
COMP1521 26T1 — MIPS Basics

https://www.cse.unsw.edu.au/~cs1521/26T1/

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 1 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/
https://www.cse.unsw.edu.au/~cs1521/26T1/


Why Study Assembler?

Useful to know assembly language because …

• sometimes you are required to use it:

• e.g., low-level system operations, device drivers

• improves your understanding of how compiled programs execute

• very helpful when debugging

• understand performance issues better

• performance tweaking … squeezing out last pico-second

• re-write that performance-critical code in assembler!

• create games in pure assembler

• e.g., RollerCoaster Tycoon

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 2 / 38

https://en.wikipedia.org/wiki/RollerCoaster_Tycoon_(video_game)
https://www.cse.unsw.edu.au/~cs1521/26T1/


CPU Components
A typical modern CPU has:

• a set of data registers
• a set of control registers (including PC)
• a control unit (CU)
• an arithmetic-logic unit (ALU)
• a floating-point unit (FPU)
• caches

• caches normally range from L1 to L3
• L1 is the fastest and smallest

• sometimes separate data and instruction caches
• eg. L1d and L1i caches

• access to memory (RAM)
• Address generation unit (AGU)
• Memory management unit (MMU)

• a set of simple (or not so simple) instructions
• transfer data between memory and registers
• compute values using ALU/FPU
• make tests and transfer control of execution

Figure 1: A Simple CPU

Different types of processors have different configurations of the above
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 3 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


What A CPU Looks Like

Figure 2: MIPS R4600

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 4 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


CPU Architecture Families Used in Game Consoles

Year Console Architecture Chip MHz

1995 PS1 MIPS R3000A 34
1996 N64 MIPS R4200 93
2000 PS2 MIPS Emotion Engine 300
2001 xbox x86 Celeron 733
2001 GameCube Power PPC750 486
2006 xbox360 Power Xenon (3 cores) 3200
2006 PS3 Power Cell BE (9 cores) 3200
2006 Wii Power PPC Broadway 730
2013 PS4 x86 AMD Jaguar (8 cores) 1800
2013 xbone x86 AMD Jaguar (8 cores) 2000
2017 Switch ARM NVidia TX1 1000
2020 PS5 x86 AMD Zen 2 (8 cores) 3500
2020 xboxs x86 AMD Zen 2 (8 cores) 3700
2022 steam deck x86 AMD Zen 2 (4 cores) 3500

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 5 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Family

Figure 3: MIPS Family

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 6 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Fetch-Execute Cycle

• typical CPU program execution pseudo-code:

uint32_t program_counter = START_ADDRESS;
while (1) {

uint32_t instruction = memory[program_counter];

// move to next instruction
program_counter++;

// branches and jumps instruction may change program_counter
execute(instruction, &program_counter);

}

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 7 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Fetch-Execute Cycle

Executing an instruction involves:
• determine what the operator is
• determine if/which register(s) are involved
• determine if/which memory location is involved
• carry out the operation with the relevant operands
• store result, if any, in the appropriate register /
memory location

Example instruction encodings
(not from a real machine):

Figure 4: Fake Instructions

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 8 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Architecture

MIPS is a well-known and simple architecture

• historically used everywhere from supercomputers to game consoles

• still popular in some embedded fields: e.g., modems/routers, TVs

• but being out-competed by ARM and, more recently, RISC-V

COMP1521 uses the MIPS32 version of the MIPS family.

COMP1521 uses simulators, not real MIPS hardware:

• mipsy … command-line-based emulator written by Zac
• source code: https://github.com/insou22/mipsy

• mipsy-web … web (WASM) GUI-based version of mipsy written by Shrey
• https://cgi.cse.unsw.edu.au/~cs1521/mipsy/

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 9 / 38

https://github.com/insou22/mipsy
https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Instructions

MIPS has several classes of instructions:

• load and store … transfer data between registers and memory

• computational … perform arithmetic/logical operations

• jump and branch … transfer control of program execution

• coprocessor … standard interface to various co-processors

• coprocessors implement floating-point operations
• won’t be covered in COMP1521

• special … miscellaneous tasks (e.g. syscall)

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 10 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Instructions
• Instructions are simply bit patterns. MIPS instructions are 32-bits long, and specify …

• an operation (e.g. load, store, add, branch, …)
• zero or more operands (e.g. registers, memory addresses, constants, …)

• Some possible instruction formats

Figure 5: MIPS Instructions

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 11 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Assembly Language - why?

