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Today’s Lecture

● Welcomes and Introductions

● How COMP1521 works

● How to get help

● How does a program run?

● A first look at MIPS assembler
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● All course information is on our 
course website

○ Please bookmark it

● Please read the course outline thoroughly

● Moodle for:

○ online/recorded lectures

○ blackboard collaborate for
online tutorials and help sessions

Course Website
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● Convenor: Angela Finlayson

● Lecturer: Alexander (Alex) Kroh

● Admins: 

○ Abiram Nadarajah

○ Alex Blackmore

○ Anna Brew

○ JJ Roberts-White

○ Jimmy Kirkpatrick

● Lecture Moderators:

○ Tasfia Ahmed

○ Ashley Saipaia

● And an Amazing team of tutors!!!!

Course Staff: Who are we?
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● Most students in this course have completed COMP1511 or 

COMP1911 which covers fundamental C programming. 

● This week's tuts and labs: 

○ Review/strengthen assumed C knowledge

○ Cover non-assumed C knowledge including recursion

● For anyone who needs more practice with C fundamentals:

○ Revision sessions in week 2 will help you to revise important 

concepts (e.g. structs, pointers, malloc and recursion)

COMP1521 Students: Who are you?
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Design an algorithmic solution

Describe your solution in C code, using:

● variables, assignment, tests (==,!,<=,&&, etc)

● if, while, scanf(), printf()

● functions, return, prototypes, *.h, *.c

● arrays, structs, pointers, malloc(), free()

Assumed C Knowledge

6COMP1521 25T2



COMP1521 25T1

We do not assume you know:

● Recursion, for loops 

○ These will be covered in week 1 tutorials

● Bit operations, File operations

○ These will be major topics taught in this course

You do not need to know:

● Linked lists

Not Assumed Knowledge

7COMP1521 25T2



COMP1521 25T1

COMP1511/1911 ...

● Gets you thinking like a programmer

○ How can we write a program?

● Solving problems by developing programs

● Expressing your solution in the C language

COMP1521 …

● Gets you thinking like a systems programmer

○ How can we create systems that can run a program?

● Better able to reason about your C programs

Course Goals
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We also expect COMP1521 students to become more independent 

with their programming:

● further develop linux/command line skills 

● further develop coding and debugging skills

● become less reliant on autotests and think more about your 

own test cases

● get used to reading manuals and documentation

Course Expectations
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COMP1511/1911          COMP1521
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The CSE Course Map

Course Context

11COMP1521 25T2

https://media.csesoc.org.au/2021-fyg-cse-pathways/


COMP1521 25T1

Goal: you are able to understand execution of software in detail

● Software components of modern computer systems

● How C programs execute (at the machine level)

● How to write (MIPS) assembly language

● How computers represent data including integers & floats & 

emoji 

● How operating systems are structured

● Unix/Linux system-level programming particularly file 

operations

● Introduction to processes, thread and concurrency

Major Themes
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There is no prescribed textbook for 

COMP1521.

Recommended reference:

Computer Systems: A Programmer's 

Perspective, Bryant and O'Hallaron

● covers most topics, and quite well

● but uses a different machine code

Available in UNSW Bookshop

Textbook
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● All tools available on the CSE lab machines (Debian Linux)

○ can use VLAB or SSH to connect to CSE from home

● Compilers: 

○ dcc on CSE machines (clang or gcc elsewhere)

● Assembly language:  

○ mipsy (mipsy_web online, vscode extension)

● Use your own favourite text editor: 

○ vscode,ed, vim, emacs, nano, gedit etc.

● Other tools: make,  man,  bc -ql,  python3, etc.

● Learn to love the shell and command-line ... very useful!

Systems and Tools
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The linux manual (man) is divided into the following sections:

● Section 1: Executable programs or shell commands eg. ls, cp

● Section 2: System calls (we will be looking at many of these in 

later weeks)

● Section 3: Library calls eg. strcpy, scanf

For example:

To find information about the C function getchar type

man 3 getchar

The Linux Manual (man)
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● There are also other sections we won't be using so much 

● You can find more information about man using the command 

man man which shows the manual page about the manual.

● You can get more information about individual sections by 

using man 1 intro, man 2 intro etc.

Advice: man will be available in the exam. Get used to using it!

