COMP1521 25T2

COMP1521 2572

Week 1 Lecture 2

MIPS: Basics and Control

Adapted from slides by Angela Finlayson, Abiram
Nadarajah, Hammond Pearce, Andrew Taylor and
John Shepherd’s slides

ATT: CompEng students

e You may find the Computer Engineering Resource Page useful:
https://cgi.cse.unsw.edu.au/~compbh/

e It provides:
o Advice on purchasing personal computers
o How to structure your degree

o Which electives to take

COMP1521 25T2

https://cgi.cse.unsw.edu.au/~compbh/

C Revision and recursion Lab Week 2

e Thursday 10am - 12pm week 2
e Online via BlackBoard Collaborate

Content:

o C revision and recursion lab style based questions
o Can also get help with regular lab week 1 if struggling

COMP1521 25T2

Today's Lecture

e Recap Lecture 1
e System Calls
o Style
o Simplified C
o and goto

e MIPS Control
o if statements
o boolean expressions
o while loops/for loops

COMP1521 25T2

DISCLAIMER:

Code written in lectures may not
necessarily have the best style!

Refer to:

o C Style gquide

o Assembly style guide

e Your tutor, tut solutions, lab solutions and assignment
resources.

COMP1521 25T2

https://cgi.cse.unsw.edu.au/~cs1521/25T2/resources/c_style_guide.html
https://jashankj.space/notes/cse-comp1521-better-assembly/

Recap of Lecture 1: Intro to MIPS

o Explored different types of storage/memory

e Loading programs into RAM for execution

e The different program segments (code, data, heap, stack)
e Hexadecimal number representation

e Machine instructions
e Unique to the Instruction Set Architecture (ISA) of the CPU
e E.g. (x86, MIPS, ARM, RISC-V)

o Assembly language (MIPS)

e MIPS emulation using mipsy_web (and others)

COMP1521 25T2

More about registers

Registers have symbolic names and also numeric names
St0 is also known as $8
There are many registers we won't learn about or use until week 3.

Number Names Conventional Usage

0 zero Constant 0

1 at Reserved for assembler

2,3 vo,v1 Expression evaluation and results of a function
4.7 a0..a3 Arguments 1-4

8.16 10..t7 Temporary (not preserved across function calls)
16..23 s0..s7 Saved temporary (preserved across function calls)
24,25 18,19 Temporary (not preserved across function calls)
26,27 ko,k1 Reserved for Kernel use

28 gp Global Pointer

29 sp Stack Pointer

30 fp Frame Pointer

31 ra Return Address (used by function call instructions)

COMP1521 25T2

Back to mipsy

COMP1521 25T2

MIPS Computations with Registers

Almost all of our computations happen between registers!
Want to multiply 2 and 3 and store the result

1i Sto, 2 # load 2 into register S$t©
1i St1, 3 # load 3 into register StT
mul St2, St0, St1 # Store StB x St1 into St2

COMP1521 25T2

Your turn!

Code this up in mipsy_web.
o Set $t0to 10
o SetStl1to7
o Subtract $t1 from $t0 and store in $t2
o Add 5 to $t2

What expression is this equivalent to?

Do you end up with the correct answer in $St2?

COMP1521 25T2

10

Assembly Syntax overview

Assembly instructions, each on their own line
Generally a 1:1 mapping from assembly instructions to binary
instructions
e However, assemblers also provide pseudo-instructions for
convenience
e pseudo-instructions turn into 1-3 real CPU instructions
o Example:

= li $t0, 5 gets mapped to real equivalent CPU instruction
s addi St0, Szero, 5

o You will see many more as you write more code in MIPS.

COMP1521 25T2 11

What do MIPS instructions look like?

e 32 bits long opcobe| R1 | R2 | R3 | R4 [opcope
° Spec|fy -6 bits— F5 bitsd F5 bits4 F5 bits F5 bitsd 6 bits—
o An operation opcobel R1 | Rz | Memory Address
. Constant Value
= (Thething to do) 6 bits— F5 bitsd 15 bits | 16 bits
o 0 or more operands
: : M Add
= (The thing to do it over) OPCODE| Rf oo alne
-6 bits— F5 bits | 21 bits

o For example:

0010000100001001
addi St1, St0,

COMP1521 25T2

R-type

I-type

J-type

12

But how can we do input / output?