Instructions are simply bit patterns — on MIPS, 32 bits long.

• Could write machine code programs just by specifying bit-patterns
e.g as a sequence of hex digits:

0x2002000b 0x20040048 0x0000000c 0x20040069 0x0000000c 0x2004000a 0x0000000c 0x20020000 0x03e00008

• unreadable!
• difficult to maintain!

• adding/removing instructions changes bit pattern for other instructions

• branch and jump instructions use relative offsets

• changing variable layout in memory changes bit pattern for instructions

• load and store instructions require encoded addresses

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 12 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Assembly Language - symbolic way of specifying machine code

• write instructions using names rather than bit-strings
• refer to registers using either numbers or names
• allow names (labels) associated with memory addresses

li $v0, 11

li $a0, 'H'
syscall

li $a0, 'i'
syscall

li $a0, '\n'
syscall

li $v0, 0
jr $ra

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 13 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Example MIPS Assembler

lw $t1, address # reg[t1] = memory[address]
sw $t3, address # memory[address] = reg[t3]

# address must be 4-byte aligned
la $t1, address # reg[t1] = address
lui $t2, const # reg[t2] = const << 16
and $t0, $t1, $t2 # reg[t0] = reg[t1] & reg[t2]
add $t0, $t1, $t2 # reg[t0] = reg[t1] + reg[t2]

# add signed 2's complement ints
addi $t2, $t3, 5 # reg[t2] = reg[t3] + 5

# add immediate, no sub immediate
mult $t3, $t4 # (Hi,Lo) = reg[t3] * reg[t4]

# store 64-bit result across Hi,Lo
slt $t7, $t1, $t2 # reg[t7] = (reg[t1] < reg[t2])
j label # PC = label
beq $t1, $t2, label # PC = label if reg[t1]==reg[t2]
nop # do nothing

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 14 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Architecture: Registers

MIPS CPU has

• 32 general purpose registers (32-bit)
• 32/16 floating-point registers (for float/double)

• pairs of floating-point registers used for double-precision (not used in COMP1521)

• PC … 32-bit register (always aligned on 4-byte boundary)
• modified by branch and jump instructions

• Hi, Lo … store results of mult and div
• accessed by mthi and mflo instructions only

Registers can be referred to as numbers ($0…$31), or by symbolic names ($zero…$ra)
Some registers have special uses:

• register $0 ($zero) always has value 0, can not be changed
• register $31 ($ra) is changed by jal and jalr instructions
• registers $1 ($at) reserved for mipsy to use in pseudo-instructions
• registers $26 ($k0), $27 ($k1) reserved for operating-system to use in interrupts (exception handling and
system calls)
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 15 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Architecture: Integer Registers - the important ones for COMP1521

Number Names Conventional Usage

0 zero Constant 0
1 at Reserved for assembler
2,3 v0,v1 Expression evaluation and results of a function
4..7 a0..a3 Arguments 1-4
8..15 t0..t7 Temporary (not preserved across function calls)
16..23 s0..s7 Saved temporary (preserved across function calls)
24,25 t8,t9 Temporary (not preserved across function calls)
26,27 k0,k1 Reserved for Kernel use
28 gp Global Pointer
29 sp Stack Pointer
30 fp Frame Pointer
31 ra Return Address (used by function call instructions)

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 16 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Architecture: Integer Registers … Usage Convention

• Except for registers zero and ra (0 and 31),
these uses are only programmer’s conventions

• no difference between registers 1 .. 30 in the silicon
• mipsy follows these conventions so at, k0, k1 can change unexpectedly