The Linux Manual (man)
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Course Format

● Weekly Lectures 2 x 2 hours

● Weekly tut/labs 3 hour blocks

● Weekly tests done in your own time starting in week 3 

● 2 Major Assignments

● 1 Final Exam in person
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Monday 14:00 - 16:00: Ainsworth G03 (K-J17-G03)

Wednesday 11:00 - 13:00: Physics Theatre (K-K14-19)

● In Person and Live Streamed via Moodle

● There is usually space in lecture hall so come along even if you 

are in webstream!!

All lectures recorded!

Lectures 2x2 Hours a Week
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● Present a brief overview of theory

● Focus on practical demonstrations of coding

○ Problem-solving, testing, debugging

● If you have a question during the lecture:

○ Put your hand up and ask

○ Ask in live chat

● Please be respectful of others - everyone is here to learn

○ Don’t be noisy

○ Be kind to one another in the chat and of course in person too :)

Lectures 2x2 Hours a Week
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● Resources:

○ All lectures recorded and linked from course home page.

○ Lecture slides available on the web before lecture.

○ Live code from lectures released during/after lecture

○ Each lecture topic has extra polished code examples and more 

detailed course notes available too

Lectures 2x2 Hours a Week
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● 3-hour tut-labs

○ start week 1

○ run each week (except week 6)

● Each class is a 1 hour tutorial, followed by a 2 hour lab

● Most of our tut-labs are face to face classes

● Online tut-labs are delivered via Blackboard Collaborate 

(accessed via Moodle)

TODO public holiday means some people miss tutes on XDAY 

Week X

- An alternative time for your class will be arranged by your tutor

Tut-labs
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● To get the best out of tutorials

○ Not marked, and no submission

○ But you will learn more if you try the problems yourself

Find your knowledge gaps

Know what questions to ask

○ Include extra questions you can use for revision that won’t get 

covered in class time

Do not keep quiet in tutorials: talk, discuss, ask questions, answer 

questions

Tutorials
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Each tutorial is followed by a two-hour lab class.

● Several exercises, mostly small coding tasks

● Build skills needed for assignments, exam

● Done individually

Submitted via give before Monday 12:00 (midday) in the following 

week.

Lab 1 is an exception. It is due Monday 12:00 (midday) week 3.

Labs
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Automarked (with partial marks) : 15% of final mark

● There will be seen autotests and unseen autotests

Labs may include challenge exercises:

● may be silly, confusing, or impossibly difficult

● almost full marks (95+%) possible without completing any 

challenge exercises

Labs
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Flex week (Week 6):

● No lectures, tutorials or labs 

● There may be optional revision activities and help sessions

Public Holidays:

● Kings birthday 9th June (Monday Week 2)

● Lecture will be pre-recorded to make up for Monday Week 2

● An alternative time for tutorials will be arranged by your tutor 

and/or you may attend another tut/lab in the same week.

Flexibility Week and Public Holidays
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From week 3, and every week after (including week 6):

● Released on Thursday 3pm 

● due exactly one week later

● Submitted via give

Gives an immediate reality-check on your progress

Tests
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Conditions:

● Done in your own time under self-enforced exam conditions.

● Time limit of 1 hour

● Can keep working after hour for 50% cap on mark

Marking:

● Automarked (with partial marks)

● Best 6 of 8 tests contribute 10% of final mark

● Any violation of test conditions -> 0 for whole component

Tests
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Ass1: Assembly (MIPS) Programming, weeks 3 - 5, 15%

Ass2: C Systems Programming, weeks 7 - 9, 15%

Assignments give you experience with larger programming 

problems than lab exercises

Assignments will be carried out individually

Assignments
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● They always take longer than you expect.

● Don't leave them to the last minute.

● Get help from appropriate sources - help sessions, forum, 

tutors in your lab

● Don’t copy or use generative AI

● Standard UNSW late penalties apply

○ 5% per day for 5 days, computed hourly 

○ The penalty is 5% of the maximum possible assignment mark

○ The penalty is deducted from your actual mark

Assignment Tips
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In-person 3-hour practical exam: in CSE labs, on CSE lab 

computers

● You must be in Sydney to sit the exam during the exam period

● limited environment: you get the tools and software of a lab 

computer, not your own computer

● You don't get access to your normal CSE account, so no 

custom configuration files and no course website available.

