COMP1521 26T1 — MIPS Control

https://www.cse.unsw.edu.au/~cs1521/26T1/

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 1/

https://www.cse.unsw.edu.au/~cs1521/26T1/
https://www.cse.unsw.edu.au/~cs1521/26T1/

Jump Instructions

assembler meaning bit pattern

j label pc = pc & 0XF0000000 | (X«2) 0OOOIOXXXXXXXXXXXXXXXXXXXXXXXXXX

jallabel ra=pc+4; OOOOLIXXXXXXXXXXXXXXXXXXXXXXXXXX
pc = pc & 0XFO000000 | (X«2)

jrrs pc=7, OOO000SSSSSOOOOO00OOOOOEEEO01000

jalrr, ra=pc+d O00000SSSSSOOOOO00OOOOEEEEN01001L
pc=r7,

+ jump instructions unconditionally transfer execution to a new location
+ in other word, jump instructions change the pc (program counter)
« for j label and jal label mipsy calculates correct value for X from location of **label in code
- jal & jalr set $ra($31) to address of the next instruction
+ call to function fimplemented by jal f
+ return can then be implemented with jr $ra
« jr & jalr can be used with any register

+ used to implement function pointer derefencing in C, and methods in object-oriented languages
https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 2/

https://www.cse.unsw.edu.au/~cs1521/26T1/

Branch Instructions

b label pc += T«2 pseudo-instruction

beqr,, 1, label if(r,==7,)pc+=I«2 000100ssssstttttIIIIIIIIIIIIIIII
bner,, 1, label l=r,)pc+=I«2 000101ssssstttttIIIIIIIIIIIIIIII
bler,,r,, label
bgt r,, r,, label
bltr,,r,, label

Ts -

r,<=1,) pc+=I1«2 pseudo-instruction

S

rg>1,)pc+= 1«2 pseudo-instruction

<7,) pc+= I«2 pseudo-instruction

S

Ts

if (

if (

if (

if (

bge r,, 1, label if(ry>=71,)pc+=I«2 pseudo-instruction

blezr,, label if (r, <= 0) pc += I«2 000110ssSSSOEOOAOIITIIIIITIIIIIIIII
if (r, >0) pc+= T«2 000111sssssOOOOOITTIITIITIIIIIIIIL
if (0) pc += I«2 000001sssssSOOOOOITITIITIITIIIIIIIITL
if(r;>=0)pc+=I1«2 000001ssssSOOOOIITIIITIIIIIIIIIIII
if (
if (

7 1= 0) pc+= I«2 pseudo-instruction

bgtz r, label
bltz r, label
bgez r_ label
bnez r, label

T's

Ts <

T's

beqz r, label r,==0)pc+=I1«2 pseudo-instruction

S

+ branch instruction conditionally transfer execution to a new location (except b is unconditional)
« mipsy will calculate correct value for I from location of label in code
- mipsy allows second operand (r,) to be replaced by a constant (fine to use in COMP1521)

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 3/®

https://www.cse.unsw.edu.au/~cs1521/26T1/

Example Translation of Branch Pseudo-instructions

Pseudo-Instructions

bge $tl1, $t2, label

blt $t1, 42, label

beqz $t3, label

bnez $t4, label

b label

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

Real Instructions

slt
beq

addi
slt

bne

beq

bne

$at,
$at,

Sat,
$at,
$at,

$t3,

$t4,

$t1, st2
$0, label

$zero, 42
$t1, $at
$0, label

$0, label

$0, label

beq $0, $0, label

COMP1521 26T1 — MIPS Control

4]

https://www.cse.unsw.edu.au/~cs1521/26T1/

Branch versus Jump

* jump instructions are unconditional

« branch instructions are conditional and can implement if and while
+ except b label which has same effect as j label
+ you can use either

- jaland jr instructions provides a simple function call & return implementations
+ no equivalent branch instructions