• Conventions allow compiled code from different sources to be combined (linked).
• Conventions are formalized in an Application Binary Interface (ABI)

• Some of these conventions are irrelevant when writing tiny assembly programs
• follow them anyway
• it’s good practice

• for general use, keep to registers t0 .. t9, s0 .. s7
• use other registers only for conventional purposes

• e.g. only, and always, use a0 .. a3 for arguments

• never use registers at, k0, k1

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 17 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Data and Addresses

All operations refer to data, either

• in a register

• in memory

• a constant that is embedded in the instruction itself

Computation operations refer to registers or constants.

Only load/store instructions refer to memory.

The syntax for constant value is C-like:

1 3 -1 -2 12345 0x1 0xFFFFFFFF 0b10101010 0o123
"a string" 'a' 'b' '1' '\n' '\0'

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 18 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Describing MIPS Assembly Operations

Registers are denoted:

𝑅𝑑 destination register where result goes
𝑅𝑠 source register #1 where data comes from
𝑅𝑡 source register #2 where data comes from

For example:
add $𝑅𝑑, $𝑅𝑠, $𝑅𝑡 ⟹ 𝑅𝑑 ∶= 𝑅𝑠 + 𝑅𝑡

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 19 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Integer Arithmetic Instructions

assembly meaning bit pattern

add 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 + 𝑟𝑡 000000ssssstttttddddd00000100000

sub 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 - 𝑟𝑡 000000ssssstttttddddd00000100010

mul 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 * 𝑟𝑡 011100ssssstttttddddd00000000010

rem 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 % 𝑟𝑡 pseudo-instruction

div 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 / 𝑟𝑡 pseudo-instruction

addi 𝑟𝑡, 𝑟𝑠, I 𝑟𝑡 = 𝑟𝑠 + I 001000ssssstttttIIIIIIIIIIIIIIII

• integer arithmetic is 2’s-complement (covered later in COMP1521)
• also: addu, subu, mulu, addiu - equivalent instructions which do not stop execution on overflow.
• no subi instruction - use addi with negative constant
• mipsy will translate add and of sub a constant to addi

• e.g. mipsy translates add $t7, $t4, 42 to addi $t7, $t4, 42
• for readability use addi, e.g. addi $t7, $t4, 42

• mipsy allows $r_s$ to be omitted and will use $r_d$
• e.g. mipsy translates add $t7, $t1 to add $t7, $t7, $t1
• for readability use the full instruction, e.g. add $t7, $t7, $t1

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 20 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Integer Arithmetic Instructions - Example

addi $t0, $zero, 6 # $t0 = 6
addi $t5, $t0, 2 # $t5 = 8
mul $t4, $t0, $t5 # $t4 = 48
add $t4, $t4, $t5 # $t4 = 56
addi $t6, $t4, -14 # $t6 = 42

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 21 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Extra Integer Arithmetic Instructions (little used in COMP1521)

assembly meaning bit pattern

div 𝑟𝑠,𝑟𝑡 hi = 𝑟𝑠 % 𝑟𝑡; 000000sssssttttt0000000000011010

lo = 𝑟𝑠 / 𝑟𝑡
mult 𝑟𝑠,𝑟𝑡 hi = (𝑟𝑠 * 𝑟𝑡) » 32 000000sssssttttt0000000000011000

lo = (𝑟𝑠 * 𝑟𝑡) & 0xffffffff
mflo 𝑟𝑑 𝑟𝑑 = lo 0000000000000000ddddd000000001010

mfhi 𝑟𝑑 𝑟𝑑 = hi 0000000000000000ddddd000000001001

• mult mutliplies and provides a 64-bit result
• mul instruction provides only 32-bit result (can overflow)

• mipsy translates rem 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 to div 𝑟𝑠,𝑟𝑡 plus mfhi 𝑟𝑑
• mipsy translates div 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 to div 𝑟𝑠,𝑟𝑡 plus mflo 𝑟𝑑
• divu and multu are unsigned equivalents of div and mult