● no dcc-help or autotest-help

● hurdle: you must score 18+/45 (40%) on the final exam to pass 

course

Final Exam
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● 15% Labs

● 10% Tests

● 15% Assignment 1 --- due end of week 5

● 15% Assignment 2 --- due start of week 10

● 45% Final Exam 

Above marks may be scaled to ensure an appropriate distribution

Assessment
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To pass, you must:

● score >= 50/100 overall

● score >= 18/45 on final exam

For example if you get:

● 55/100 overall in the course

● 17/45 on final exam 

You will get a grade of  55 UF

You will not get a grade of 55 PS

Assessment Hurdle
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● CSE offers and inclusive learning environment for all students

● In anything connected to UNSW, including social media, the 

following are considered to be student misconduct and won’t 

be tolerated

○ Racist/sexist/offensive language or images

○ Sexually inappropriate behaviour

○ Bullying, harassing or aggressive behaviour

○ Invasion of privacy

● Show respect to your fellow students and the course staff.

Code of Conduct
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● Cheating of any kind constitutes academic misconduct and 

carries a range of penalties

● Examples academic misconduct:

○ Groupwork on individual assignments (discussion OK)

○ Allowing another student to copy your work

○ Getting hacker cousin to code for you

○ Purchasing a solution to the assignment.

Plagiarism
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● Labs, Tests and Assignments must be entirely your own work

○ You can not work on labs tests or assignments as a pair or in a 

group

● Plagiarism will be checked and penalised

○ Plagiarism may result in suspension from UNSW

○ Scholarship students may lose scholarship

○ International students may lose visa

○ Supplying your work to any other person is also considered 

plagiarism

● More information can be found in the course outline

Plagiarism
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Generative AI
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● You may be able to see the 

issues with these AI 

generated images

○ Will you see all issues with 

AI generated MIPS or C 

code ? 

Generative AI
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● You may be able to see the 

issues with these AI 

generated images

○ Will you see all issues with 

AI generated MIPS or C 

code ? 

● Will AI generate the same 

code for other students?

Generative AI
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● You may be able to see the 

issues with these AI 

generated images

○ Will you see all issues with 

AI generated MIPS or C 

code ? 

● Will AI generate the same 

code for other students?

● What will you do in the final 

exam without AI?

Generative AI
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● Generative AI tools, e.g. GitHub Copilot, ChatGPT  have great 

potential to assist coders however:

○ Code they generate often has subtle errors & security 

vulnerabilities

○ Often generate poor code or unusual code

○ Expert coders  (hopefully) can detect this

○ Use of tools such as Copilot, ChatGPT won't help you understand:

■ The underlying design decisions 

■ Alternate approaches

■ How the code works

○ Incapable of solving larger problems seen in later courses

Use of Generative AI Tools
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● Use of generative AI tools including GitHub Copilot, ChatGPT 

not permitted in COMP1521

○ later courses will likely allow use of these tools

● dcc-help, autotest-help are specialized generative AI tools 

designed for CSE students

○ use of dcc-help and autotest-help is permitted in COMP1521

○ however dcc-help and autotest-help will not be available in the 

exam

Use of Generative AI Tools
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● Coding is a skill that improves with practice

○ The more you practice, the easier you will find 

assignments/exams

○ Do the lab exercises yourself

○ Do the weekly tests yourself

○ Do the assignments yourself

○ Practice programming outside classes

○ Be curious and experiment with alternate solutions

○ Do revision lab exercises

○ Do extra revision tutorial questions like a mini prac exam

● Get help when needed from course staff! 

How to Pass this Course
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● Ask questions in lectures and 

in lecture chat

● Ask Questions in tuts and labs!

