
COMP1521 25T1

COMP1521 25T2

Course Introduction and
MIPS Introduction

Week 1 Lecture 1

COMP1521 25T2

COMP1521 25T1

Today’s Lecture

● Welcomes and Introductions

● How COMP1521 works

● How to get help

● How does a program run?

● A first look at MIPS assembler

2COMP1521 25T2

COMP1521 25T1

● All course information is on our
course website

○ Please bookmark it

● Please read the course outline thoroughly

● Moodle for:

○ online/recorded lectures

○ blackboard collaborate for
online tutorials and help sessions

Course Website

3

https://cgi.cse.unsw.edu.au/~cs1521/

COMP1521 25T2

https://cgi.cse.unsw.edu.au/~cs1521/

COMP1521 25T1

● Convenor: Angela Finlayson

● Lecturer: Alexander (Alex) Kroh

● Admins:

○ Abiram Nadarajah

○ Alex Blackmore

○ Anna Brew

○ JJ Roberts-White

○ Jimmy Kirkpatrick

● Lecture Moderators:

○ Tasfia Ahmed

○ Ashley Saipaia

● And an Amazing team of tutors!!!!

Course Staff: Who are we?

4

http://www.cse.unsw.edu.au/~cs1521/current/team/

COMP1521 25T2

http://www.cse.unsw.edu.au/~cs1521/current/team/

COMP1521 25T1

● Most students in this course have completed COMP1511 or

COMP1911 which covers fundamental C programming.

● This week's tuts and labs:

○ Review/strengthen assumed C knowledge

○ Cover non-assumed C knowledge including recursion

● For anyone who needs more practice with C fundamentals:

○ Revision sessions in week 2 will help you to revise important

concepts (e.g. structs, pointers, malloc and recursion)

COMP1521 Students: Who are you?

5COMP1521 25T2

COMP1521 25T1

Design an algorithmic solution

Describe your solution in C code, using:

● variables, assignment, tests (==,!,<=,&&, etc)

● if, while, scanf(), printf()

● functions, return, prototypes, *.h, *.c

● arrays, structs, pointers, malloc(), free()

Assumed C Knowledge

6COMP1521 25T2

COMP1521 25T1

We do not assume you know:

● Recursion, for loops

○ These will be covered in week 1 tutorials

● Bit operations, File operations

○ These will be major topics taught in this course

You do not need to know:

● Linked lists

Not Assumed Knowledge

7COMP1521 25T2

COMP1521 25T1

COMP1511/1911 ...

● Gets you thinking like a programmer

○ How can we write a program?

● Solving problems by developing programs

● Expressing your solution in the C language

COMP1521 …

● Gets you thinking like a systems programmer

○ How can we create systems that can run a program?

● Better able to reason about your C programs

Course Goals

8COMP1521 25T2

COMP1521 25T1

We also expect COMP1521 students to become more independent

with their programming:

● further develop linux/command line skills

● further develop coding and debugging skills

● become less reliant on autotests and think more about your

own test cases

● get used to reading manuals and documentation

Course Expectations

9COMP1521 25T2

COMP1521 25T1

COMP1511/1911 COMP1521

10COMP1521 25T2

COMP1521 25T1

The CSE Course Map

Course Context

11COMP1521 25T2

https://media.csesoc.org.au/2021-fyg-cse-pathways/

COMP1521 25T1

Goal: you are able to understand execution of software in detail

● Software components of modern computer systems

● How C programs execute (at the machine level)

● How to write (MIPS) assembly language

● How computers represent data including integers & floats &

emoji

● How operating systems are structured

● Unix/Linux system-level programming particularly file

operations

● Introduction to processes, thread and concurrency

Major Themes

12COMP1521 25T2

COMP1521 25T1

There is no prescribed textbook for

COMP1521.

Recommended reference:

Computer Systems: A Programmer's

Perspective, Bryant and O'Hallaron

● covers most topics, and quite well

● but uses a different machine code

Available in UNSW Bookshop

Textbook

13COMP1521 25T2

COMP1521 25T1

● All tools available on the CSE lab machines (Debian Linux)

○ can use VLAB or SSH to connect to CSE from home

● Compilers:

○ dcc on CSE machines (clang or gcc elsewhere)

● Assembly language:

○ mipsy (mipsy_web online, vscode extension)

● Use your own favourite text editor:

○ vscode,ed, vim, emacs, nano, gedit etc.