COMP1521 25T2

13

System calls

e None of the instructions we have access to can interact with
the outside world (eg. printing, scanning)

o Instead, we request the operating system to perform these
tasks for us - this process is called a system call

o The operating system can access privileged instructions on the
CPU (eg. communicating to other devices)

e mipsy simulates a very basic operating system

o We will explore real system calls in the second half of the

course
COMP1521 25T2

14

Common mipsy syscalls

Service Sv@ Arguments Returns
printf("%d") 1 intin $a®

fputs 4 string in $a@®

scanf ("%d") 5 none intin $vO
fgets 8 line in $a0, length in $al

exit(0) 10 none

printf("%c") 1 charin $a0®

scanf ("%c") 12 none charin $vO

COMP1521 25T2

15

More

advanced

syscalls

Service Svo Arguments Returns
printf("%f") 2 floatin $f12
printf ("%Lf") 3 double in $f12
scanf ("%f") 6 none float in $T0
scanf ("%1f") 7 none double in $f0
sbrk(nbytes) 9 nbytes in $a@ address in $v@
open(filename, flags, mode) 13 filename in $a0, flags in $Sa1, mode fd in $vO
Sa2
read(fd, buffer, length) 14 fd in $a0, buffer in $a1, length in $a2 number of bytes read in
Svo
write(fd, buffer, length) 15 fd in $a0, buffer in $a1, length in $a2 number of written in $v0
close(fd) 16 fd in $a0
exit(status) 17 status in $a0

Probably only used for challenge exercises in COMP1521

COMP1521 25T2

16

COMP1521 25T2

Let’s try to print out the number 42

17

The system call workflow

o We specify which system call we want in Sv©

o eg.print_int issyscall 1:

o 1i Svo, 1
e We specify arguments (if any)
o 1li $a@, 42

o We transfer execution to the operating system

o The OS will fulfill our request if it looks sane
o syscall

e Some syscalls may return a value - check syscall table
COMP1521 25T2

18

COMP1521 25T2

Let’s try to print out the number 42

19

COMP1521 25T2

“Hello COMP15211”

20

Printing Strings and the Data segment

o We need to define our string in the data section
e Then pass the address of our string to our system call in Sa0

o We need to use the .data directive so we can create global
data in our program

e We need to use the .asciiz directive so we can define a
string and give the string a label!

e We need to use the 1la to load the address of the string!!

COMP1521 25T2 21

Hello COMP1521 revisited

. text
main:
1i Svo, 4 # syscall 4: print string
la $a0, hello msg #
syscall # printf ("Hello COMP1521!'\n");
1li $vo, O
§IiE Sra # return O;
.data
hello msqg:

.asciiz "Hello COMP1521!!\n"

COMP1521 25T2

22

Example: Integer Average

// Translate into MIPS
int main(void) {
int a, b;
printf ("Enter a number: ");

scanf ("%d", &a);

printf ("Enter another number:

scanf ("%d", &b);
printf ("The average is %d\n"
return O;

}

COMP1521 25T2

4

") .
14

(a + b)/ 2);

23

Assembly Language Syntax Recap

e li (load immediate) is loading a fixed value into a register
o 1li $tO0, 7
o la (load address) is for loading a fixed address into a register

o remember, labels really just represent addresses!

o la $t0, my label
e move is for copying value from a register into another register

o move $t0, Stl

COMP1521 25T2

24

Assembly Language Syntax Recap

e Labels
o Appended with :
o They represent memory addresses
e Comments
o Start with #
e Directives
o Symbols beginning with. eg .asciiz .text .data
e Constant definitions
o Like #definein C e.qg.
o MAX_NUMBERS = 10

COMP1521 25T2

25

MIPS Control

COMP1521 25T2

So far

e Our programs only execute linearly

e How can we conditionally execute

N

% %

code? . . \ T
e How can we loop over code? e AN ’

[

COMP1521 25T2

Branch Instructions

e We have many conditional branch instructions of the form:
o “if condition is true, jump to offset”

BGE Rs, Rt, Offsetyg IF Ry >= Rt THEN
PC += Offset;s << 2

e We have an unconditional branch instruction too
J Address g PC = PC[31-28] && Address,z << 2

o Thankfully, offset and Address can be replaced by a label:

COMP1521 25T2 28

Simplified C
o Translating C code directly to MIPS is challenging

o Simplify your C code and then translate it to “simplified C”:
o Each line of Simplified C to map to one MIPS instruction
o Compile your simplified C and make sure it still works
o Translate each line of simplified C to MIPS

COMP1521 25T2

29

COMP1511 staff hid this simple trick!