● Forum:

○ Post all your questions here 

○ Feel free to answer other’s 

questions 

○ Don’t post your code publicly 

in the forum

Course Content Related Help
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● Help Sessions:

○ Good place to get one-on-one help outside of normal lab/tutorial 

times

○ There are optional drop in sessions

● Revision Sessions:

○ Optional group sessions to revise relevant topics

○ Booking required

○ First one Week 2: C revision (2d arrays strings, pointers, structs, 

malloc) and recursion

Schedules coming out soon

Course Content Related Help 
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● Course Administration Issues:

○ Email: cs1521@cse.unsw.edu.au

● Enrollment Issues: 

○ https://nucleus.unsw.edu.au/en/contact-us

● cse course account issues: CSE Help Desk

http://www.cse.unsw.edu.au/~helpdesk/

● Special consideration:

○ https://student.unsw.edu.au/special-consideration

● Equitable Learning Plans:

○ https://www.student.unsw.edu.au/equitable-learning

Admin Related Help
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Course Material has been drawn from:

● Introduction to Computing Systems: from bits and gates to C 

and beyond, Patt and Patel

● The Elements of Computer Systems: Building a modern 

computer system from first principles, Nisan and Schocken

● COMP2121 Course Web Site, Parameswaran and Guo

● Past COMP1521 lecturers, admin, and tutors

Always give credit to your sources

Acknowledgement
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MIPS: An Introduction

47

Adapted from Abiram Nadarajah, Hammond Pearce, 
Andrew Taylor  and John Shepherd’s slides

COMP1521 25T2



COMP1521 25T1

In COMP1511/1911:

● We run a compiler (dcc?)

○ dcc -o hello hello.c

● We run our program

○ ./hello

What’s going on here? What’s in hello? Where is it stored?

What is a program? How do they execute?
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● A program is a set of instructions and data

○ In binary format (0s and 1s)

● A program is often stored as a file on a “hard disk drive” (HDD) 

or “solid state drive” (SSD)

○ Long-term, non-volatile (keeps contents when power goes off)

What is a program? Where is it stored?

49

HDD SSD
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● The program needs to be loaded into memory - RAM!

○ RAM is like a massive 1D array 

○ It has addresses, which are like indexes into that array

○ RAM is much faster than SSD or HDD, but more expensive

○ RAM is volatile

■ Power goes off and everything is lost from RAM

So how do we execute the program?

50

RAM
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● Programs contain information that needs to be loaded into the 

appropriate segments of memory so the program can execute.

● Segments include

○ Text/code segments:  

■ Stores program instructions

■ Typically readonly and fixed size

○ Data segments: 

■ Readonly section for string literals and constants

■ Writable section for global variables

■ Fixed size

Loading our C program into Memory
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○ Heap:

■ dynamically allocated memory

■ may grow when we malloc

■ may shrink when we free

○ Stack:

■ local variables, parameters automatically managed

■ grows when functions are called

■ shrinks when functions return

C Memory during Program execution
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C Program Memory Map
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0x00000000 0x7FFFFFFF

Read only

text/code data heap stack

machine code 
for program 
instructions

global vars
and string 
literals

malloced 
things

local vars 
and 
parameters
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int main(void) {

int n, m;

n = 5;

m = f(n);

return 0;

}

int f(int x) {

return g(x);

}

The Stack

54

int g(int y) {

int r = 4 * h(y);

return r;

}

int h(int z) {

int i;

int p = 1;

for (i = 1; i < z; i++) {

p = p * i;

}

return p;

}

COMP1521 25T2
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A “good” way to use up the stack and crash your program is to  

create “infinite” recursion.

Recursion is when a function directly (or indirectly) calls itself

Infinite Recursion Demo

55

// A recursive function that has no stopping condition

void f(int x) {

printf(“%d\n”, x);

f(x + 1);

}
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Inside a CPU
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● We have our instructions in memory (RAM)

● The CPU can 

○ fetch an instruction from memory

○ decodes the instructions to work out what it should do

○ executes the instruction!

The CPU
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A day in the life of a CPU - as C code

int program_counter = START_ADDRESS;

while (1) {
// Fetch an instruction from memory
int instruction = memory[program_counter];
// Move to the next instruction
program_counter++;
// Execute the next instruction
execute(instruction, &program_counter);

// ^ note: some instructions may
//   modify the program counter

}

It’s more 
fun

than it sounds
I swear
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● Computations: eg. add, subtract, multiply, divide, bitwise

● Load/store: Load data from RAM! Store data to RAM!

● Branch: jump to execute different instructions

● System calls: request to the operating system to do something

● Many more things too!