● Other tools: make, man, bc -ql, python3, etc.

● Learn to love the shell and command-line ... very useful!

Systems and Tools

14COMP1521 25T2

COMP1521 25T1

The linux manual (man) is divided into the following sections:

● Section 1: Executable programs or shell commands eg. ls, cp

● Section 2: System calls (we will be looking at many of these in

later weeks)

● Section 3: Library calls eg. strcpy, scanf

For example:

To find information about the C function getchar type

man 3 getchar

The Linux Manual (man)

15COMP1521 25T2

COMP1521 25T1

● There are also other sections we won't be using so much

● You can find more information about man using the command

man man which shows the manual page about the manual.

● You can get more information about individual sections by

using man 1 intro, man 2 intro etc.

Advice: man will be available in the exam. Get used to using it!

The Linux Manual (man)

16COMP1521 25T2

COMP1521 25T1

Course Format

● Weekly Lectures 2 x 2 hours

● Weekly tut/labs 3 hour blocks

● Weekly tests done in your own time starting in week 3

● 2 Major Assignments

● 1 Final Exam in person

17COMP1521 25T2

COMP1521 25T1

Monday 14:00 - 16:00: Ainsworth G03 (K-J17-G03)

Wednesday 11:00 - 13:00: Physics Theatre (K-K14-19)

● In Person and Live Streamed via Moodle

● There is usually space in lecture hall so come along even if you

are in webstream!!

All lectures recorded!

Lectures 2x2 Hours a Week

18COMP1521 25T2

COMP1521 25T1

● Present a brief overview of theory

● Focus on practical demonstrations of coding

○ Problem-solving, testing, debugging

● If you have a question during the lecture:

○ Put your hand up and ask

○ Ask in live chat

● Please be respectful of others - everyone is here to learn

○ Don’t be noisy

○ Be kind to one another in the chat and of course in person too :)

Lectures 2x2 Hours a Week

19COMP1521 25T2

COMP1521 25T1

● Resources:

○ All lectures recorded and linked from course home page.

○ Lecture slides available on the web before lecture.

○ Live code from lectures released during/after lecture

○ Each lecture topic has extra polished code examples and more

detailed course notes available too

Lectures 2x2 Hours a Week

20COMP1521 25T2

COMP1521 25T1

● 3-hour tut-labs

○ start week 1

○ run each week (except week 6)

● Each class is a 1 hour tutorial, followed by a 2 hour lab

● Most of our tut-labs are face to face classes

● Online tut-labs are delivered via Blackboard Collaborate

(accessed via Moodle)

TODO public holiday means some people miss tutes on XDAY

Week X

- An alternative time for your class will be arranged by your tutor

Tut-labs

21COMP1521 25T2

COMP1521 25T1

● To get the best out of tutorials

○ Not marked, and no submission

○ But you will learn more if you try the problems yourself

Find your knowledge gaps

Know what questions to ask

○ Include extra questions you can use for revision that won’t get

covered in class time

Do not keep quiet in tutorials: talk, discuss, ask questions, answer

questions

Tutorials

22COMP1521 25T2

COMP1521 25T1

Each tutorial is followed by a two-hour lab class.

● Several exercises, mostly small coding tasks

● Build skills needed for assignments, exam

● Done individually

Submitted via give before Monday 12:00 (midday) in the following

week.

Lab 1 is an exception. It is due Monday 12:00 (midday) week 3.

Labs

23COMP1521 25T2

COMP1521 25T1

Automarked (with partial marks) : 15% of final mark

● There will be seen autotests and unseen autotests

Labs may include challenge exercises:

● may be silly, confusing, or impossibly difficult

● almost full marks (95+%) possible without completing any

challenge exercises

Labs

24COMP1521 25T2

COMP1521 25T1

Flex week (Week 6):

● No lectures, tutorials or labs

● There may be optional revision activities and help sessions

Public Holidays:

● Kings birthday 9th June (Monday Week 2)

● Lecture will be pre-recorded to make up for Monday Week 2

● An alternative time for tutorials will be arranged by your tutor

and/or you may attend another tut/lab in the same week.

Flexibility Week and Public Holidays

25COMP1521 25T2

COMP1521 25T1

From week 3, and every week after (including week 6):

● Released on Thursday 3pm

● due exactly one week later

● Submitted via give

Gives an immediate reality-check on your progress

Tests

26COMP1521 25T2

COMP1521 25T1

Conditions:

● Done in your own time under self-enforced exam conditions.

