
COMP1521 26T1 — MIPS Control

https://www.cse.unsw.edu.au/~cs1521/26T1/

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 1 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/
https://www.cse.unsw.edu.au/~cs1521/26T1/

Jump Instructions

assembler meaning bit pattern

j label pc = pc & 0xF0000000 | (X«2) 000010XXXXXXXXXXXXXXXXXXXXXXXXXX
jal label ra = pc + 4; 000011XXXXXXXXXXXXXXXXXXXXXXXXXX

pc = pc & 0xF0000000 | (X«2)
jr 𝑟𝑠 pc = 𝑟𝑠 000000sssss000000000000000001000
jalr 𝑟𝑠 ra = pc + 4; 000000sssss000000000000000001001

pc = 𝑟𝑠

• jump instructions unconditionally transfer execution to a new location
• in other word, jump instructions change the pc (program counter)

• for j label and jal label mipsy calculates correct value for X from location of **label in code
• jal & jalr set $ra ($31) to address of the next instruction

• call to function f implemented by jal f
• return can then be implemented with jr $ra

• jr & jalr can be used with any register
• used to implement function pointer derefencing in C, and methods in object-oriented languages

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 2 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Branch Instructions

b label pc += I«2 pseudo-instruction
beq 𝑟𝑠, 𝑟𝑡, label if (𝑟𝑠 == 𝑟𝑡) pc += I«2 000100ssssstttttIIIIIIIIIIIIIIII
bne 𝑟𝑠, 𝑟𝑡, label if (𝑟𝑠 != 𝑟𝑡) pc += I«2 000101ssssstttttIIIIIIIIIIIIIIII
ble 𝑟𝑠, 𝑟𝑡, label if (𝑟𝑠 <= 𝑟𝑡) pc += I«2 pseudo-instruction
bgt 𝑟𝑠, 𝑟𝑡, label if (𝑟𝑠 > 𝑟𝑡) pc += I«2 pseudo-instruction
blt 𝑟𝑠, 𝑟𝑡, label if (𝑟𝑠 < 𝑟𝑡) pc += I«2 pseudo-instruction
bge 𝑟𝑠, 𝑟𝑡, label if (𝑟𝑠 >= 𝑟𝑡) pc += I«2 pseudo-instruction
blez 𝑟𝑠, label if (𝑟𝑠 <= 0) pc += I«2 000110sssss00000IIIIIIIIIIIIIIII
bgtz 𝑟𝑠 ,label if (𝑟𝑠 > 0) pc += I«2 000111sssss00000IIIIIIIIIIIIIIII
bltz 𝑟𝑠 ,label if (𝑟𝑠 < 0) pc += I«2 000001sssss00000IIIIIIIIIIIIIIII
bgez 𝑟𝑠 ,label if (𝑟𝑠 >= 0) pc += I«2 000001sssss00001IIIIIIIIIIIIIIII
bnez 𝑟𝑠, label if (𝑟𝑠 != 0) pc += I«2 pseudo-instruction
beqz 𝑟𝑠, label if (𝑟𝑠 == 0) pc += I«2 pseudo-instruction

• branch instruction conditionally transfer execution to a new location (except b is unconditional)
• mipsy will calculate correct value for I from location of label in code
• mipsy allows second operand (𝑟𝑡) to be replaced by a constant (fine to use in COMP1521)

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 3 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Example Translation of Branch Pseudo-instructions

Pseudo-Instructions

bge $t1, $t2, label

blt $t1, 42, label

beqz $t3, label

bnez $t4, label

b label

Real Instructions

slt $at, $t1, $t2
beq $at, $0, label

addi $at, $zero, 42
slt $at, $t1, $at
bne $at, $0, label

beq $t3, $0, label

bne $t4, $0, label

beq $0, $0, label

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 4 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Branch versus Jump

• jump instructions are unconditional
• branch instructions are conditional and can implement if and while

• except b label which has same effect as j label
• you can use either

• jal and jr instructions provides a simple function call & return implementations
• no equivalent branch instructions

• branch instruction encode a 16-bit relative offset
• target (label) must be within -32768..32767 instructions
• not a problem in COMP1521 - we write small programs

• jump instruction encode a 28-bit value
• allows jumps to be used for targets (labels) further away

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 5 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

goto in C

The goto statement allows transfer of control to any labelled point with a function. For example, this code:

for (int i = 1; i <= 10; i++) {
printf("%d\n", i);

}

can be written as:

int i = 1;
loop:

if (i > 10) goto end;
i++;
printf("%d", i);
printf("\n");

goto loop;
end:

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 6 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

goto in C

• goto statements can result in very difficult to read programs.