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 22 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Bit Manipulation Instructions (for future reference)

• instructions explained later when we cover bitwise operators

assembly meaning bit pattern

and 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 & 𝑟𝑡 000000ssssstttttddddd00000100100

or 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 l 𝑟𝑡 000000ssssstttttddddd00000100101

xor 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 ^ 𝑟𝑡 000000ssssstttttddddd00000100110

nor 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = ~ (𝑟𝑠 | 𝑟𝑡) 000000ssssstttttddddd00000100111

andi 𝑟𝑡, 𝑟𝑠, I 𝑟𝑡 = 𝑟𝑠 & I 001100ssssstttttIIIIIIIIIIIIIIII

ori 𝑟𝑡, 𝑟𝑠, I 𝑟𝑡 = 𝑟𝑠 l I 001101ssssstttttIIIIIIIIIIIIIIII

xori 𝑟𝑡, 𝑟𝑠, I 𝑟𝑡 = 𝑟𝑠 ^ I 001110ssssstttttIIIIIIIIIIIIIIII

not 𝑟𝑑, 𝑟𝑠 𝑟𝑑 = ~ 𝑟𝑠 pseudo-instruction

• mipsy translates not 𝑟𝑑, 𝑟𝑠 to nor 𝑟𝑑, 𝑟𝑠, $0

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 23 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Shift Instructions (for future reference)

• instructions explained later when we cover bitwise operators

assembly meaning bit pattern

sllv 𝑟𝑑, 𝑟𝑡, 𝑟𝑠 𝑟𝑑 = 𝑟𝑡 « 𝑟𝑠 000000ssssstttttddddd00000000100

srlv 𝑟𝑑, 𝑟𝑡, 𝑟𝑠 𝑟𝑑 = 𝑟𝑡 » 𝑟𝑠 000000ssssstttttddddd00000000110

srav 𝑟𝑑, 𝑟𝑡, 𝑟𝑠 𝑟𝑑 = 𝑟𝑡 » 𝑟𝑠 000000ssssstttttddddd00000000111

sll 𝑟𝑑, 𝑟𝑡, I 𝑟𝑑 = 𝑟𝑡 « I 00000000000tttttdddddIIIII000000

srl 𝑟𝑑, 𝑟𝑡, I 𝑟𝑑 = 𝑟𝑡 » I 00000000000tttttdddddIIIII000010

sra 𝑟𝑑, 𝑟𝑡, I 𝑟𝑑 = 𝑟𝑡 » I 00000000000tttttdddddIIIII000011

• srl and srlv shift zeros into most-significant bit
• this matches shift in C of unsigned value

• sra and srav propagate most-significant bit
• this ensure shifting a negative number divides by 2

• slav and sla don’t exist as arithmetic and logical left shifts are the same
• mipsy provides rol and ror pseudo-instructions which rotate bits

• real instructions on some MIPS versions
• no simple C equivalent

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 24 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Miscellaneous Instructions

assembly meaning bit pattern

li 𝑅𝑑, value 𝑅𝑑 = value psuedo-instruction

la 𝑅𝑑, label 𝑅𝑑 = label psuedo-instruction

move 𝑅𝑑, 𝑅𝑠 𝑅𝑑 = 𝑅𝑠 psuedo-instruction

slt 𝑅𝑑, 𝑅𝑠, 𝑅𝑡 𝑅𝑑 = 𝑅𝑠 < 𝑅𝑡 000000ssssstttttddddd00000101010

slti 𝑅𝑡, 𝑅𝑠, I 𝑅𝑡 = 𝑅𝑠 < I 001010ssssstttttIIIIIIIIIIIIIIII

lui 𝑅𝑡, I 𝑅𝑡 = I * 65536 00111100000tttttIIIIIIIIIIIIIIII

syscall system call 00000000000000000000000000001100

• MIPSY allows li and la to be used interchangably
• for readability use li for constants, e.g 0, 0xFF, ‘#’
• for readability use la for labels, e.g main