● Time limit of 1 hour

● Can keep working after hour for 50% cap on mark

Marking:

● Automarked (with partial marks)

● Best 6 of 8 tests contribute 10% of final mark

● Any violation of test conditions -> 0 for whole component

Tests

27COMP1521 25T2

COMP1521 25T1

Ass1: Assembly (MIPS) Programming, weeks 3 - 5, 15%

Ass2: C Systems Programming, weeks 7 - 9, 15%

Assignments give you experience with larger programming

problems than lab exercises

Assignments will be carried out individually

Assignments

28COMP1521 25T2

COMP1521 25T1

● They always take longer than you expect.

● Don't leave them to the last minute.

● Get help from appropriate sources - help sessions, forum,

tutors in your lab

● Don’t copy or use generative AI

● Standard UNSW late penalties apply

○ 5% per day for 5 days, computed hourly

○ The penalty is 5% of the maximum possible assignment mark

○ The penalty is deducted from your actual mark

Assignment Tips

29COMP1521 25T2

COMP1521 25T1

In-person 3-hour practical exam: in CSE labs, on CSE lab

computers

● You must be in Sydney to sit the exam during the exam period

● limited environment: you get the tools and software of a lab

computer, not your own computer

● You don't get access to your normal CSE account, so no

custom configuration files and no course website available.

● no dcc-help or autotest-help

● hurdle: you must score 18+/45 (40%) on the final exam to pass

course

Final Exam

30COMP1521 25T2

COMP1521 25T1

● 15% Labs

● 10% Tests

● 15% Assignment 1 --- due end of week 5

● 15% Assignment 2 --- due start of week 10

● 45% Final Exam

Above marks may be scaled to ensure an appropriate distribution

Assessment

31COMP1521 25T2

COMP1521 25T1

To pass, you must:

● score >= 50/100 overall

● score >= 18/45 on final exam

For example if you get:

● 55/100 overall in the course

● 17/45 on final exam

You will get a grade of 55 UF

You will not get a grade of 55 PS

Assessment Hurdle

32COMP1521 25T2

COMP1521 25T1

● CSE offers and inclusive learning environment for all students

● In anything connected to UNSW, including social media, the

following are considered to be student misconduct and won’t

be tolerated

○ Racist/sexist/offensive language or images

○ Sexually inappropriate behaviour

○ Bullying, harassing or aggressive behaviour

○ Invasion of privacy

● Show respect to your fellow students and the course staff.

Code of Conduct

33COMP1521 25T2

COMP1521 25T1

● Cheating of any kind constitutes academic misconduct and

carries a range of penalties

● Examples academic misconduct:

○ Groupwork on individual assignments (discussion OK)

○ Allowing another student to copy your work

○ Getting hacker cousin to code for you

○ Purchasing a solution to the assignment.

Plagiarism

34COMP1521 25T2

COMP1521 25T1

● Labs, Tests and Assignments must be entirely your own work

○ You can not work on labs tests or assignments as a pair or in a

group

● Plagiarism will be checked and penalised

○ Plagiarism may result in suspension from UNSW

○ Scholarship students may lose scholarship

○ International students may lose visa

○ Supplying your work to any other person is also considered

plagiarism

● More information can be found in the course outline

Plagiarism

35COMP1521 25T2

COMP1521 25T1

Generative AI

36COMP1521 25T2

COMP1521 25T1

● You may be able to see the

issues with these AI

generated images

○ Will you see all issues with

AI generated MIPS or C

code ?

Generative AI

37COMP1521 25T2

COMP1521 25T1

● You may be able to see the

issues with these AI

generated images

○ Will you see all issues with

AI generated MIPS or C

code ?

● Will AI generate the same

code for other students?

Generative AI

38COMP1521 25T2

COMP1521 25T1

● You may be able to see the

issues with these AI

generated images

○ Will you see all issues with

AI generated MIPS or C

code ?

● Will AI generate the same

code for other students?

● What will you do in the final

exam without AI?