In C, goto allows jumping to any arbitrary label within a program.

This means we can effectively jump around within a program
however we wish.

COMP1521 25T2

30

What will this code do?

int main (void) {
goto sleep;

printf ("Please pay close attention\n");
sleep:

printf ("You are getting sleepy\n");

goto sleep;

printf ("Please wake up now!") ;

return 0;

}

COMP1521 25T2

31

With great power comes great responsibility

Edgar Dijkstra: Go To Statement Considered Harmful

.Go To Statement Considered Harmftul

Key Words and Phrases: go to statement, jump instruetion,
branch instruetion, eonditional clause, alternative clause, repet-
itive elause, program intelligibility, program sequencing

CR Categories: 4.22, 5,23, 5.24 :

EDITOR:

For 2 number of years I have beeu familisr with the observation

that the guality of programmers is a decressing funetion of the

' density of go to statements in the programs they produce. More

recently I discovered why the use of the go to statement has such

disastrous effeeis, and T became convinced that the go to states

- ment should be abelished from sll “higher level” programming

languages (i.e. everything except, perhaps, plain machine code).

. Af“that time I did not attach 1o much importance to this dis-

- povery; [now submit my considerations for publication beeause

- in very recent discussions in which the subject turned up, I have
been urged to do so.

| My first remark is that, although the programmer’s setivity

ends when he has constructed a eorrect program, the process

dynsmic progress is only characterized when we also give to which
eull of the procedurs we refer. With the inclusion of procedures
we can characterize the progress of the procsss via a sequence of
textusl indices, the length of this sequence being equal to the
dynamic depth of procedure ealling. ;

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logieally speaking, such clauses are now

" superfiuous, because we can express repetition with the aid of

reeursive procedures. For reasons of realism I don® wish to ex-
clude them: on the one hand, repetition clauses ean be imple-
mented quile vomfortably wich present day finite equipment; on
the other hand, the reasoning patiern known ss “induction”
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition elauses. With the inclusion of
the repetition eluuses textual indices are no longer sulficient 1o
deseribe the dynamic progress of the pracess. With each entry into

a repetition clause, however, we can associate a so-called “dy-
namic index,” inexorably counting the ordinal number of the
vorresponding current repetition. As reperition eldanses (just as

procedure calls) may be applied nestedly, we find that now the

Go To Considered Harmful (1968)

COMP1521 25T2

32

Don't (ab)use goto

Don't use it in your actual C programs.
e goto makes programs more difficult to read
e goto makes it hard for compilers to optimise code
e In general, do not use goto without good reason!
e We will use it in this course ONLY for writing simplified C to

translate into MIPS.

COMP1521 25T2

33

Simplifying if-else statements

int main (void) { int main (void) {
int n;
printf ("Enter a number: ");

scanf ("%d", &n);

int n;

printf ("Enter a number: ");

scanf ("%d", &n);

int tmp = n % 2;

if (tmp !'= 0) goto if even end;
printf ("even\n") ;

if (n % 2 == 0) {
printf ("even\n") ;
}

return 0; return O;

—)

Now we can write it in MIPS.
Exercise: add an else statement for odd numbers

COMP1521 25T2

Style

e Have equivalent C code as inline comments
e Huge recommendation: indent with 8-wide tabs
o We generally don't indent to show structure

o i.e no indenting within loops or if statements, etc.
e Instead:

o don'tindent labels

o indent instructions by one step
e For this course: focus on readable code, not reducing number
of registers used or lines of code

COMP1521 25T2

35

More complex conditionals:

Split combined “or” conditions

if (milk_age > 48 ||
milk_level < 10) {
printf("Replace milk\n");

} else {
printf("Milk okay!\n");

}
printf("Done!\n");

COMP1521 25T2

36

More complex conditionals:

Split combined “or” conditions

if (milk_age > 48 ||

milk_level < 10) {

printf("Replace milk\n");
} else {
printf("Milk okay!\n");

}
printf("Done!\n");

COMP1521 25T2

)

if (milk_age > 48) goto milk_replace;
if (milk_level < 10) goto milk_replace;

printf("Milk okay!\n");
goto milk_replace__end;

milk_replace:

printf("Replace milk\n");

milk_replace__end:

printf("Done!");