What can instructions do?
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Machine Code Instructions are really just 0s and 1s (binary data)

● Would be a pain to read/write literal instructions

● Instructions might change depending on code layout 

● Instead, we use assembly language to form a human-readable 

representation of each instruction

○ Each instruction we write in assembly code typically represents a 

single CPU instruction

○ An assembler translates the assembly code to binary Machine 

Code

Machine Code vs Assembly Code
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● For example: We might write in assembly:

addi $t1, $t0, 12
● And the assembler might generate the following machine code 

instruction:

00100001000010010000000000001100

● CPUs can’t run assembly code directly; they can only execute 

machine code

Example Assembly Code Instruction
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● We usually just compile our code in one step to create our 

executable program.

○ gcc -o hello hello.c

● When we compile our code, the compiler first generates 

assembly code.

● To see this intermediate step we can type in:

○ gcc -S hello.c

○ and the assembly code it produces is in hello.s

● Will this generate the same assembly code on a different 

machine?

Compiling to Assembly Code
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● We have a program in some language (e.g. C)

● We compile the program into assembly and it is assembled 

into a binary

● The binary is stored to a file

Then to execute it…

● The program is loaded into memory

● The CPU program counter is set to the first instruction

● And we are off!

So, to recap: how do we make a program?
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● Usually we tend to write in a higher-level compiled language

○ C, C++, Go, Rust, Java, Swift, and many more…

○ A compiler will take programs in these languages and output the 

corresponding assembly instructions

● In this course we write assembly code ourselves

○ The main reason in this course is to understand how a compiled 

program executes

■ Can be helpful when debugging

■ Also handy to identify security vulnerabilities and exploit binaries (see 

COMP6447)

Writing Assembly code
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● Other reasons for writing assembly code:

○ To optimise code for performance

■ Less instructions = faster to execute = saving picoseconds!

■ 90/10 rule – 90% of time spent in 10% of code

○ Sometimes it’s necessary

■ eg. writing code to interact directly with a device (i.e. drivers)

○ And sometimes, someone has to!

■ e.g. who’s going to make your compiler in the first place?

Writing Assembly Code
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● Different types of CPUs implement different Instruction Set 

Architectures (ISAs)

○ In other words different types of CPUs may speak different 

languages or understand different sets of instructions

● ISAs define a finite set of instructions

○ These “simple” instructions can be combined to compute 

anything 

● Examples of ISAs are

○ x86, ARM, RISC-V, MIPS

Instruction Set Architectures (ISAs)
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MIPS

67

MIPS?
… but why?
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● In COMP1521 we learn the MIPS instruction set architecture

● Once used from game consoles to supercomputers

○ Nintendo64

○ Still used in routers and TVs

○ But being out-competed by ARM and RISC-V

● Considerable learning resources available

● Inspired many other ISAs

○ If you know MIPS, you can easily branch to ARM, RISC-V, and others

● MIPS is simple yet powerful - good foundation for knowledge

So why MIPS?

68
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● True (probably).

● Your laptop probably has x86 (PCs or older Mac) or ARM (newer 

Mac)

● But, we can emulate them using mipsy
○ software that recreates the behaviour of a real MIPS CPU

○ written by Zac* (past course admin, now graduated/lecturing COMP6991)

○ can run on CSE machines (including vlab)

○ can also download on your own machine: 

https://github.com/insou22/mipsy/

○ comes with a command-line interface to run in your terminal

But I don’t have a MIPS CPU!
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● mipsy command line 

○ 1521 mipsy hello.s

● mipsy_web runs entirely in your browser

○ by Shrey*, on course website: 

https://cgi.cse.unsw.edu.au/~cs1521/mipsy

● vscode extension

○ written by Xavier - can download the ‘mipsy editor features’ 

extension

Running a mips program

70

* some contributions from Josh Harcombe, Dylan Brotherston and Abiram
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Can we write some MIPS?
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Soon

72COMP1521 25T2



COMP1521 25T1

● a set of data registers

● a set of control registers

● a control unit

● an arithmetic-logic unit 

● a floating-point unit 

● caches

● connection to Memory/RAM

What’s in a MIPS CPU?
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● Most CPU architectures perform operations over registers

● They are part of the processor itself, not the memory

● Speed advantages:

○ Memory is fast, CPU is faster!

● There are only a small number of registers

● Values stored in memory must be loaded into registers for the 

CPU to perform computations on them.