Generative AI

39COMP1521 25T2

COMP1521 25T1

● Generative AI tools, e.g. GitHub Copilot, ChatGPT have great

potential to assist coders however:

○ Code they generate often has subtle errors & security

vulnerabilities

○ Often generate poor code or unusual code

○ Expert coders (hopefully) can detect this

○ Use of tools such as Copilot, ChatGPT won't help you understand:

■ The underlying design decisions

■ Alternate approaches

■ How the code works

○ Incapable of solving larger problems seen in later courses

Use of Generative AI Tools

40COMP1521 25T2

COMP1521 25T1

● Use of generative AI tools including GitHub Copilot, ChatGPT

not permitted in COMP1521

○ later courses will likely allow use of these tools

● dcc-help, autotest-help are specialized generative AI tools

designed for CSE students

○ use of dcc-help and autotest-help is permitted in COMP1521

○ however dcc-help and autotest-help will not be available in the

exam

Use of Generative AI Tools

41COMP1521 25T2

COMP1521 25T1

● Coding is a skill that improves with practice

○ The more you practice, the easier you will find

assignments/exams

○ Do the lab exercises yourself

○ Do the weekly tests yourself

○ Do the assignments yourself

○ Practice programming outside classes

○ Be curious and experiment with alternate solutions

○ Do revision lab exercises

○ Do extra revision tutorial questions like a mini prac exam

● Get help when needed from course staff!

How to Pass this Course

42COMP1521 25T2

COMP1521 25T1

● Ask questions in lectures and

in lecture chat

● Ask Questions in tuts and labs!

● Forum:

○ Post all your questions here

○ Feel free to answer other’s

questions

○ Don’t post your code publicly

in the forum

Course Content Related Help

43

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
COMP1521 25T2

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/

COMP1521 25T1

● Help Sessions:

○ Good place to get one-on-one help outside of normal lab/tutorial

times

○ There are optional drop in sessions

● Revision Sessions:

○ Optional group sessions to revise relevant topics

○ Booking required

○ First one Week 2: C revision (2d arrays strings, pointers, structs,

malloc) and recursion

Schedules coming out soon

Course Content Related Help

44COMP1521 25T2

COMP1521 25T1

● Course Administration Issues:

○ Email: cs1521@cse.unsw.edu.au

● Enrollment Issues:

○ https://nucleus.unsw.edu.au/en/contact-us

● cse course account issues: CSE Help Desk

http://www.cse.unsw.edu.au/~helpdesk/

● Special consideration:

○ https://student.unsw.edu.au/special-consideration

● Equitable Learning Plans:

○ https://www.student.unsw.edu.au/equitable-learning

Admin Related Help

45COMP1521 25T2

mailto:cs1521@cse.unsw.edu.au
https://nucleus.unsw.edu.au/en/contact-us
https://nucleus.unsw.edu.au/en/contact-us
https://nucleus.unsw.edu.au/en/contact-us
https://nucleus.unsw.edu.au/en/contact-us
http://www.cse.unsw.edu.au/~helpdesk/
https://student.unsw.edu.au/special-consideration
https://student.unsw.edu.au/special-consideration
https://student.unsw.edu.au/special-consideration
https://student.unsw.edu.au/special-consideration
https://www.student.unsw.edu.au/equitable-learning
https://www.student.unsw.edu.au/equitable-learning
https://www.student.unsw.edu.au/equitable-learning
https://www.student.unsw.edu.au/equitable-learning

COMP1521 25T1

Course Material has been drawn from:

● Introduction to Computing Systems: from bits and gates to C

and beyond, Patt and Patel

● The Elements of Computer Systems: Building a modern

computer system from first principles, Nisan and Schocken

● COMP2121 Course Web Site, Parameswaran and Guo

● Past COMP1521 lecturers, admin, and tutors

Always give credit to your sources

Acknowledgement

46COMP1521 25T2

COMP1521 25T1

MIPS: An Introduction

47

Adapted from Abiram Nadarajah, Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T2

COMP1521 25T1

In COMP1511/1911:

● We run a compiler (dcc?)

○ dcc -o hello hello.c

● We run our program

○ ./hello

What’s going on here? What’s in hello? Where is it stored?

What is a program? How do they execute?

48COMP1521 25T2

COMP1521 25T1

● A program is a set of instructions and data

○ In binary format (0s and 1s)

● A program is often stored as a file on a “hard disk drive” (HDD)

or “solid state drive” (SSD)

○ Long-term, non-volatile (keeps contents when power goes off)

What is a program? Where is it stored?

49

HDD SSD

COMP1521 25T2

COMP1521 25T1

● The program needs to be loaded into memory - RAM!