• goto statements can also result in slower programs.

• In general, use of goto is considered bad programming style.

• Do not use goto without very good reason.

• kernel & embedded programmers sometimes use goto.

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 7 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Programming

Writing correct assembler directly is hard.

Recommended strategy:

• develop a solution in C
• map down to “simplified” C
• translate simplified C statements to MIPS instructions

Simplified C

• does not have while, compound if, complex expressions
• does have simple if, goto, one-operator expressions

Simplified C makes extensive use of

• labels … symbolic name for C statement
• goto … transfer control to labelled statement

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 8 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Mapping C into MIPS

Things to do:

• allocate variables to registers/memory

• place literals in data segment

• transform C program to:

• break expression evaluation into steps

• replace most control structures by goto

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 9 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — if from C to Simplified C

Standard C

if (i < 0) {
n = n - i;

} else {
n = n + i;

}

Simplified C

if (i >= 0) goto else1;
n = n - i;
goto end1;

else1:
n = n + i;

end1:

note: else is not a valid label name in C

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 10 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — if from Simplified C to MIPS

Simplified C

if (i >= 0) goto else1;
n = n - i;
goto end1;

else1:
n = n + i;

end1:

MIPS

assuming i in $t0,
assuming n in $t1...

bge $t0, 0, else1
sub $t1, $t1, $t0
b end1

else1:
add $t1, $t1, $t0

end1:

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 11 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Print If Even: C to simplified C

C

int main(void) {
int n;
printf("Enter a number: ");
scanf("%d", &n);
if (n % 2 == 0) {

printf("even\n");
}
return 0;

}
source code for print_if_even.c

Simplified C

int main(void) {
int n;
printf("Enter a number: ");
scanf("%d", &n);
if (n % 2 != 0) goto epilogue;

printf("even\n");
epilogue:

return 0;
}
source code for print_if_even.simple.c

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 12 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/print_if_even.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/print_if_even.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Print If Even: MIPS
Print a message only if a number is even.
Written by: Abiram Nadarajah <abiramn@cse.unsw.edu.au>
Written as a COMP1521 lecture example

.text
main:

Locals:
- $t0: int n
- $t1: n % 2
li $v0, 4 # syscall 4: print_string
la $a0, prompt_msg #
syscall # printf("Enter a number: ");
li $v0, 5 # syscall 5: read_int
syscall #
move $t0, $v0 # scanf("%d", &n);
rem $t1, $t0, 2 # if ((n % 2)
bnez $t1, epilogue # != 0) goto epilogue;

source code for print_if_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 13 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/print_if_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Print If Even: MIPS

rem $t1, $t0, 2 # if ((n % 2)
bnez $t1, epilogue # != 0) goto epilogue;
li $v0, 4 # syscall 4: print_string
la $a0, even_msg #
syscall # printf("even\n");

epilogue:
li $v0, 0 #
jr $ra # return 0;
.data

prompt_msg:
.asciiz "Enter a number: "

even_msg:
.asciiz "even\n"

source code for print_if_even.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 14 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/print_if_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Odd or Even: C to simplified C

C

int main(void) {
int n;
printf("Enter a number: ");
scanf("%d", &n);
if (n % 2 == 0) {

printf("even\n");
} else {

printf("odd\n");
}
return 0;

}
source code for odd_even.c

Simplified C

int main(void) {
int n;
printf("Enter a number: ");
scanf("%d", &n);
if (n % 2 != 0) goto n_mod_2_ne_0;
printf("even\n");
goto epilogue;

n_mod_2_ne_0:
printf("odd\n");

epilogue:
return 0;

}
source code for odd_even.simple.c

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 15 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/odd_even.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/odd_even.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Odd or Even: MIPS
Print out whether a value is odd or even.
Written by: Abiram Nadarajah <abiramn@cse.unsw.edu.au>
Written as a COMP1521 lecture example

.text
main:

Locals:
- $t0: int n
- $t1: n % 2
li $v0, 4 # syscall 4: print_string
la $a0, prompt_msg #
syscall # printf("Enter a number: ");
li $v0, 5 # syscall 5: read_int
syscall #
move $t0, $v0 # scanf("%d", &n);
rem $t1, $t0, 2 # if ((n % 2)
bnez $t1, n_mod_2_ne_0 # != 0) goto n_mod_2_ne_0;

source code for odd_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 16 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/odd_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Odd or Even: MIPS

li $v0, 4 # syscall 4: print_string
la $a0, even_msg #
syscall # printf("even\n");
b epilogue # goto epilogue;

n_mod_2_ne_0:
li $v0, 4 # syscall 4: print_string
la $a0, odd_msg #
syscall # printf("odd\n");

epilogue:
li $v0, 0 #
jr $ra # return 0;
.data

prompt_msg:
.asciiz "Enter a number: "

even_msg:
.asciiz "even\n"

odd_msg:
.asciiz "odd\n"

source code for odd_even.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 17 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/odd_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Loops — while from C to Simplified C

Standard C

i = 0;
n = 0;
while (i < 5) {

n = n + i;
i++;

}

Simplified C

i = 0;
n = 0;

loop:
if (i >= 5) goto end;
n = n + i;
i++;
goto loop;

end:

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 18 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Loops — while from Simplified C to MIPS

Simplified C

i = 0;
n = 0;

loop:
if (i >= 5) goto end;
n = n + i;
i++;
goto loop;

end:

MIPS

li $t0, 0 # i in $t0
li $t1, 0 # n in $t1

loop:
bge $t0, 5, end
add $t1, $t1, $t0
addi $t0, $t0, 1
j loop

end:

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 19 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Printing First 10 Integers: C to simplified C

C

for (int i = 1; i <= 10; i++) {
printf("%d\n", i);

}
source code for count_to_10.c

Simplified C

loop_i_to_10__init:;
int i = 1;

loop_i_to_10__cond:
if (i > 10) goto loop_i_to_10__end;

loop_i_to_10__body:
printf("%d", i);
putchar('\n');

loop_i_to_10__step:
i++; // i = i + 1;
goto loop_i_to_10__cond;

loop_i_to_10__end:
source code for count_to_10.simple.c

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 20 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/count_to_10.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/count_to_10.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Printing First 10 Integers: MIPS
loop_i_to_10__init:

li $t0, 1 # int i = 1;
loop_i_to_10__cond:

bgt $t0, 10, loop_i_to_10__end # if (i > 10) goto loop_i_to_10__end;
loop_i_to_10__body:

li $v0, 1 # syscall 1: print_int
move $a0, $t0 #
syscall # printf("%d", i);
li $v0, 11 # syscall 11: print_char
li $a0, '\n' #
syscall # putchar('\n');

loop_i_to_10__step:
addi $t0, $t0, 1 # i = i + 1;
b loop_i_to_10__cond

loop_i_to_10__end:

source code for count_to_10.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 21 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/count_to_10.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Sum 100 Squares: C to simplified C
C

int main(void) {
int sum = 0;
for (int i = 1; i <= 100; i++) {

sum += i * i;
}
printf("%d\n", sum);
return 0;

}
source code for sum_100_squares.c

Simplified C

int main(void) {
int sum = 0;

loop_i_to_100__init:;
int i = 0;

loop_i_to_100__cond:
if (i > UPPER_BOUND) goto loop_i_to_100__end;

loop_i_to_100__body:
sum += i * i;

loop_i_to_100__step:
i++;
goto loop_i_to_100__cond;

loop_i_to_100__end:
printf("%d", sum);
putchar('\n');
return 0;

}
source code for sum_100_squares.simple.c

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 22 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/sum_100_squares.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/sum_100_squares.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Sum 100 Squares: MIPS
Calculate 1*1 + 2*2 + ... + 99*99 + 100*100
Written by: Abiram Nadarajah <abiramn@cse.unsw.edu.au>
Written as a COMP1521 lecture example
UPPER_BOUND = 100

.text
main:

Locals:
- $t0: int sum
- $t1: int i
- $t2: temporary value
li $t0, 0 # int sum = 0;

loop_i_to_100__init:
li $t1, 1 # int i = 0;

loop_i_to_100__cond:
bgt $t1, UPPER_BOUND, loop_i_to_100__end # while (i < UPPER_BOUND) {

loop_i_to_100__body:

source code for sum_100_squares.s
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 23 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/sum_100_squares.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Sum 100 Squares: MIPS

loop_i_to_100__body:
mul $t2, $t1, $t1 # sum = (i * i) +
add $t0, $t0, $t2 # sum;

loop_i_to_100__step:
addi $t0, $t0, 1 # i++;
b loop_i_to_100__cond # }

loop_i_to_100__end:
li $v0, 1 # syscall 1: print_int
move $a0, $t0 #
syscall # printf("%d", sum);
li $v0, 11 # syscall 11: print_char
li $a0, '\n' #
syscall # putchar('\n');
li $v0, 0
jr $ra # return 0;

source code for sum_100_squares.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 24 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/sum_100_squares.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — if and &&: from C to Simplified C