Registers
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● MIPS specifies 32 general-purpose registers

○ 32-bits each, same size as a typical C integer - coincidence?

● Floating point registers (not used in COMP1521)

● Hi/Lo special registers for multiply and divide (not important in 

this course)

● Program counter 

○ Keeps track of which instruction to fetch and execute next

○ Modified by branch and jump instructions

MIPS registers
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MIPS registers to use for now

76

● For now we will mainly use $t0 to $t9 registers for general 

purpose calculations

● Will also need $v0, $a0 for certain things too.

● $zero ($0) is special!

○ Always has the value 0 -> attempts to change it have no effect

● $ra is also special!

○ We use it at the end of every program
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MIPS Computations with Registers

Almost all of our computations happen between registers!

Want to multiply 2 and 3 and store the result

Load 2 and 3 into registers:

li $t0, 2

li $t1, 3

And store the result:

mul $t2, $t0, $t1  
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Let’s try it!
Open up mipsy_web and code along!

78

https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
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Here is a bare bones template to put instructions in to run them:

Simple Program Template

79

main:

# YOUR CODE GOES IN HERE

li $v0 # return 0

jr $ra
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Your turn

80

● Code this up in mipsy_web.

○ Set $t0 to 10

○ Set $t1 to 7

○ Subtract $t1 from $t0 and store in $t2

○ Add 5 to $t2

What expression is this equivalent to?

Do you end up with the correct answer in $t2?
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But how can we input/output?
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● None of the instructions we have access to can interact with 

the outside world (eg. printing, scanning)

● Instead, we request the operating system to perform these 

tasks for us - this process is called a system call

● The operating system can access privileged instructions on the 

CPU (eg. communicating to other devices)

● mipsy simulates a very basic operating system

● Will explore real system calls in the second half of the course

System calls
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We don’t use syscalls 8 and 12 much in COMP1521

Most input will be integers

Common mipsy syscalls
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More advanced syscalls 

84

Probably only used for challenge exercises in COMP1521
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Let’s try to print out the number 42
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● We specify which system call we want in $v0

○ eg. print_int is syscall 1:

○ li $v0, 1
● We specify arguments (if any)

○ li $a0, 42
● We transfer execution to the operating system

○ The OS will fulfill our request if it looks sane

○ syscall

● Some syscalls may return a value - check syscall table

The system call workflow
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MIPS and mipsy documentation
https://cgi.cse.unsw.edu.au/~cs1521/25T2/resources/mips-guide.html

Literally your best friend (it’ll even be there for you in the exam )
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0x in C and mipsy 

means hexadecimal.

Hexadecimal uses 16 

digits. It uses 0-9 

then A-F

We will learn more 

about this later in the 

course.

Aside: Hexadecimal

88

Decimal Hexadecimal Decimal Hexadecimal

0 0 10 A

1 1 11 B

2 2 12 C

3 3 13 D

4 4 14 E

5 5 15 F

6 6 16 10

7 7 17 11

8 8 18 12

9 9 19 13
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We often use Hexadecimal to represent addresses and other binary 

data like instructions.

● Easier for humans to read than binary

○ Each hex digit represents exactly 4 bits

○ 8 hex digits represents a 32 bit value

● Maps more nicely to binary than decimal

Aside: Hexadecimal
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● Admin: How the course is run

● Concepts: How programs run!

● Introduction to MIPS:

○ Running MIPS programs

○ Writing simple programs with simple instructions

○ Simple system calls to print out data

What did we learn today?
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● MIPS Basics:

○ More MIPS instructions and examples

○ Using system calls to read integer and character data

○ Understanding how to work with strings and how hello.s works

● MIPS Control:

○ if statements

○ loops

What will we learn next lecture
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Content Related Questions:  

Forum

Admin related Questions email: 

cs1521@cse.unsw.edu.au

Reach Out

COMP1521 25T2
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Student Support | I Need Help With…

93

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student 

Support

Equity Diversity and Inclusion 

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service 

(ELS)

— student.unsw.edu.au/els

Academic Language 

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental 

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health 

Connect

Mind 

HUB

student.unsw.edu.au/counselling 

Telehealth

student.unsw.edu.au/mind-hub 

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support 
Line

Outside Australia 

Afterhours 24-hour 
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financ ial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams
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