37

More complex conditionals: &&

Invert the condition to use || (De Morgan’s Law)

if (x >= 0 && x <= 100) {

// 1n bounds
} else {

// out of bounds

}

return 0;

COMP1521 25T2 38

More complex conditionals: &&

Invert the condition to use || (De Morgan’s Law)

(A && B) becomes !(!A || IB)

if (x >= 0 && x <= 100) {

// 1n bounds
} else {

// out of bounds

}

return 0;

COMP1521 25T2

More complex conditionals: &&

Invert the condition to use || (De Morgan’s Law)

(A && B) becomes !(!A || IB)

if (x >= 0 && x <= 100) { if (x <@ || x > 100) {
// in bounds // out of bounds

} else { } else {
// out of bounds // in bounds

} }

return 0; return 0;

COMP1521 25T2

40

More complex conditionals:

Split into separate conditionals:

if (x <@ || x > 100) {

// out of bounds
} else {

// 1n bounds
}
return 0;

COMP1521 25T2

41

More complex conditionals:

Split into separate conditionals:

if (x < @) goto x_out_of_bounds;
if (x > 100) goto x_out_of_bounds;

if (x <@ || x > 100) {

// out of bounds // in bounds
} else { .
// in bounds goto epilogue;
} x_out_of_bounds:
return 0; // out of bounds
epilogue:
return 0;

COMP1521 25T2

Your turn

if (y < 10 || z > 50) {
// condition met

} else {

// condition not met

}

return 1;

COMP1521 25T2

43

Your turn

if (y < 10 || z > 50) {
// condition met
} else {

// condition not met

}

return 1;

COMP1521 25T2

if (y < 10) goto condition met;
if (z > 50) goto condition met;

goto condition not met;
condition met:

// condition met
goto epilogue;
condition not met:

// condition not met
epilogue:

return 1;

44

Your turn

if (y < 10 || z > 50) {
// condition met
} else {

// condition not met

}

return 1;

COMP1521 25T2

if (y < 10) goto condition met;
if (z > 50) goto condition met;

// condition not met
goto epilogue;
condition_met:

// condition met

epilogue:

return 1;

45

Your turn

if (y < 10 || (z > 50 && w < 5)) {
// condition met
} else {
// condition not met :>
}
return 1;

COMP1521 25T2

46

Your turn

if (y < 10 || (z > 50 && w < 5)) {

// condition met
} else {

// condition not met

}

return 1;

COMP1521 25T2

—)

if (y < 10) goto condition _met;
if (z <= 50) goto condition not met;
if (w >= 5) goto condition not met;
condition met:
// condition met
goto epilogue;
condition_not met:
// condition not met
epilogue:

return 1;

47

Simplifying loop structures

e for loops should be broken down to while loops

e while loops should be broken down into if/goto
General structure:

o |oop_init:

e loop_condition: (do we need to exit the loop?)

e |oop_body:

o |oop_step:

e loop_end:
Use labels to show structure!

COMP1521 25T2

48

Simplifying for loops: Counting

int 1 = 0,

while (i < 10) {
for (int i = 0; i < 10; i++) { :> printf("%d\n", i

printf("%d\n", 1i); i++;

} }

COMP1521 25T2

49

Simplifying for loops: Counting

int 1 = 0;
while (i < 10) {
for (int i = 90; 1 < 10; i++) { > printf("%d\n", 1i);
printf("%d\n", 1i); i++;
} }

Beware: Don’t forget the i++ when converting to a while loop

COMP1521 25T2 50

Counting

int 1 = 0;
while (i < 10) {

printf("%d\n", 1i);

1++:

COMP1521 25T2

int 1i;

loop_i_to_16_init:
1=0;

loop_i_to_16_cond:

if (i >= 10) goto loop_i_to_16_end;

loop_i_to_160_body:
printf("%d", 1i);
putchar('\n");
loop_i_to_10_step:
i++:
goto loop_i_to_10_cond;
loop_i_to_16_end:

/] ...

51

Exercise: Sum 100 squares

Convert to MIPS

int sum = 9;
for (int i = 1; i <= 100; i++) {
sum += 1 * 1i;

}

COMP1521 25T2

52

Sidenote: C break/continue

break can be used in a loop to completely exit the loop.
The loop condition here makes this look like an infinite loop:

while (1) A
int ¢ = getchar();
if (c == EOF) break;

}

but break means it's possible for the loop to be exited.