Standard C

if (i < 0 && n >= 42) {

n = n - i;

} else {
n = n + i;

}

Simplified C

if (i >= 0) goto else1;
if (n < 42) goto else1;
n = n - i;
goto end1;

else1:
n = n + i;

end1:

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 25 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — if and &&: from Simplified C to MIPS

Simplified C

if (i >= 0) goto else1;
if (n < 42) goto else1;
n = n - i;
goto end1;

else1:
n = n + i;

end1:

MIPS

assume i in $t0
assume n in $t1

bge $t0, 0, else1
blt $t1, 42, else1
sub $t1, $t1, $t0
j end1

else1:
add $t1, $t1, $t0

end1:

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 26 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — if and ||: from C to Simplified C

Standard C

if (i < 0 || n >= 42) {

n = n - i;

} else {
n = n + i;

}

Simplified C

if (i < 0) goto then1;
if (n >= 42) goto then1;
goto else1;

then1:
n = n - i;
goto end1;

else1:
n = n + i;

end1:

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 27 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — if and ||: from Simplified C to MIPS

Simplified C

if (i < 0) goto then1;
if (n >= 42) goto then1;
goto else1;

then1:
n = n - i;
goto end1;

else1:
n = n + i;

end1:

MIPS

assume i in $t0
assume n in $t1

blt $t0, 0, then1
bge $t1, 42, then1
j else1

then1:
sub $t1, $t1, $t0
j end1

else1:
add $t1, $t1, $t0

end1:

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 28 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

The break statement

Sometimes it is useful to exit from the middle of a loop

• break allows you to check a condition mid-loop and quit

// read up to 100 characters
// stop if the next character is '!'
while (i <= 100) {

int ch = getchar();
if (ch == '!') break;
putchar(ch);

}

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 29 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

The continue statement

Sometimes it is useful to go to next iteration and skip rest of loop

• continue allows you to go to next iteration from mid-loop

// iterate over integers 1..100
// skip every multiple of three
for (i = 1; i <= 100; i++) {

if (i % 3 == 0) continue;
printf(%d\n", i);

}

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 30 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

continue can simplify loops

while (Condition) {
some_code_1
if (Condition1) {

some_code_2
if (Condition2) {

some_code_3
}

}

while (_Condition_) {
some_code_1
if (! Condition1) continue;
some_code_2
if (! Condition2) continue;
some_code_3

}

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 31 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

&& example (six.c) : C to simplified C

C

int main(void) {
int n;
printf("Enter a number: ");
scanf("%d", &n);
if (n % 2 == 0 && n % 3 == 0) {

printf("six\n");
}
return 0;

}
source code for six.c

Simplified C

int main(void) {
int n;
printf("Enter a number: ");
scanf("%d", &n);
if (n % 2 != 0) goto epilogue;
if (n % 3 != 0) goto epilogue;

printf("six-ish\n");
epilogue:

return 0;
}
source code for six.simple.c

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 32 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/six.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/six.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

&& example (six.s) : MIPS (part 1)

main:
Locals:
- $t0: int n
- $t1: n % 2
- $t2: n % 3
li $v0, 4 # syscall 4: print_string
la $a0, prompt_msg #
syscall # printf("Enter a number: ");
li $v0, 5 # syscall 5: read_int
syscall #
move $t0, $v0 # scanf("%d", &n);
rem $t1, $t0, 2 # if ((n % 2)
bnez $t1, epilogue # != 0) goto epilogue;

source code for six.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 33 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/six.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

&& example (six.s) : MIPS (part 2)

bnez $t1, epilogue # != 0) goto epilogue;
rem $t2, $t0, 3 # if ((n % 3)
bnez $t2, epilogue # != 0) goto epilogue;
li $v0, 4 # syscall 4: print_string
la $a0, six_msg #
syscall # printf("six-ish\n");

epilogue:
li $v0, 0 #
jr $ra # return 0;
.data

prompt_msg:
.asciiz "Enter a number: "

six_msg:
.asciiz "six-ish\n"

source code for six.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 34 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/six.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

|| example (two_three.c) : C to simplified C

C

int main(void) {
int n;
printf("Enter a number: ");
scanf("%d", &n);
if (n % 2 == 0 || n % 3 == 0) {

printf("two-three-ish\n");
}
return 0;

