COMP1521 26T1 — MIPS Basics

https://www.cse.unsw.edu.au/~cs1521/26T1/

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 1/38

https://www.cse.unsw.edu.au/~cs1521/26T1/
https://www.cse.unsw.edu.au/~cs1521/26T1/

Why Study Assembler?

Useful to know assembly language because ...

- sometimes you are required to use it:
+ e.g, low-level system operations, device drivers

« improves your understanding of how compiled programs execute
- very helpful when debugging
- understand performance issues better

+ performance tweaking ... squeezing out last pico-second
- re-write that performance-critical code in assembler!

+ create games in pure assembler

+ e.g., RollerCoaster Tycoon

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics. 2/38

https://en.wikipedia.org/wiki/RollerCoaster_Tycoon_(video_game)
https://www.cse.unsw.edu.au/~cs1521/26T1/

CPU Components

A typical modern CPU has: CPU RAM
- a set of data registers /~ Data contral \ 0x0000
. . . Registers Registers 0x0004
- a set of control registers (including PC) = e 0x0008
+ a control unit (CU) r1 cC 0x000C
- an arithmetic-logic unit (ALU) ri |_Hc|> Load 0x0010
T —>
+ afloating-point unit (FPU) " Store
« caches :
-+ caches normally range from L1 to L3 Py ALU 8XEEE;’
+ L1is the fastest and smallest \ -) O))((FFFC
- sometimes separate data and instruction caches
+ eg. L1d and L1i caches Figure 1: A Simple CPU

+ access to memory (RAM)
+ Address generation unit (AGU)
+ Memory management unit (MMU)

+ aset of simple (or not so simple) instructions
- transfer data between memory and registers
« compute values using ALU/FPU
- make tests and transfer control of execution

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 3/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

What A CPU Looks Like

(LTRTTDTD PR YRR RRRREO S}

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

https://www.cse.unsw.edu.au/~cs1521/26T1/

CPU Architecture Families Used in Game Consoles

Year Console Architecture Chip MHz
1995 PS1 MIPS R3000A 34
1996 N64 MIPS R4200 93
2000 PS2 MIPS Emotion Engine 300
2001 xbox x86 Celeron 733
2001 GameCube Power PPC750 486
2006 xbox360 Power Xenon (3 cores) 3200
2006 PS3 Power Cell BE (9 cores) 3200
2006 Wii Power PPC Broadway 730
2013 PS4 x86 AMD Jaguar (8 cores) 1800
2013 xbone x86 AMD Jaguar (8 cores) 2000
2017 Switch ARM NVidia TX1 1000
2020 PS5 x86 AMD Zen 2 (8 cores) 3500
2020 xboxs x86 AMD Zen 2 (8 cores) 3700

2022 steamdeck x86 AMD Zen 2 (4 cores) 3500

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics. 5/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Family

MIPS R2000 MIPS R3000

MIPS R4000 MIPS R5000 MIPS R10000 MIPS R12000

Year 1985 1988 1992 1996 1995 1998
MIPS MIPS | MIPS | MIPS Il MIPS IV MIPS IV MIPS IV
ISA (32-bit) (32-bit) (64-bit) (64-bit) (64-bit) (B4-bit)
Transistor 110k 110k 23-46m 37m 6.8m 7.15m
F:f:;:s 2um 1.2 pm 0.35 pm 0.32 ym 0.35 ym 0.25 pm
o 80 mm? 40 mm? 84 - 100 mm? 84 mm? 350 mm? 220 mm?
Speed 12-33 MHz 20 -40 MHz 50 - 250 MHz 150 - 266 MHz 180 - 360 MHz 270 - 400 MHz
" Nintendo N64 SGI Indigo2 and Octane
Sony PlayStation
Game consolo game console 6102 and Indy workstations
workstations
Flagship DECstation 2100 and SGI IRIS and Indigo Degfé:::;fich::zﬁ a"gCS si’y":{:ﬂi’""y‘:}:’? SGI Octane 2, Onyx 2, and Origin
devices 3100 workstations workstations Windows NT)QY Cobalt Qube servers P P Workstations
NEC Cenju-4 supercomputers
NASSA ;\lf:/ l'rlglr::ons SGI Onyx, Indigo, Indigo2, and HP LJ4000 laser printers
pace pi Indy workstations Siemens Nixdorf servers