○ RAM is like a massive 1D array

○ It has addresses, which are like indexes into that array

○ RAM is much faster than SSD or HDD, but more expensive

○ RAM is volatile

■ Power goes off and everything is lost from RAM

So how do we execute the program?

50

RAM

COMP1521 25T2

COMP1521 25T1

● Programs contain information that needs to be loaded into the

appropriate segments of memory so the program can execute.

● Segments include

○ Text/code segments:

■ Stores program instructions

■ Typically readonly and fixed size

○ Data segments:

■ Readonly section for string literals and constants

■ Writable section for global variables

■ Fixed size

Loading our C program into Memory

51COMP1521 25T2

COMP1521 25T1

○ Heap:

■ dynamically allocated memory

■ may grow when we malloc

■ may shrink when we free

○ Stack:

■ local variables, parameters automatically managed

■ grows when functions are called

■ shrinks when functions return

C Memory during Program execution

52COMP1521 25T2

COMP1521 25T1

C Program Memory Map

53

0x00000000 0x7FFFFFFF

Read only

text/code data heap stack

machine code
for program
instructions

global vars
and string
literals

malloced
things

local vars
and
parameters

COMP1521 25T2

COMP1521 25T1

int main(void) {

int n, m;

n = 5;

m = f(n);

return 0;

}

int f(int x) {

return g(x);

}

The Stack

54

int g(int y) {

int r = 4 * h(y);

return r;

}

int h(int z) {

int i;

int p = 1;

for (i = 1; i < z; i++) {

p = p * i;

}

return p;

}

COMP1521 25T2

COMP1521 25T1

A “good” way to use up the stack and crash your program is to

create “infinite” recursion.

Recursion is when a function directly (or indirectly) calls itself

Infinite Recursion Demo

55

// A recursive function that has no stopping condition

void f(int x) {

printf(“%d\n”, x);

f(x + 1);

}
COMP1521 25T2

COMP1521 25T1

Inside a CPU

56COMP1521 25T2

COMP1521 25T1

● We have our instructions in memory (RAM)

● The CPU can

○ fetch an instruction from memory

○ decodes the instructions to work out what it should do

○ executes the instruction!

The CPU

57COMP1521 25T2

COMP1521 25T1

A day in the life of a CPU - as C code

int program_counter = START_ADDRESS;

while (1) {
// Fetch an instruction from memory
int instruction = memory[program_counter];
// Move to the next instruction
program_counter++;
// Execute the next instruction
execute(instruction, &program_counter);

// ^ note: some instructions may
// modify the program counter

}

It’s more
fun

than it sounds
I swear

COMP1521 25T2

COMP1521 25T1

● Computations: eg. add, subtract, multiply, divide, bitwise

● Load/store: Load data from RAM! Store data to RAM!

● Branch: jump to execute different instructions

● System calls: request to the operating system to do something

● Many more things too!

What can instructions do?

59COMP1521 25T2

COMP1521 25T1

Machine Code Instructions are really just 0s and 1s (binary data)

● Would be a pain to read/write literal instructions

● Instructions might change depending on code layout

● Instead, we use assembly language to form a human-readable

representation of each instruction

○ Each instruction we write in assembly code typically represents a

single CPU instruction

○ An assembler translates the assembly code to binary Machine

Code

Machine Code vs Assembly Code

60COMP1521 25T2

COMP1521 25T1

● For example: We might write in assembly:

addi $t1, $t0, 12
● And the assembler might generate the following machine code

instruction:

00100001000010010000000000001100

● CPUs can’t run assembly code directly; they can only execute

machine code

Example Assembly Code Instruction

61COMP1521 25T2

COMP1521 25T1

● We usually just compile our code in one step to create our

executable program.

○ gcc -o hello hello.c

● When we compile our code, the compiler first generates

assembly code.

● To see this intermediate step we can type in:

○ gcc -S hello.c

○ and the assembly code it produces is in hello.s

● Will this generate the same assembly code on a different

machine?

Compiling to Assembly Code

62COMP1521 25T2

COMP1521 25T1

● We have a program in some language (e.g. C)

● We compile the program into assembly and it is assembled

into a binary

● The binary is stored to a file

Then to execute it…

● The program is loaded into memory

● The CPU program counter is set to the first instruction

● And we are off!

So, to recap: how do we make a program?