}
source code for two_three.c

Simplified C

int main(void) {
int n;
printf("Enter a number: ");
scanf("%d", &n);
if (n % 2 == 0) goto two_three_print;
if (n % 3 == 0) goto two_three_print;
goto epilogue;

two_three_print:
printf("two-three-ish\n");

epilogue:
return 0;

}
source code for two_three.simple.c

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 35 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/two_three.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/two_three.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

|| example (two_three.s) : MIPS (part 1)

main:
Locals:
- $t0: int n
- $t1: n % 2
- $t2: n % 3
li $v0, 4 # syscall 4: print_string
la $a0, prompt_msg #
syscall # printf("Enter a number: ");
li $v0, 5 # syscall 5: read_int
syscall #
move $t0, $v0 # scanf("%d", &n);
rem $t1, $t0, 2 # if ((n % 2)
beqz $t1, two_three_print # == 0) goto two_three_print;

source code for two_three.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 36 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/two_three.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

|| example (two_three.s) : MIPS (part 2)
beqz $t1, two_three_print # == 0) goto two_three_print;
rem $t2, $t0, 3 # if ((n % 3)
beqz $t2, two_three_print # == 0) goto two_three_print;
b epilogue # goto epilogue;

two_three_print:
li $v0, 4 # syscall 4: print_string
la $a0, two_three_msg #
syscall # printf("two-three-ish\n");

epilogue:
li $v0, 0 #
jr $ra # return 0;
.data

prompt_msg:
.asciiz "Enter a number: "

two_three_msg:
.asciiz "two-three-ish\n"

source code for two_three.s
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 37 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/two_three.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

break/continue example (forever_23.c) : C to simplified C
C

int main(void) {
for (int n = 0; n < 100; n++) {

if (n % 3 == 0) {
continue;

}
if (n % 23 == 0) {

break;
}
printf("%d\n", n);

}
return 0;

}
source code for forever_23.c

Simplified C

int main(void) {
int n;
n = 0;

forever_23_loop_top:
if (n > 100) goto forever_23_loop_end;

if (n % 3 == 0) goto forever_23_loop_next;
if (n % 23 == 0) goto forever_23_loop_end;
printf("%d", n);
putchar('\n');

forever_23_loop_next:
n = n + 1;
goto forever_23_loop_top;

forever_23_loop_end:
return 0;

}
source code for forever_23.simple.c

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 38 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/forever_23.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/forever_23.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

break/continue example (forever_23.s) : MIPS (part 1)

main:
Locals:
- $t0: int n
- $t1: n % 2
- $t2: n % 23

forever_23_loop_init:
li $t0, 0 # int n = 0;

forever_23_loop_top:
rem $t2, $t0, 3 # if ((n % 3)
beqz $t2, forever_23_loop_next # == 0) goto forever_23_loop_next;
rem $t1, $t0, 23 # if ((n % 23)
beqz $t1, forever_23_loop_end # == 0) goto forever_23_loop_end;

source code for forever_23.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 39 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/forever_23.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

break/continue example (forever_23.s) : MIPS (part 2)

beqz $t1, forever_23_loop_end # == 0) goto forever_23_loop_end;
li $v0, 1 # syscall 1: print_int
move $a0, $t0 #
syscall # printf("%d", n);
li $v0, 11 # syscall 11: print_char
li $a0, '\n' #
syscall # putchar('\n');

forever_23_loop_next:
addi $t0, $t0, 1 # n++;
b forever_23_loop_top; # goto forever_23_loop_top;

forever_23_loop_end:
epilogue:

li $v0, 0 #
jr $ra # return 0;

source code for forever_23.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 40 / 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/forever_23.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Side Topic: C do/while

C has a different while loop - do/while (post-test).

• loop condition checked at bottom of loop - always executed once

• many programmers do not use it

do {
printf("%d\n", i);
i++;

} while (i < 10);

can be written as:

int i = 1;
loop:

printf("%d", i);
printf("\n");
i++;
if (i < 10) goto loop;

end: https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 41 / 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