Figure 3: MIPS Family

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics. 6/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Fetch-Execute Cycle

« typical CPU program execution pseudo-code:

uint32_t program_counter = START_ADDRESS;
while (1) {
uint32_t dinstruction = memory[program_counter];

// move to next instruction
program_counter++;

// branches and jumps instruction may change program_counter
execute(instruction, &program_counter);

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics. 7/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Fetch-Execute Cycle

Executing an instruction involves:

determine what the operator is

determine if/which register(s) are involved
determine if/which memory location is involved
carry out the operation with the relevant operands
store result, if any, in the appropriate register /
memory location

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

Example instruction encodings

(not from a real machine):

ADD $t1 $t2 $t0
F—8 bits— F—8 bits— F—8 bits— F—8 bits—1
LOAD $s7 0x1004
8 bits—1 F——=8 bits— | 16 bits

COMP1521 26T1 — MIPS Basics

Figure 4: Fake Instructions

8/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Architecture

MIPS is a well-known and simple architecture
« historically used everywhere from supercomputers to game consoles
« still popular in some embedded fields: e.g., modems/routers, TVs
+ but being out-competed by ARM and, more recently, RISC-V
COMP1521 uses the MIPS32 version of the MIPS family.
COMP1521 uses simulators, not real MIPS hardware:

+ mipsy .. command-line-based emulator written by Zac
+ source code: https://github.com/insou22/mipsy

« mipsy-web ... web (WASM) GUI-based version of mipsy written by Shrey
+ https://cgi.cse.unsw.edu.au/~cs1521/mipsy/

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics. 9/38

https://github.com/insou22/mipsy
https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Instructions

MIPS has several classes of instructions:
+ load and store ... transfer data between registers and memory
« computational ... perform arithmetic/logical operations
« jump and branch ... transfer control of program execution
« coprocessor ... standard interface to various co-processors

« coprocessors implement floating-point operations
+ won't be covered in COMP1521

+ special ... miscellaneous tasks (e.g. syscall)

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 10/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Instructions

« Instructions are simply bit patterns. MIPS instructions are 32-bits long, and specify ...
- an operation (e.g. load, store, add, branch, ...)
« zero or more operands (e.g. registers, memory addresses, constants, ...)

» Some possible instruction formats

OoPcODE| R1 R2 R3 R4 |oPcoODE R-type

=6 bits— 5 bitsd k5 bits1 k5 bits1 F5 bitsd 6 bits—

Memory Address

I-t
OPCODE| R1 R2 Constant Value ype
6 bits— 5 bitsd F5 bitsd | 16 bits i

Memory Address

J-type
OPCODE| R1 Constant Value P
6 bits— 5 bitsd | 21 bits i

Figure 5: MIPS Instructions

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics

11/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Assembly Language - why?

Instructions are simply bit patterns — on MIPS, 32 bits long.

+ Could write machine code programs just by specifying bit-patterns
e.g as a sequence of hex digits:

0x2002000b 0x20040048 0x0000000c 0x20040069 OxOOO0000Cc Ox2004000a OxOOOOOO0C

« unreadable!
« difficult to maintain!

« adding/removing instructions changes bit pattern for other instructions
« branch and jump instructions use relative offsets
+ changing variable layout in memory changes bit pattern for instructions

+ load and store instructions require encoded addresses

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 12/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Assembly Language - symbolic way of specifying machine code

« write instructions using names rather than bit-strings
- refer to registers using either numbers or names
+ allow names (labels) associated with memory addresses

1i $vo, 11

1i $a0, 'H'
syscall

1i $a0, 'i'
syscall

1i $a0, '\n'
syscall

1i $vo, 0O
jr Sra

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 13/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Example MIPS Assembler

