:

// condition met

epilogue:

return 1;
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Your turn
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if (y < 10 || (z > 50 && w < 5)) {

// condition met

} else {

// condition not met

}

return 1;
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Your turn
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if (y < 10 || (z > 50 && w < 5)) {

// condition met

} else {

// condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z <= 50) goto condition_not_met;

if (w >= 5) goto condition_not_met;

condition_met:

// condition met

goto epilogue;

condition_not_met:

// condition not met

epilogue:

return 1;
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Simplifying loop structures

● for loops should be broken down to while loops

● while loops should be broken down into if/goto
General structure:

● loop_init:

● loop_condition: (do we need to exit the loop?)

● loop_body:

● loop_step:

● loop_end:

Use labels to show structure!
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Simplifying for loops: Counting 

for (int i = 0; i < 10; i++) {
printf("%d\n", i);

}

int i = 0;
while (i < 10) {

printf("%d\n", i);
i++;

}

49
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Simplifying for loops: Counting 

for (int i = 0; i < 10; i++) {
printf("%d\n", i);

}

int i = 0;
while (i < 10) {

printf("%d\n", i);
i++;

}

50

Beware: Don’t forget the i++ when converting to a while loop
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Counting

int i = 0;
while (i < 10) {

printf("%d\n", i);
i++;

}

int i;
loop_i_to_10_init:

i = 0;
loop_i_to_10_cond:

if (i >= 10) goto loop_i_to_10_end;

loop_i_to_10_body:
printf("%d", i);
putchar('\n');

loop_i_to_10_step:
i++;
goto loop_i_to_10_cond;

loop_i_to_10_end:
// ...
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Exercise: Sum 100 squares 

int sum = 0;
for (int i = 1; i <= 100; i++) {

sum += i * i;
}

Convert to MIPS
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Sidenote: C break/continue

break can be used in a loop to completely exit the loop.

The loop condition here makes this look like an infinite loop:

while (1) {
int c = getchar();
if (c == EOF) break;

}

but break means it’s possible for the loop to be exited.

In simplified C/MIPS, a break is really just equivalent to going to 

the loop’s end label.
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Sidenote: C break/continue

continue can be used to proceed to the next iteration of a for 

loop.

This would be a (terrible) way to print even numbers:

In simplified C/MIPS, a continue is really just equivalent to going 

to the loop’s step label.

for (int i = 0; i < 10; i++) {
if (i % 2 != 0) continue;
printf("%d\n", i);

}
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● MIPS

○ Recap of basics from lecture 1

○ System calls 

■ printing out and reading in integers, and chars

■ printing out strings

○ Branches

○ Simplified C

○ Control

■ goto statements

■ if statements, 

■ loops

What did we learn today?
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Content Related Questions:  

Forum

Admin related Questions email: 

cs1521@cse.unsw.edu.au

Reach Out

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au


COMP1521 25T2

Student Support | I Need Help With…
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— student.unsw.edu.au/advisorsStudent Support
Indigenous Student 

Support

Equity Diversity and Inclusion 

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service 

(ELS)

— student.unsw.edu.au/els

Academic Language 

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental 

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health 

Connect

Mind 

HUB

student.unsw.edu.au/counselling 

Telehealth

student.unsw.edu.au/mind-hub 

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support 

Line

Outside Australia 

Afterhours 24-hour 

Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams
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