• probably not needed in COMP1521, but also similar instruction/psuedo-instructions to slt/slti:
• sle/slei, sge/sgei, sgt/sgti, seq/seqi, sne/snei
• and unsigned versions sleu/sleui, sgeu/sgeui, sgtu/sgtui, sequ/sequi, sneu/sneu

• mipsy may translate pseudo-instructions to lui
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 25 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Example Use of Miscellaneous Instructions

li $t4, 42 # $t4 = 42
li $t0, 0x2a # $t0 = 42 (hexadecimail @aA is 42 decimal)
li $t3, '*' # $t3 = 42 (ASCII for * is 42)
la $t5, start # $t5 = address corresponding to label start
move $t6, $t5 # $t6 = $t5
slt $t1, $t3, $t3 # $t1 = 0 ($t3 and $t3 contain 42)
slti $t7, $t3, 56 # $t7 = 1 ($t3 contains 42)
lui $t8, 1 # $t8 = 65536
addi $t8, $t8, 34464 # $t8 = 100000

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 26 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Example Translation of Pseudo-instructions

Pseudo-Instructions

move $a1, $v0

li $t5, 42

li $s1, 0xdeadbeef

la $t3, label

Real Instructions

addi $a1, $0, $v0

ori $t5, $0, 42

lui $at, 0xdead
ori $s1, $at, 0xbeef

lui $at, label[31..16]
ori $t3, $at, label[15..0]

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 27 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS vs mipsy

MIPS is a machine architecture, including instruction set

mipsy is an emulator for the MIPS instruction set

• reads text files containing instruction + directives

• converts to machine code and loads into “memory”

• provides some debugging capabilities

• single-step, breakpoints, view registers/memory, …

• provides mechanism to interact with operating system (syscall)

Also provides extra instructions, mapped to MIPS core set:

• provide convenient/mnemonic ways to do common operations

• e.g. move $s0, $v0 rather than addu $s0, $v0, $0

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 28 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Using Mipsy

How to to execute MIPS code without a MIPS

• 1521 mipsy
• command line tool on CSE systems
• load programs using command line arguments
• interact using stdin/stdout via terminal

• mipsy_web
• https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
• runs in web browser, load programs with a button
• visual environment for debugging

• spim, xspim, qtspim
• older widely used MIPS simulator
• beware: missing some pseudo-instructions used in 1521 for function calls

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 29 / 38

https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
https://www.cse.unsw.edu.au/~cs1521/26T1/


Using mipsy Interactively
$ 1521 mipsy
[mipsy] load my_program.s
success: file loaded

[mipsy] step 6

_start:
0x80000000 kernel [0x3c1a0040] lui $k0, 64
0x80000004 kernel [0x375a0000] ori $k0, $k0, 0
0x80000008 kernel [0x0340f809] jalr $ra, $k0

main:
0x00400000 2 [0x20020001] addi $v0, $zero, 1 # li $v0, 1
0x00400004 3 [0x2004002a] addi $a0, $zero, 42 # li $a0, 42
0x00400008 4 [0x0000000c] syscall # syscall

[SYSCALL 1] print_int: 42

[mipsy]

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 30 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Important System Calls

Our programs can’t really do anything … we usually rely on the operating system to do things for us.
syscall lets us make system calls for these services.

mipsy provides a set of system calls for I/O and memory allocation.
$v0 specifies which system call —

Service $v0 Arguments Returns

printf("%d") 1 int in $a0
fputs 4 string in $a0
scanf("%d") 5 none int in $v0
fgets 8 line in $a0, length in $a1
exit(0) 10 none
printf("%c") 11 char in $a0
scanf("%c") 12 none char in $v0

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 31 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Other System Calls … Little Used in COMP1521

• for completeness some other system calls provided by mips
• most of these are not implemented in mipsy, only sbrk and exit
• probably not needed for COMP1521, except could maybe ppear in challenge exercise or provided code