+ branch instruction encode a 16-bit relative offset
» target (label) must be within -32768..32767 instructions
+ not a problem in COMP1521 - we write small programs

+ jump instruction encode a 28-bit value
« allows jumps to be used for targets (labels) further away

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 5/41

https://www.cse.unsw.edu.au/~cs1521/26T1/

gotoin C
The goto statement allows transfer of control to any labelled point with a function. For example, this code:

for (int i = 1; i <= 10; i++) {
printf("%d\n", 1);

can be written as:

int 1 = 1;
loop:
if (i > 10) goto end;
i+

printf("%d", i);
printf("\n");
goto loop;
end:

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 6/

https://www.cse.unsw.edu.au/~cs1521/26T1/

gotoinC

+ goto statements can result in very difficult to read programs.
- goto statements can also result in slower programs.

+ In general, use of goto is considered bad programming style.
+ Do not use goto without very good reason.

+ kernel & embedded programmers sometimes use goto.

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 71®

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Programming

Writing correct assembler directly is hard.
Recommended strategy:

+ develop a solution in C
« map down to “simplified” C
+ translate simplified C statements to MIPS instructions

Simplified C

+ does not have while, compound if, complex expressions
+ does have simple i f, goto, one-operator expressions

Simplified C makes extensive use of
+ labels ... symbolic name for C statement

« goto ... transfer control to labelled statement

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control

8/

https://www.cse.unsw.edu.au/~cs1521/26T1/

Mapping C into MIPS

Things to do:
« allocate variables to registers/memory
« place literals in data segment
« transform C program to:
+ break expression evaluation into steps

+ replace most control structures by goto

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control

9/;

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — 1 f from C to Simplified C

Standard C
if (i < 0) {

n=n-1;

} else {
n=mn+1;

}

note: else is not a valid label name in C

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

Simplified C

if (i >= 0) goto elsel;
n=n-1;
goto endl;
elsel:
n=n+1ij;
endl:

COMP1521 26T1 — MIPS Control 10/ &

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — i f from Simplified C to MIPS

Simplified C

if (i >= 0) goto elsel;
n=n-1j;
goto endl;
elsel:
n=n+1ij;
endl:

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

MIPS

assuming i1 in $tO,

assuming n in Stl...

bge $t0, 0, elsel
sub $t1, $tl1, sto
b endl
elsel:
add $t1, $t1, $to
endl:

COMP1521 26T1 — MIPS Control

1/ &

https://www.cse.unsw.edu.au/~cs1521/26T1/

Print If Even: C to simplified C

(o Simplified C
int main(void) { int main(void) {
int n; int n;
printf("Enter a number: "); printf("Enter a number: ");
scanf ("%d", &n); scanf ("%d", &n);
if (n % 2 == 0) { if (n % 2 != 0) goto epilogue;
printf("even\n"); printf("even\n");
} epilogue:
return 0; return 0;
} }

source code for print_if_even.c source code for print_if_even.simple.c

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 12/

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/print_if_even.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/print_if_even.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Print If Even: MIPS

Print a message only if a number is even.
Written by: Abiram Nadarajah <abiramn@cse.unsw.edu.au>
Written as a COMP1521 lecture example
.text
main:
Locals:
- StO: int n
- Stl: n % 2

1i $vo, 4 # syscall 4: print_string

la $a0, prompt_msg #

syscall # printf("Enter a number: ");
1i $vo, 5 # syscall 5: read_int
syscall #

move $tO, $vo # scanf("%d", &n);

rem $t1, $t0, 2 # 1f ((n % 2)

bnez $tl, epilogue # != 0) goto epilogue;

source cade for orint_if even s

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 13/ 4

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/print_if_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Print If Even: MIPS

rem $til, $to, 2 # 1f ((n % 2)
bnez $tl, epilogue # = 0) goto epilogue;
1i $vo, 4 # syscall 4: print_string
la $a0, even_msg #
syscall # printf("even\n");
epilogue:
1i $vo, 0O #
jr S$ra # return 0;
.data
prompt_msg:

.asciiz "Enter a number: "

even_msg:
.asciiz "even\n"

source code for print_if_even.s

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 14 [51

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/print_if_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

0dd or Even: C to simplified C

C

int main(void) {
int n;

printf("Enter a number:

scanf ("%d", &n);

if (n % 2 == 0) {
printf("even\n");

} else {
printf("odd\n");

}

return O;

}

source code for odd_even.c

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

")

Simplified C

int main(void) {
int n;

printf("Enter a number:

scanf ("%d", &n);

)3

if (n % 2 != 0) goto n_mod_2_ne_0;

printf("even\n");

goto epilogue;
n_mod_2 _ne_0O:

printf("odd\n");
epilogue:

return 0;

}

source code for odd_even.simple.c

COMP1521 26T1 — MIPS Control

15/ 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/odd_even.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/odd_even.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

0dd or Even: MIPS

Print out whether a value is odd or even.
Written by: Abiram Nadarajah <abiramn@cse.unsw.edu.au>
Written as a COMP1521 lecture example
.text
main:
Locals:
- StO: int n
- Stl: n %

1i svo, 4 # syscall 4: print_string

la $a0, prompt_msg #

syscall # printf("Enter a number: ");
1i $vo, 5 # syscall 5: read_int
syscall #

move $tO, $vo # scanf ("%sd", &n);

rem $tl, $to, 2 # if ((n % 2)

bnez $tl, n_mod_2_ne_0 # I= 0) goto n_mod_2_ne_0;

source code for odd_even s
https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 16 [51

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/odd_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

0dd or Even: MIPS

i $vo, 4

la $a0, even_msg
syscall

b epilogue

n_mod_2_ne_0:

syscall 4: print_string
#

printf("even\n");

goto epilogue;

i $vo, 4 # syscall 4: print_string

la $a0, odd_msg #

syscall # printf("odd\n");
epilogue:

1i $vo, 0 #

jr Sra # return 0;

.data
prompt_msg:

.asciiz "Enter a number:

even_msg:
.asciiz "even\n"
odd_msg:
.asciiz "odd\n"

source code for odd_even.s

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

COMP1521 26T1 — MIPS Control

17/ &1

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/odd_even.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Loops — wh1i le from C to Simplified C

Standard C Simplified C
i = 0; i = 0;
n = 0; n = 0;
while (i < 5) { loop:
if (i >= 5) goto end;

n=mn+1; n=mn+i1;

i+t i+t
} goto loop;

end:

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 18/ %1

https://www.cse.unsw.edu.au/~cs1521/26T1/

Loops — wh1i le from Simplified C to MIPS

Simplified C MIPS
i = 0; 11 $t0, 0 # 1 in StO
n = 0; 11 $tl, @ # n in St1
loop: loop:
if (i >= 5) goto end; bge $t0, 5, end
n=mn+i; add s$t1, $t1, S$tO
4+ addi $tO, $tO, 1
goto loop; j loop

end: end:

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 19/ 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Printing First 10 Integers: C to simplified C

(o Simplified C
for (int i = 1; i <= 10; i++) { loop_i_to_10__init:;
printf("%d\n", i); iRt § = g
} loop_i_to_10__cond:
source code for count_to_10.c if (i > 10) Eoto loop_'i _to_10__end ,

loop_i_to_10__body:
printf("%d", 1i);
putchar('\n'");
loop_i_to_10__step:
++; 77 T =R
goto loop_i_to_10__cond;
loop_i_to_10__end:

source code for count_to_10.simple.c

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 20/ 4

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/count_to_10.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/count_to_10.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Printing First 10 Integers: MIPS
loop_i_to_10__init:

1i sto, 1 #
loop_i_to_10__cond:

bgt $t0, 10, loop_i_to_10_

loop_i_to_10__body:

1i $vo, 1 #
move $a0, $tO

syscall #
11 $ve, 11 #
1i $a0, '\n' #
syscall #

loop_i_to_10__step:

addi $t0, $t0, 1

b loop_i_to_10__cond
loop_1i_to_10__end:

source code for count_to_10.s

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

int 1 = 1;

_end # if (i > 10) goto loop_1i_to_10__end;

syscall 1: print_int

#
printf("%d", i);
syscall 11: print_char

putchar('\n'");

1 =1+ 1;

COMP1521 26T1 — MIPS Control

21/ s

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/count_to_10.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Sum 100 Squares: C to simplified C

(o Simplified C
int main(void) { int main(void) {
int sum = 0; int sum = 0;
for (int 1 = 1; 1 <= 100; i++) { loop_i_to_100__init:;
sum += i * i; int i = 03
} loop_i_to_100__cond:
printf("%d\n", sum); if (i > UPPER_BOUND) goto loop_1i_to.
return 0; loop_i_to_100__body:
} sum += i * 73
souree cadeforsum o0 e loop_i_to_100__step:
i+t

goto loop_i_to_100__cond;
loop_i_to_100__end:

printf("%d", sum);

putchar('\n');

return 0;

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 22/ %

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/sum_100_squares.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/sum_100_squares.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Sum 100 Squares: MIPS

Calculate 1x1 + 2x2 + ... + 99499 + 100x100
Written by: Abiram Nadarajah <abiramn@cse.unsw.edu.au>
Written as a COMP1521 lecture example
UPPER_BOUND = 100
.text
main:
Locals:
- StO: int sum
- Stl1: int 1
- St2: temporary value

1i $to, o # int sum = 0;
loop_1i_to_100__1init:
i s$t1, 1 # int 1 = 0;

loop_i_to_100__cond:
bgt $tl, UPPER_BOUND, loop_i_to_100__end # while (i < UPPER_BOUND) {
loop_i_to_100__body:

source cade for sum 100 sauares.s
https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 23/

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/sum_100_squares.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Sum 100 Squares: MIPS

loop_1i_to_100__body:

mul $t2, $tl, sti # sum = (1 * 1) +

add $to, to, st2 # sum;
loop_1i_to_100__step:

addii $t0, S$to, 1 # it

b loop_i_to_100__cond # }
loop_i_to_100__end:

1i $vo, 1 # syscall 1: print_int

move $ad, $toO #

syscall # printf("%d", sum);

i $vo, 11 # syscall 11: print_char

1i $a0, '\n' #

syscall # putchar('\n');

1i $vo, 0O

jr S$ra # return 0;

source code for sum_100_squares.s

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 24 [t

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/sum_100_squares.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — 1 f and &&: from C to Simplified C

Standard C

if (i < 0 & n >= 42) {

n=n-1;

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

Simplified C

if (i >= 0) goto elsel;
if (n < 42) goto elsel;
n=n-1;
goto endl;

elsel:
n=mn+1;

endl:

COMP1521 26T1 — MIPS Control 25/ 4

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — i f and &&: from Simplified C to MIPS

Simplified C MIPS

assume 1 in StO

assume n in Stl

if (i >= 0) goto elsel;
if (n < 42) goto elsel;
n=n-1ij;

bge $t0, 0, elsel
blt s$t1, 42, elsel
sub $t1, $tl1, $to

goto endl; i endi

elsel:
elsel:

add st1, sti, sto
endl:

n=mn+1;
endl:

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ CCOMP1521 26T1 — MIPS Control 26/ 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — i f and | |: from C to Simplified C

Standard C Simplified C

if (i <o || n>=42) { if (i < 0) goto thenl;
if (n >= 42) goto thenl;
goto elsel;

thenl:
n=n--1; n=n--1;
goto endl;
} else { elsel:
n=mn+1ij; n=mn+i;
} endl:

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 27/

https://www.cse.unsw.edu.au/~cs1521/26T1/

Conditionals — 1 f and | |: from Simplified C to MIPS

Simplified C
if (i < 0)

goto elsel;
thenl:

n=n-1j;

goto endl;
elsel:

n=mn+1;
endl:

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

goto thenl;
if (n >= 42) goto thenil;

MIPS

assume 1 in StO

assume n in Stl

blt $t0, 0, thenl
bge $tl, 42, thenl
j elsel
thenl:
sub $t1, $t1, $to
j endl
elsel:
add $t1, $t1, $to
endl:

COMP1521 26T1 — MIPS Control 28/ 4

https://www.cse.unsw.edu.au/~cs1521/26T1/

The break statement

Sometimes it is useful to exit from the middle of a loop

+ break allows you to check a condition mid-loop and quit

// read up to 100 characters
// stop if the next character is '!'
while (i <= 100) {
int ch = getchar();
if (ch == '!") break;
putchar(ch);

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 29/

https://www.cse.unsw.edu.au/~cs1521/26T1/

The continue statement

Sometimes it is useful to go to next iteration and skip rest of loop

« continue allows you to go to next iteration from mid-loop

// ilterate over integers 1..100
// skip every multiple of three
for (i = 1; i <= 100; i++) {
if (i % 3 == 0) continue;
printf (%d\n", i);

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control

30/ 41

https://www.cse.unsw.edu.au/~cs1521/26T1/

continue can simplify loops

while (Condition) { while (_Condition_) {
some_code_1 some_code_1
if (Conditionl) { if (! Conditionl) continue;
some_code_2 some_code_2
if (Condition2) { if (! Condition2) continue;
some_code_3 some_code_3
} b

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 31/ 4

https://www.cse.unsw.edu.au/~cs1521/26T1/

&8& example (six.c) : C to simplified C

C

int main(void) {
int n;
printf("Enter a number:
scanf("%d", &n);
if (n %2 == 0 & N %
printf("six\n");
}
return 0;

}

source code for six.c

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

Simplified C
int main(void) {
int n;
) g printf("Enter a number: ");
scanf("%d", &n);
== 0) { if (n % 2 != 0) goto epilogue;

if (n % 3 != 0) goto epilogue;
printf("six-ish\n");
epilogue:
return 0;

}

source code for six.simple.c

COMP1521 26T1 — MIPS Control 32/m

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/six.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/six.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

&8& example (six.s) : MIPS (part 1)

main:
Locals:
- StO: int n
- Stl: n % 2
- St2: n % 3

1i $vo, 4 # syscall 4: print_string

la $a0, prompt_msg #

syscall # printf("Enter a number: ");
1i $vo, 5 # syscall 5: read_int
syscall #

move $to, Svo # scanf ("%sd", &n);

rem $ti, $to, 2 # 1f ((n % 2)

bnez $tl, epilogue # = 0) goto epilogue;

source code for six.s

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 33/

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/six.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

&8& example (six.s) : MIPS (part 2)

bnez $tl, epilogue # I= 0) goto epilogue;
rem $t2, $to, 3 # if ((n % 3)
bnez $t2, epilogue # != 0) goto epilogue;
1i $vo, 4 # syscall 4: print_string
la $a0, six_msg #
syscall # printf("six-ish\n");
epilogue:
1i $vo, 0O #
jr Sra # return 0;
.data
prompt_msg:

.asciiz "Enter a number:
six_msg:
.asciiz "six-1ish\n"

source code for six.s

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 34/

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/six.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