63COMP1521 25T2

COMP1521 25T1

● Usually we tend to write in a higher-level compiled language

○ C, C++, Go, Rust, Java, Swift, and many more…

○ A compiler will take programs in these languages and output the

corresponding assembly instructions

● In this course we write assembly code ourselves

○ The main reason in this course is to understand how a compiled

program executes

■ Can be helpful when debugging

■ Also handy to identify security vulnerabilities and exploit binaries (see

COMP6447)

Writing Assembly code

64COMP1521 25T2

COMP1521 25T1

● Other reasons for writing assembly code:

○ To optimise code for performance

■ Less instructions = faster to execute = saving picoseconds!

■ 90/10 rule – 90% of time spent in 10% of code

○ Sometimes it’s necessary

■ eg. writing code to interact directly with a device (i.e. drivers)

○ And sometimes, someone has to!

■ e.g. who’s going to make your compiler in the first place?

Writing Assembly Code

65COMP1521 25T2

COMP1521 25T1

● Different types of CPUs implement different Instruction Set

Architectures (ISAs)

○ In other words different types of CPUs may speak different

languages or understand different sets of instructions

● ISAs define a finite set of instructions

○ These “simple” instructions can be combined to compute

anything

● Examples of ISAs are

○ x86, ARM, RISC-V, MIPS

Instruction Set Architectures (ISAs)

66COMP1521 25T2

COMP1521 25T1

MIPS

67

MIPS?
… but why?

COMP1521 25T2

COMP1521 25T1

● In COMP1521 we learn the MIPS instruction set architecture

● Once used from game consoles to supercomputers

○ Nintendo64

○ Still used in routers and TVs

○ But being out-competed by ARM and RISC-V

● Considerable learning resources available

● Inspired many other ISAs

○ If you know MIPS, you can easily branch to ARM, RISC-V, and others

● MIPS is simple yet powerful - good foundation for knowledge

So why MIPS?

68

https://ukikipedia.net/wiki/MIPS

COMP1521 25T1

● True (probably).

● Your laptop probably has x86 (PCs or older Mac) or ARM (newer

Mac)

● But, we can emulate them using mipsy
○ software that recreates the behaviour of a real MIPS CPU

○ written by Zac* (past course admin, now graduated/lecturing COMP6991)

○ can run on CSE machines (including vlab)

○ can also download on your own machine:

https://github.com/insou22/mipsy/

○ comes with a command-line interface to run in your terminal

But I don’t have a MIPS CPU!

69COMP1521 25T2

https://github.com/insou22/mipsy/

COMP1521 25T1

● mipsy command line

○ 1521 mipsy hello.s

● mipsy_web runs entirely in your browser

○ by Shrey*, on course website:

https://cgi.cse.unsw.edu.au/~cs1521/mipsy

● vscode extension

○ written by Xavier - can download the ‘mipsy editor features’

extension

Running a mips program

70

* some contributions from Josh Harcombe, Dylan Brotherston and Abiram

COMP1521 25T2

https://cgi.cse.unsw.edu.au/~cs1521/mipsy

COMP1521 25T1

Can we write some MIPS?

71COMP1521 25T2

COMP1521 25T1

Soon

72COMP1521 25T2

COMP1521 25T1

● a set of data registers

● a set of control registers

● a control unit

● an arithmetic-logic unit

● a floating-point unit

● caches

● connection to Memory/RAM

What’s in a MIPS CPU?

73COMP1521 25T2

COMP1521 25T1

● Most CPU architectures perform operations over registers

● They are part of the processor itself, not the memory

● Speed advantages:

○ Memory is fast, CPU is faster!

● There are only a small number of registers

● Values stored in memory must be loaded into registers for the

CPU to perform computations on them.

Registers

74COMP1521 25T2

COMP1521 25T1

● MIPS specifies 32 general-purpose registers

○ 32-bits each, same size as a typical C integer - coincidence?

● Floating point registers (not used in COMP1521)

● Hi/Lo special registers for multiply and divide (not important in

this course)

● Program counter

○ Keeps track of which instruction to fetch and execute next

○ Modified by branch and jump instructions

MIPS registers

75COMP1521 25T2

COMP1521 25T1

MIPS registers to use for now

76

● For now we will mainly use $t0 to $t9 registers for general

purpose calculations

● Will also need $v0, $a0 for certain things too.

● $zero ($0) is special!

○ Always has the value 0 -> attempts to change it have no effect

● $ra is also special!