1w $tl, address # reg[tl] = memory[address]
sw $t3, address # memory[address] = reg[t3]

address must be 4-byte aligned
la $tl, address # reg[tl] = address
lui $t2, const # reg[t2] = const << 16
and $to, $ti1, $t2 # reg[toO] = reg[tl] & reg[t2]
add $tO, $t1, $t2 # reg[toO] = reg[tl] + reg[t2]

add signed 2's complement ints
addii $t2, $t3, 5 # reg[t2] = reg[t3] + 5

add immediate, no sub immediate
mult $t3, $t4 # (Hi,Lo) = reg[t3] x reg[t4]

store 64-bit result across Hi, Lo
slt S$t7, $ti1, $t2 # reg[t7] = (reg[tl] < reg[t2])
j label # PC = label
beq $tl, $t2, label # PC = label if reg[tl]==reg[t2]
nop # do nothing

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 14 /38

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Architecture: Registers
MIPS CPU has

+ 32 general purpose registers (32-bit)
+ 32/16 floating-point registers (for float/double)
+ pairs of floating-point registers used for double-precision (not used in COMP1521)
+ PC ... 32-bit register (always aligned on 4-byte boundary)
« modified by branch and jump instructions
* Hi, Lo ... store results of mult and div
+ accessed by mthi and mflo instructions only

Registers can be referred to as numbers ($0...$31), or by symbolic names ($zero...$ra)
Some registers have special uses:

+ register $0 ($zero) always has value 0, can not be changed

- register $31 ($ra)is changed by jal and ja'lr instructions

« registers $1 (Sat) reserved for mipsy to use in pseudo-instructions

« registers $26 ($k0), $27 ($k1) reserved for operating-system to use in interrupts (exception handling and
system calls)

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 15/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Architecture: Integer Registers - the important ones for COMP1521

Number Names Conventional Usage

0 zero Constant 0

1 at Reserved for assembler

2,3 vo,v1 Expression evaluation and results of a function
4.7 a0..a3 Arguments 1-4

8.15 10..t7 Temporary (not preserved across function calls)
16..23 s0..s7 Saved temporary (preserved across function calls)
24,25 18,19 Temporary (not preserved across function calls)
26,27 ko,k1 Reserved for Kernel use

28 gp Global Pointer

29 sp Stack Pointer

30 fp Frame Pointer

31 ra Return Address (used by function call instructions)

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

COMP1521 26T1 — MIPS Basics

16 /38

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Architecture: Integer Registers ... Usage Convention

+ Except for registers zero and ra (0 and 31),
these uses are only programmer’s conventions
+ no difference between registers 1.. 30 in the silicon
- mipsy follows these conventions so at, k0, k1 can change unexpectedly

+ Conventions allow compiled code from different sources to be combined (linked).

+ Conventions are formalized in an Application Binary Interface (ABI)

+ Some of these conventions are irrelevant when writing tiny assembly programs
- follow them anyway
« it's good practice

for general use, keep to registers t0 .. £t9, s0 .. s7
- use other registers only for conventional purposes
+ e.g.only, and always, use a0 .. a3 for arguments

never use registers at, ko, k1

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics.

17/ 38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Data and Addresses

All operations refer to data, either

- in aregister

+ in memory

+ a constant that is embedded in the instruction itself
Computation operations refer to registers or constants.
Only load/store instructions refer to memory.

The syntax for constant value is C-like:

1 3 -1 -2 12345 0x1 OxFFFFFFFF 0b10101010 00123
"y string" rq! h! T l\nl l\ou

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 18/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Describing MIPS Assembly Operations

Registers are denoted:

R, destination register ~where result goes
source register #1 where data comes from
R, source register #2 where data comes from

For example:

add $R, $R,,$R, = R,:=R,+R,

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 19/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Integer Arithmetic Instructions

assembly meaning bit pattern

addr,, r,r, 7Ty=r +r, 000000ssssstttttddddd00000100000
subry, v,y Ty=T,-T; 000000ssssstttttdddddo0000100010
mulr,, 7,7, Tg=r *r, 011100ssssstttttddddd00000000010
remr,r,r, 1T ;=Ts%T; pseudo-instruction
divryr,r, rg=r,lr pseudo-instruction
addir,r,I r,=r +I 001000ssssstttttITIITIITIIIIIIIT

integer arithmetic is 2’'s-complement (covered later in COMP1521)
+ also: addu, subu, mulu, addiu - equivalent instructions which do not stop execution on overflow.
 no subi instruction - use addi with negative constant
+ mipsy will translate add and of sub a constant to add1i
+ eg mipsy translates add $t7, $t4, 42toaddi $t7, $t4, 42
« for readability use add1, e.g. addi $t7, $t4, 42
+ mipsy allows r_s to be omitted and will use $r_ds
+ eg mipsy translates add $t7, $tltoadd $t7, $t7, $t1
- for readability use the full instruction, e.g. add $t7, $t7, $t1