I example (two_three.c) : C to simplified C

(o Simplified C
int main(void) { int main(void) {
int n; int n;
printf("Enter a number: "); printf("Enter a number: ");
scanf ("%d", &n); scanf ("%d", &n);
if (n %2 ==0 || n% 3 ==20) { if (n % 2 == 0) goto two_three_print
printf("two-three-ish\n"); if (n % 3 == 0) goto two_three_print
} goto epilogue;
return 0; two_three_print:
} printf("two-three-ish\n");
saurce code for two_three.c T lepues
return 0;
3

source code for two_three.simple.c

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 35/ 4

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/two_three.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/two_three.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Il example (two_three.s) : MIPS (part 1)

main:
Locals:
- StO: int n
- Stl: n % 2
- St2: n % 3

1i $vo, 4 # syscall 4: print_string

la $a0, prompt_msg #

syscall # printf("Enter a number: ");
1i $vo, 5 # syscall 5: read_int
syscall #

move $to, Svo # scanf ("%sd", &n);

rem $ti, $to, 2 # 1f ((n % 2)

beqz $tl, two_three_print # == @) goto two_three_print;

source code for two_three.s

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 36/ 41

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/two_three.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Il example (two_three.s) : MIPS (part 2)

beqz $tl, two_three_print # == @) goto two_three_print;
rem $t2, $to, 3 # 1f ((n % 3)
beqz $t2, two_three_print # == 0) goto two_three_print;
b epilogue # goto epilogue;
two_three_print:
1i $vo, 4 # syscall 4: print_string
la $a0, two_three_msg #
syscall # printf("two-three-ish\n");
epilogue:
1i $vo, 0O #
jr $ra # return 0;
.data
prompt_msg:

.asciiz "Enter a number:
two_three_msg:
.asciiz "two-three-ish\n"

source code for two_three.s
https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control

37/ 4

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/two_three.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

break/continue example (forever_23.c): C to simplified C

C
int main(void) {
for (int n = 0; n < 100; n++) {
if (n % 3 == 0) {
continue;

}
if (n % 23 == 0) {
break;
}
printf("%d\n", n);
}
return 0;

}

source code for forever_23.c

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

Simplified C

int main(void) {
int n;
n = 0;
forever_23_loop_top:
if (n > 100) goto forever_23_loop_en
if (n % 3 == 0) goto forever_23_
if (n % 23 == 0) goto forever_23
printf("%d", n);
putchar('\n'");
forever_23_loop_next:
n=n=+1;
goto forever_23_loop_top;
forever_23_loop_end:
return 0;

}

source code for forever_23.simple.c

COMP1521 26T1 — MIPS Control 38/ 4

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/forever_23.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/forever_23.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

break/continue example (forever_23.s) : MIPS (part 1)

main:
Locals:
- StO: int n
- Stl: n % 2

- St2: n % 23
forever_23_loop_init:

1i $to, o # int n = 0;
forever_23_loop_top:
rem $t2, $to, 3 # 1f ((n % 3)
beqz $t2, forever_23_loop_next # == @) goto forever_23_loop_next;
rem $t1, $to, 23 # if ((n % 23)

beqz $tl, forever_23_loop_end # == 0) goto forever_23_loop_end;

source code for forever_23.s

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 39/

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/forever_23.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

break/continue example (forever_23.s) : MIPS (part 2)

beqz $tl, forever_23_loop_end # == @) goto forever_23_loop_end;

1i sve, 1 # syscall 1: print_int

move $a0d, $to #

syscall # printf("%d", n);

i $ve, 11 # syscall 11: print_char

1i s$a0, '\n' #

syscall # putchar('\n');
forever_23_loop_next:

addii $tO, $to, 1 # nt+;

b forever_23_loop_top; # goto forever_23_loop_top;
forever_23_loop_end:
epilogue:

1i $vo, 0 #

jr S$ra # return 0;

source code for forever_23.s

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 40/ 51

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_control/code/forever_23.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

Side Topic: C do/while
C has a different while loop - do/while (post-test).
+ loop condition checked at bottom of loop - always executed once

« many programmers do not use it
do {
printf("%d\n", 1i);
i+t
} while (i < 10);

can be written as:
int 1 = 1;
loop:
printf("%d", i);
printf("\n");
it++;
if (i < 10) goto loop;

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Control 6 [m

https://www.cse.unsw.edu.au/~cs1521/26T1/