○ We use it at the end of every program

COMP1521 25T2

COMP1521 25T1

MIPS Computations with Registers

Almost all of our computations happen between registers!

Want to multiply 2 and 3 and store the result

Load 2 and 3 into registers:

li $t0, 2

li $t1, 3

And store the result:

mul $t2, $t0, $t1

COMP1521 25T2

COMP1521 25T1

Let’s try it!
Open up mipsy_web and code along!

78

https://cgi.cse.unsw.edu.au/~cs1521/mipsy/

COMP1521 25T2

https://cgi.cse.unsw.edu.au/~cs1521/mipsy/

COMP1521 25T1

Here is a bare bones template to put instructions in to run them:

Simple Program Template

79

main:

YOUR CODE GOES IN HERE

li $v0 # return 0

jr $ra

COMP1521 25T2

COMP1521 25T1

Your turn

80

● Code this up in mipsy_web.

○ Set $t0 to 10

○ Set $t1 to 7

○ Subtract $t1 from $t0 and store in $t2

○ Add 5 to $t2

What expression is this equivalent to?

Do you end up with the correct answer in $t2?

COMP1521 25T2

COMP1521 25T1

But how can we input/output?

81COMP1521 25T2

COMP1521 25T1

● None of the instructions we have access to can interact with

the outside world (eg. printing, scanning)

● Instead, we request the operating system to perform these

tasks for us - this process is called a system call

● The operating system can access privileged instructions on the

CPU (eg. communicating to other devices)

● mipsy simulates a very basic operating system

● Will explore real system calls in the second half of the course

System calls

82COMP1521 25T2

COMP1521 25T1

We don’t use syscalls 8 and 12 much in COMP1521

Most input will be integers

Common mipsy syscalls

83COMP1521 25T2

COMP1521 25T1

More advanced syscalls

84

Probably only used for challenge exercises in COMP1521

COMP1521 25T2

COMP1521 25T1

Let’s try to print out the number 42

85COMP1521 25T2

COMP1521 25T1 86

● We specify which system call we want in $v0

○ eg. print_int is syscall 1:

○ li $v0, 1
● We specify arguments (if any)

○ li $a0, 42
● We transfer execution to the operating system

○ The OS will fulfill our request if it looks sane

○ syscall

● Some syscalls may return a value - check syscall table

The system call workflow

COMP1521 25T2

COMP1521 25T1

MIPS and mipsy documentation
https://cgi.cse.unsw.edu.au/~cs1521/25T2/resources/mips-guide.html

Literally your best friend (it’ll even be there for you in the exam)

COMP1521 25T2

https://cgi.cse.unsw.edu.au/~cs1521/25T2/resources/mips-guide.html
https://cgi.cse.unsw.edu.au/~cs1521/25T2/resources/mips-guide.html
https://cgi.cse.unsw.edu.au/~cs1521/25T2/resources/mips-guide.html

COMP1521 25T1

0x in C and mipsy

means hexadecimal.

Hexadecimal uses 16

digits. It uses 0-9

then A-F

We will learn more

about this later in the

course.

Aside: Hexadecimal

88

Decimal Hexadecimal Decimal Hexadecimal

0 0 10 A

1 1 11 B

2 2 12 C

3 3 13 D

4 4 14 E

5 5 15 F

6 6 16 10

7 7 17 11

8 8 18 12

9 9 19 13

COMP1521 25T2

COMP1521 25T1

We often use Hexadecimal to represent addresses and other binary

data like instructions.

● Easier for humans to read than binary

○ Each hex digit represents exactly 4 bits

○ 8 hex digits represents a 32 bit value

● Maps more nicely to binary than decimal

Aside: Hexadecimal

89COMP1521 25T2

COMP1521 25T1 90

● Admin: How the course is run

● Concepts: How programs run!

● Introduction to MIPS:

○ Running MIPS programs

○ Writing simple programs with simple instructions

○ Simple system calls to print out data

What did we learn today?