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 20/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Integer Arithmetic Instructions - Example

addi $t0, Szero, 6 # StO = 6
addi $t5, $to, 2 # $t5 = 8
mul $t4, $tO, $t5 # St4 = 48
add $t4, $t4, $t5 # St4 = 56
addi $t6, $t4, -14 # St6 = 42

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 21/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Extra Integer Arithmetic Instructions (little used in COMP1521)

assembly meaning bit pattern

divr,r, hi=r,%r, 000000sSssSSttttt0000000000011010
lo=r,/m,

multr,r, hi=(r,*r)»32 000000sssSSttttt0000000000011000
1o = (r, * r,) & OXfHFfF

mflor, rqy=1o 0000000000000000ddddd000000001010

mfhir, ry=hi 0000000000000000ddddd000000001001

« mult mutliplies and provides a 64-bit result

» mul instruction provides only 32-bit result (can overflow)
- mipsy translates remrg, r,, v, todiv r,r, plusmfhir,
- mipsy translatesdiv ry, r,, r, todiv r_,r, plusmflor,
+ divu and multu are unsigned equivalents of divand mult

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 22/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Bit Manipulation Instructions (for future reference)

« instructions explained later when we cover bitwise operators

assembly meaning bit pattern

andr,,r,r, T =T, &1 000000ssssstttttdddddeoeee100100
orr,, Ty, rg=rlr, 000000ssssstttttdddddeoeee100161
XOr Ty, T, Ty Tg=Ts Ty 000000ssssstttttddddde0000100110
norr,r,r, Tg=~(rglr,) ©000000ssssstttttdddddoeEEE100111
andir,r,I 7,=r &I 001100ssssstttttIIITIIIIIIIIIIIT
orir,r,I ro=r LI 001101ssssstttttIITTITIIIIITIIIIIT
xorir,r,I r,=r, "1 001110ssssstttttIIIIIIIIIIIIIIII
notr, r, FgB=s pseudo-instruction

+ mipsy translates not r;, 7 to nor r;, 1, $0

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 23/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Shift Instructions (for future reference)

- instructions explained later when we cover bitwise operators

assembly meaning bit pattern

sllvry,r,ry, T,4=7T,«T, 000000ssssstttttddddd00000000100
srlvr,,r,ry Tg=T,»r, 000000ssssstttttddddd00000000110
sravr, T, T, Tg=T;»T, 000000ssssstttttdddddo00e0000111
sliir,r, I rg=T,«I 00000000000tttttdddddIIIII000000
srlirgr, I rg=T;»I1 00000000000tttttdddddIIIII000010
srargr, I rg=7T;»I1 00000000000tttttdddddIIIII000011

srl and srlv shift zeros into most-significant bit

« this matches shift in C of unsigned value

sra and srav propagate most-significant bit

- this ensure shifting a negative number divides by 2

slav and sla don't exist as arithmetic and logical left shifts are the same

mipsy provides rol and ror pseudo-instructions which rotate bits
- real instructions on some MIPS versions

« no simple C equivalent

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

COMP1521 26T1 — MIPS Basics.

24 /38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Miscellaneous Instructions

assembly meaning bit pattern

11 R, value R, = value psuedo-instruction

la R, label R, = label psuedo-instruction

move Rd' RS Rd = RS psuedo-instruction

s\t Ry, R, R, R;=R <R, 000000ssssstttttddddd00000101010
slti R, R,,I R,=R <I 001010ssssstttttIIIIIIIIIIIIIIII
iR, I R, =I1+%65536 00111100000tttttIIIIIIIIIIIIIIII
syscall system call 00000000000000000000000000001100

+ MIPSY allows 11 and la to be used interchangably
« for readability use 11 for constants, e.g 0, OXFF, ‘#’
- for readability use la for labels, e.g main
+ probably not needed in COMP1521, but also similar instruction/psuedo-instructions to s1t/s1t1:
- sle/slei, sge/sgei, sgt/sgti, seq/seqi, sne/snei
+ and unsigned versions sleu/sleut, sgeu/sgeut, sgtu/sgtui, sequ/sequi, sneu/sneu