Service $v0 Arguments Returns

printf("%f") 2 float in $f12
printf("%lf") 3 double in $f12
scanf("%f") 6 none float in $f0
scanf("%lf") 7 none double in $f0
sbrk(nbytes) 9 nbytes in $a0 address in $v0
open(filename, flags, mode) 13 filename in $a0, flags in $a1, mode $a2 fd in $v0
read(fd, buffer, length) 14 fd in $a0, buffer in $a1, length in $a2 number of bytes read in

$v0
write(fd, buffer, length) 15 fd in $a0, buffer in $a1, length in $a2 number of written in $v0
close(fd) 16 fd in $a0
exit(status) 17 status in $a0

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 32 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Encoding MIPS Instructions as 32 bit Numbers

Assembler Encoding

add $a3, $t0, $zero
add $d, $s, $t 000000 sssss ttttt ddddd 00000 100000
add $7, $8, $0 000000 01000 00000 00111 00000 100000

0x01003820 (decimal 16791584)
sub $a1, $at, $v1
sub $d, $s, $t 000000 sssss ttttt ddddd 00000 100010
sub $5, $1, $3 000000 00001 00011 00101 00000 100010

0x00232822 (decimal 2304034)
addi $v0, $v0, 1
addi $d, $s, C 001000 sssss ddddd CCCCCCCCCCCCCCCC
addi $2, $2, 1 001000 00010 00010 0000000000000001

0x20420001 (decimal 541196289)

all instructions are variants of a small number of bit patterns with register numbers always in same place
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 33 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Assembly Language

MIPS assembly language programs contain

• assembly language instructions

• labels … appended with :

• comments … introduced by #

• directives … symbol beginning with .

• constant definitions, equivalent of #define in C, e.g:

MAX_NUMBERS = 1000

Programmers need to specify

• data objects that live in the data region

• instruction sequences that live in the code/text region

Each instruction or directive appears on its own line.
https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 34 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Our First MIPS program

C

int main(void) {
printf("%s", "I love MIPS\n");
return 0;

}

MIPS

# print a string in MIPS assembly
# Written by: Andrew Taylor <andrewt@unsw.edu.au>
# Written as a COMP1521 lecture example
main:

la $a0, string # ... pass address of string as argument
li $v0, 4 # ... 4 is printf "%s" syscall number
syscall
# return 0
li $v0, 0
jr $ra
.data

string:
.asciiz "I love MIPS\n"

source code for i_love_mips.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 35 / 38

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_basics/code/i_love_mips.s
https://www.cse.unsw.edu.au/~cs1521/26T1/


MIPS Programming

Writing correct assembler directly is hard.

Recommended strategy:

• write,test & debug a solution in C
• map down to “simplified” C
• test “simplified” C and ensure correct
• translate simplified C statements to MIPS instructions

Simplified C

• does not have complex expressions
• does have one-operator expressions

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 36 / 38

https://www.cse.unsw.edu.au/~cs1521/26T1/


Adding Two Numbers — C to Simplified C

C

int main(void) {
int x = 17;
int y = 25;
printf("%d\n", x + y);
return 0;

}
source code for add.c

Simplified C

int main(void) {
int x, y, z;
x = 17;
y = 25;
z = x + y;
printf("%d", z);
printf("%c", '\n');
return 0;

}
source code for add.simple.c

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 37 / 38

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_basics/code/add.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_basics/code/add.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/


Adding Two Numbers — Simple C to MIPS
Simplified
C

int x, y, z;
x = 17;
y = 25;
z = x + y;
printf("%d", z);
printf("%c", '\n');

MIPS

main:
# x in $t0
# y in $t1
# z in $t2
li $t0, 17 # x = 17;
li $t1, 25 # y = 25;
add $t2, $t1, $t0 # z = x + y
move $a0, $t2 # printf("%d", z);
li $v0, 1
syscall
li $a0, '\n' # printf("%c", '\n');
li $v0, 11
syscall
li $v0, 0 # return 0
jr $ra

source code for add.s

https://www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 38 / 38

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_basics/code/add.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