COMP1521 25T2

COMP1521 25T1 91

● MIPS Basics:

○ More MIPS instructions and examples

○ Using system calls to read integer and character data

○ Understanding how to work with strings and how hello.s works

● MIPS Control:

○ if statements

○ loops

What will we learn next lecture

COMP1521 25T2

COMP1521 25T1 92

Content Related Questions:

Forum

Admin related Questions email:

cs1521@cse.unsw.edu.au

Reach Out

COMP1521 25T2

https://discourse02.cse.unsw.edu.au/25T2/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

93

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student

Support

Equity Diversity and Inclusion

(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service

(ELS)

— student.unsw.edu.au/els

Academic Language

Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental

Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health

Connect

Mind

HUB

student.unsw.edu.au/counselling

Telehealth

student.unsw.edu.au/mind-hub

Online Self-Help Resources

1300 787 026

5pm-9am

In Australia Call Afterhours

UNSW Mental Health Support
Line

Outside Australia

Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures

Stress, Financ ial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments

To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

COMP1521 25T2

	Slide 1: COMP1521 25T2
	Slide 2: Today’s Lecture
	Slide 3: Course Website
	Slide 4: Course Staff: Who are we?
	Slide 5: COMP1521 Students: Who are you?
	Slide 6: Assumed C Knowledge
	Slide 7: Not Assumed Knowledge
	Slide 8: Course Goals
	Slide 9: Course Expectations
	Slide 10: COMP1511/1911 COMP1521
	Slide 11: Course Context
	Slide 12: Major Themes
	Slide 13: Textbook
	Slide 14: Systems and Tools
	Slide 15: The Linux Manual (man)
	Slide 16: The Linux Manual (man)
	Slide 17: Course Format
	Slide 18: Lectures 2x2 Hours a Week
	Slide 19: Lectures 2x2 Hours a Week
	Slide 20: Lectures 2x2 Hours a Week
	Slide 21: Tut-labs
	Slide 22: Tutorials
	Slide 23: Labs
	Slide 24: Labs
	Slide 25: Flexibility Week and Public Holidays
	Slide 26: Tests
	Slide 27: Tests
	Slide 28: Assignments
	Slide 29: Assignment Tips
	Slide 30: Final Exam
	Slide 31: Assessment
	Slide 32: Assessment Hurdle
	Slide 33: Code of Conduct
	Slide 34: Plagiarism
	Slide 35: Plagiarism
	Slide 36: Generative AI
	Slide 37: Generative AI
	Slide 38: Generative AI
	Slide 39: Generative AI
	Slide 40: Use of Generative AI Tools
	Slide 41: Use of Generative AI Tools
	Slide 42: How to Pass this Course
	Slide 43: Course Content Related Help
	Slide 44: Course Content Related Help
	Slide 45: Admin Related Help
	Slide 46: Acknowledgement
	Slide 47: MIPS: An Introduction
	Slide 48: What is a program? How do they execute?
	Slide 49: What is a program? Where is it stored?
	Slide 50: So how do we execute the program?
	Slide 51: Loading our C program into Memory
	Slide 52: C Memory during Program execution
	Slide 53: C Program Memory Map
	Slide 54: The Stack
	Slide 55: Infinite Recursion Demo
	Slide 56: Inside a CPU
	Slide 57: The CPU
	Slide 58: A day in the life of a CPU - as C code
	Slide 59: What can instructions do?
	Slide 60: Machine Code vs Assembly Code
	Slide 61: Example Assembly Code Instruction
	Slide 62: Compiling to Assembly Code
	Slide 63: So, to recap: how do we make a program?
	Slide 64: Writing Assembly code
	Slide 65: Writing Assembly Code
	Slide 66: Instruction Set Architectures (ISAs)
	Slide 67: MIPS
	Slide 68: So why MIPS?
	Slide 69: But I don’t have a MIPS CPU!
	Slide 70: Running a mips program
	Slide 71: Can we write some MIPS?
	Slide 72: Soon™
	Slide 73: What’s in a MIPS CPU?
	Slide 74: Registers
	Slide 75: MIPS registers
	Slide 76: MIPS registers to use for now
	Slide 77: MIPS Computations with Registers
	Slide 78: Let’s try it! Open up mipsy_web and code along!
	Slide 79: Simple Program Template
	Slide 80: Your turn
	Slide 81: But how can we input/output?
	Slide 82: System calls
	Slide 83: Common mipsy syscalls
	Slide 84: More ✨advanced✨ syscalls
	Slide 85
	Slide 86: The system call workflow
	Slide 87: MIPS and mipsy documentation
	Slide 88: Aside: Hexadecimal
	Slide 89: Aside: Hexadecimal
	Slide 90: What did we learn today?
	Slide 91: What will we learn next lecture
	Slide 92: Reach Out
	Slide 93: Student Support | I Need Help With…