+ mipsy may translate pseudo-instructions to lu-i

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 25/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Example Use of Miscellaneous Instructions

11 s$ta, 42 # St4 = 42

11 $t0, Ox2a # StO = 42 (hexadecimail @aA is 42 decimal)
14 S$t3, 'x! # St3 = 42 (ASCII for * is 42)

la $t5, start # Stb = address corresponding to label start
move $t6, $t5 # St6 = St5

slt $t1l, $t3, $t3 # Stl1 = 0 (St3 and St3 contain 42)

slti $t7, $t3, 56 # St7 = 1 (S$t3 contains 42)

ludi $t8, 1 # $t8 = 65536

addi $t8, $t8, 34464 # St8 = 100000

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 26/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Example Translation of Pseudo-instructions

Pseudo-Instructions Real Instructions

move $al, $vO addi $al, $0, SvO
11 $t5, 42 ori S$t5, $0, 42
11 $sl, Oxdeadbeef lui Sat, Oxdead

ori $sl1, Sat, Oxbeef

la $t3, label lui Sat, label[31..16]
ori $t3, $at, label[15..0]

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 27/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS vs mipsy

MIPS is a machine architecture, including instruction set
mipsy is an emulator for the MIPS instruction set

+ reads text files containing instruction + directives

 converts to machine code and loads into “memory”

- provides some debugging capabilities

+ single-step, breakpoints, view registers/memory, ...

« provides mechanism to interact with operating system (syscall)
Also provides extra instructions, mapped to MIPS core set:

+ provide convenient/mnemonic ways to do common operations

+ eg.move $s0, $vO ratherthan addu $s0, SvO, $0

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 28/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Using Mipsy

How to to execute MIPS code without a MIPS

+ 1521 mipsy
+ command line tool on CSE systems
« load programs using command line arguments
+ interact using stdin/stdout via terminal
+ mipsy_web
+ https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
+ runs in web browser, load programs with a button
« visual environment for debugging
« spim, xspim, gtspim
« older widely used MIPS simulator
+ beware: missing some pseudo-instructions used in 1521 for function calls

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics.

29/38

https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
https://www.cse.unsw.edu.au/~cs1521/26T1/

Using mipsy Interactively

$ 1521 mipsy

[mipsy] load my_program.s
success: file loaded

[mipsy] step 6

_start:

Ox80000000 kernel [0x3claf040] ui $ko, 64
Ox80000004 kernel [0x375a0000] ori sko, $ko, 0
Ox80000008 kernel [0x0340f809] jalr Sra, $ko

main:

Ox00400000 2 [6x20020001] add1i $vO, $zero, 1 # 11 Svo, 1
0x00400004 3 [0x2004002a] add-i $a0, $zero, 42 # Ui $Sa0, 42
0x00400008 4 [6x0000000c] syscall # syscall

[SYSCALL 1] print_int: 42

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 30/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Important System Calls

Our programs can't really do anything ... we usually rely on the operating system to do things for us.

syscall lets us make system calls for these services.

mipsy provides a set of system calls for I/0 and memory allocation.

$v0 specifies which system call —

Service Svo Arguments Returns
printf("%d") 1 intin $a0

fputs 4 string in $a0

scanf ("%d") 5 none intin $vO
fgets 8 linein $a0, length in $al

exit(0) 10 none

printf("%c'") 1 charin $a0

scanf ("%c") 12 none charin $vO

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

COMP1521 26T1 — MIPS Basics.

31/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Other System Calls ... Little Used in COMP1521

» for completeness some other system calls provided by mips

+ most of these are not implemented in mipsy, only sbrk and exit

+ probably not needed for COMP1521, except could maybe ppear in challenge exercise or provided code

Service $vo Arguments Returns

printf("%fm) 2 floatin $f12

printf("%1f") 3 double in $f12

scanf ("%f") 6 none floatin $0

scanf ("%1f") 7 none double in $T0

sbrk(nbytes) 9 nbytes in $a0 address in $vO

open(filename, flags, mode) 13 filename in $a0, flags in $a1, mode $a2 fd in $vO

read(fd, buffer, length) 14 fd in $a0, buffer in $a1, length in $a2 number of bytes read in
$vo

write(fd, buffer, length) 15 fd in $a0, buffer in $a1, length in $a2 number of written in $v0

close(fd) 16 fd in Sa0®

exit(status) 17 status in $a0

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

COMP1521 26T1 — MIPS Basics.