In simplified C/MIPS, a break is really just equivalent to going to
the loop’s end label.

COMP1521 25T2 53

Sidenote: C break/continue

continue can be used to proceed to the next iteration of a for
loop.
This would be a (terrible) way to print even numbers:

for (int i = 0; i < 10; i++) {
if (i % 2 !'= @) continue;
printf("%d\n", 1i);

}

In simplified C/MIPS, a continue is really just equivalent to going
to the loop’s step label.

COMP1521 25T2

54

What did we learn today?

e MIPS

Recap of basics from lecture 1
System calls

O

O

COMP1521 25T2

printing out and reading in integers, and chars
printing out strings

Branches
Simplified C
Control

goto statements
if statements,
loops

55

Reach Out

Content Related Questions:
Forum

Admin related Questions email:
cs1521(@cse.unsw.edu.au

COMP1521 25T2

56

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

Student Support | | Need Help With...

student.unsw.edu.au/counselling a In Australia Call Afterhours 1300 787 026
_ @ E'::;Z'c':ea'th Telehealth RS UNSW Mental Health Support 5pm-9am
My Feelings and Mental Line
Health q student.unsw.edu.au/mind-hub Outside Australia
Managing Low Mood, Unusual Feelings & Depression Mind Online Self-Help Resources @ Afterhours 24-hour +61 (2) 8905 0307
HUB Medibank Hotline
m Student Support — student.unsw.edu.au/advisors
' Indigenous Student
Support
Reporting Sexual Assault/Harassment Equity Diversity and Inclusion — edi.unsw.edu.au/sexual-misconduct
(EDI)
Educational Adjustments q q .
To Manage my Studies and Disability / Health Condition Equitable Learning Service — student.unsw.edu.aulels
(ELS)
Academic and Study Skills Academic Language — student.unsw.edu.au/skills
Skills
Sppeel Lencld e Special Consideration — student.unsw.edu.au/special-consideration

Because Life Impacts our Studies and Exams

COMP1521 25T2

	Slide 1: COMP1521 25T2
	Slide 2: ATT: CompEng students
	Slide 3: C Revision and recursion Lab Week 2
	Slide 4: Today’s Lecture
	Slide 5: DISCLAIMER:
	Slide 6: Recap of Lecture 1: Intro to MIPS
	Slide 7: More about registers
	Slide 8: Back to mipsy
	Slide 9: MIPS Computations with Registers
	Slide 10: Your turn!
	Slide 11: Assembly Syntax overview
	Slide 12: What do MIPS instructions look like?
	Slide 13: But how can we do input / output?
	Slide 14: System calls
	Slide 15: Common mipsy syscalls
	Slide 16: More ✨advanced✨ syscalls
	Slide 17
	Slide 18: The system call workflow
	Slide 19
	Slide 20: “Hello COMP1521!!”
	Slide 21: Printing Strings and the Data segment
	Slide 22: Hello COMP1521 revisited
	Slide 23: Example: Integer Average
	Slide 24: Assembly Language Syntax Recap
	Slide 25: Assembly Language Syntax Recap
	Slide 26: MIPS Control
	Slide 27: So far
	Slide 28: Branch Instructions
	Slide 29: Simplified C
	Slide 30: COMP1511 staff hid this simple trick!
	Slide 31: What will this code do?
	Slide 32: With great power comes great responsibility
	Slide 33: Don’t (ab)use goto
	Slide 34: Simplifying if-else statements
	Slide 35: Style
	Slide 36: More complex conditionals:
	Slide 37: More complex conditionals:
	Slide 38: More complex conditionals: &&
	Slide 39: More complex conditionals: &&
	Slide 40: More complex conditionals: &&
	Slide 41: More complex conditionals:
	Slide 42: More complex conditionals:
	Slide 43: Your turn
	Slide 44: Your turn
	Slide 45: Your turn
	Slide 46: Your turn
	Slide 47: Your turn
	Slide 48: Simplifying loop structures
	Slide 49: Simplifying for loops: Counting
	Slide 50: Simplifying for loops: Counting
	Slide 51: Counting
	Slide 52: Exercise: Sum 100 squares
	Slide 53: Sidenote: C break/continue
	Slide 54: Sidenote: C break/continue
	Slide 55: What did we learn today?
	Slide 56: Reach Out
	Slide 57: Student Support | I Need Help With…