32/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Encoding MIPS Instructions as 32 bit Numbers

Assembler

Encoding

add $a3, $tO, Szero
add $d, $s, St
add $7, $8, $0

sub $al, sat, $vi
sub d, Ss, $t
sub $5, $1, $3

addi $vo, $vo, 1
addi d, Ss, C
addi $2, $2, 1

000000 sssss ttttt ddddd OOOEO 100000
000000 01000 OOOOO 00111 OOOCOO 1000060
0x01003820 (decimal 16791584)

000OOO sssss ttttt ddddd OOEEO 16000106
000000 00001 600011l 00101 OOOCLOO 100010
0x00232822 (decimal 2304034)

001000 sssss ddddd CCCCCCCCcCcccccecee
001000 00010 00010 OOOOOOOOOOOOOO01L
0x20420001 (decimal 541196289)

all instructions are variants of a small number of bit patterns with register numbers always in same place

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

COMP1521 26T1 — MIPS Basics.

33/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Assembly Language
MIPS assembly language programs contain
+ assembly language instructions
+ labels ... appended with :
« comments ... introduced by #
« directives ... symbol beginning with .
+ constant definitions, equivalent of #define in C, e.g:
MAX_NUMBERS = 1000
Programmers need to specify
- data objects that live in the data region
- instruction sequences that live in the code/text region

Each instruction or directive appears on its own line.

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics.

34/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Our First MIPS program

C

int main(void) {
printf("%s", "I love MIPS\n");
return 0;

source code for i_love_mips.s

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/

MIPS

print a string in MIPS assembly
Written by: Andrew Taylor <andrewt@uns
Written as a COMP1521 lecture example
main:
la $a0, string # ... pass addre
1i $vo, 4 # ... 4 is print
syscall
return O
1i $vo, 0O
jr Sra
.data
string:
.asciiz "I love MIPS\n"

COMP1521 26T1 — MIPS Basics 35/38

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_basics/code/i_love_mips.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

MIPS Programming

Writing correct assembler directly is hard.
Recommended strategy:

* write,test & debug a solution in C

« map down to “simplified” C

+ test “simplified” C and ensure correct

« translate simplified C statements to MIPS instructions

Simplified C

+ does not have complex expressions

+ does have one-operator expressions

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 36/38

https://www.cse.unsw.edu.au/~cs1521/26T1/

Adding Two Numbers — C to Simplified C

(o Simplified C
int main(void) { int main(void) {
int x = 17; int x, y, z;
int y = 25; x = 17;
printf("%d\n", x + y); y = 25;
return O; zZ =X +ty;
1 printf("%d", z);

source code for add.c

printf("%c", '\n');
return 0;

}

source code for add.simple.c

https:/ [www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 37/38

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_basics/code/add.c
https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_basics/code/add.simple.c
https://www.cse.unsw.edu.au/~cs1521/26T1/

Adding Two Numbers — Simple C to MIPS

Simplified MIPS
¢ main:
int x, y, z; # x i1n StO
x = d7g # y in Stl
y = 25; # z in $t2
Z =X +y; 11 $to, 17 # x = 17;
printf("%d", z); 1i $t1, 25 # y = 25;
printf("%c", '\n'); add $t2, $t1, $toO #z=x +y
move $ad, $t2 # printf("%d", z);
1i svo, 1
syscall
1i $a0, '\n' # printf("%c", '"\n');
1i sve, 11
syscall
1i $vo, 0O # return 0

.
jr $ ra
source code for add.s

https:/ /www.cse.unsw.edu.au/~cs1521/26T1/ COMP1521 26T1 — MIPS Basics 38/38

https://cgi.cse.unsw.edu.au/~cs1521/26T1//topic/mips_basics/code/add.s
https://www.cse.unsw.edu.au/~cs1521/26T1/

