COMP1521 25T3 — Virtual Memory

https://www.cse.unsw.edu.au/~cs1521/25T3/

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 1/25

Introduction to Virtual Memory and Caching

- Short introduction to virtual memory and caching.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 2/25

Memory

General purpose computers typically contain 4-128GB of volatile Random Access Memory (RAM)

RAM CPU
Cache
System Bus
< N 3
Disk SSD
Network

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 3/25

Memory Regions

A view of memory for individual processes

o [psize-1]
“Hello” ==— 5
- n
g i
v
code data heap stack
machine code global vars malloc’d local vars,
for program and constants objects parameters
goes here go here go here go here

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 4125

Single Process Resident in RAM without Operating System

- Many small embedded systems run without operating system.

- Single program running, typically written in C, perhaps with some assembler.
- Devices (sensors, switches, ...) often wired at particular address.

- E.g motor speed can be set by storing byte at 0x100400.

- Program accesses (any) RAM directly.

- Development and debugging tricky.
- might be done by sending ascii values bit by bit on a single wire

- Widely used for simple micro-controllers.

- Parallelism and exploiting multiple-core CPUs problematic

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 5/25

Single Process Resident in RAM with Operating System

- Operating systems need (simple) hardware support.

- Part of RAM (kernel space) must be accessible only in a privileged mode.

- System call enables privileged mode and passes execution to operating system code in kernel space.
- Privileged mode disabled when system call returns.

- Privileged mode could be implemented by a bit in a special register

- If only one process resident in RAM at any time - switching between processes is slow .

- Operating system must write out all RAM used by old process to disk (or flash) and read all memory of new
process from disk.

- OK for some uses, but inefficient in general.

- Little used in modern computing.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 6/25

Multi Processes Resident in RAM without Virtual Memory

- If multiple processes to be resident in RAM operating system can swap execution between them quickly.
- RAM belonging to other processes & operating system operating system must be protected

- Hardware support can limit process accesses to particular segment (region) of RAM.

- BUT program may be loaded anywhere in RAM to run

- Breaks instructions which use absolute addresses, e.g.: 1w, sw, jr

- Either programs can't use absolute memory addresses (relocatable code)

- Or code has to be modified (relocated) before it is run - not possible for all code!

- Major limitation - much better if programs can assume always have same address space

- Little used in modern computing.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 7/25

Virtual Memory

- Bigidea - disconnect address processes use from actual RAM address.

- Operating system translates (virtual) address a process uses to an physical (actual) RAM address.
- Convenient for programming/compilers - each process has same virtual view of RAM.

- Can have multiple processes be in RAM, allowing fast switching

-+ Can load part of processes into RAM on demand.

- Provides a mechanism to share memory betwen processes.

- Address to fetch every instruction to be executed must be translated.

- Address for load/store instructions (e.g. lw, sw) must be translated .

- Translation needs to be really fast - needs to be largely implemented in hardware (silicon).

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 8/25

Virtual Memory with One Memory Segment Per Process

Consider a scenario with multiple processes loaded in memory:

e [max-1]
proci unused proc3 proc4 unused proc6
memory memory memory memory

- Every process is in a contiguous section of RAM, starting at address base finishing at address limit.
- Each process sees its own address space as [0 .. size - 1]

- Process can be loaded anywhere in memory without change.

- Process accessing memory address a is translated to a + base

- and checked that a + base is < limit to ensure process only access its memory

- Easy to implement in hardware.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 9/25

Virtual Memory with One Memory Segment Per Process

Consider the same scenario, but now we want to add a new process

proc?
memory
(@] [max-1]
proci unused proc3 proc4 T proc6
memory memory memory memory

- The new process doesn't fit in any of the unused slots (fragmentation).
- Need to move other processes to make a single large slot

[0] [max-1]
proct procd proc3 proc7 — procé
mermory memory memory memory memory

- Slow if RAM heavily used.

- Does not allow sharing or loading on demand.
- Limits process address space to size of RAM.

- Little used in modern computing.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 10/ 25

Virtual Memory with Multiple Memory Segments Per Process

Idea: split process memory over multiple parts of physical memory.

proc?
memary
[0] [max-1]
proci unused proc3 proc4 e proct
memory memory memory memory
becomes
[0] [max-1]
proci proc? proc3 proc4 proc’ | osed procé
memory memory1 memory memory | memory2 [memory
[@] [a-1] [a] [p7size-1]

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 11/25

Virtual Memory with Pages

Big idea: make all segments same size, and make size power of 2
- call each segment of address space a page and make all pages the same size P
- translation of addresses can be implemented with an array
- each process has an array called the page table
- each array element contains the physical address in RAM of that page
- forvirtual address V, page_table[V / P] contains physical address of page
- physical pages called frames
- the address will at be at offset V % P in both
- so physical address for V is: page_table[V / P]+V % P
- calculation can be faster/simpler bit operations if P == 2", e.g. 4096, 8192, 16384

- this is simple enough to implement in hardware (silicon)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 12/ 25

Address Mapping

If P == 2", then some bits (offset) are the same in virtual and physical address
Virtual address Physical address
{aka Process address) {aka Memory address)
Page# Offset Frame# Offset
p=2"

Offset = bits[0..n-1]
Page# = bits[n..32]
Frame# = bits[n..32]

Address
Mapping

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 13/25

Virtual Memory with pages - Lazy Loading

A side-effect of this type of virtual — physical address mapping
- don't need to load all of process's pages up-front
- start with a small memory "footprint” (e.g. main + stack top)
- load new process address pages into memory as needed
- grow up to the size of the (available) physical memory
The strategy of ...
- dividing process memory space into fixed-size pages
- on-demand loading of process pages into physical memory

is what is generally meant by virtual memory

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 14 /25

Virtual Memory

4096 bytes is a common pages/frame size, but sizes 512 to 262144 bytes used
With 4GB memory, would have /& 1 million X 4KB frames
Each frame can hold one page of process address space

Leads to a memory layout like this (with L total pages of physical memory):

[e] [1] [2] [3] [L-1]

proci proc? proc proci procd proc’ proc? procd
pages | pagel pageld | pagel page1 page3 pagel | page3d

Total L frames

When a process completes, all of its frames are released for re-use

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 15/ 25

Virtual Memory - Loading Pages

Consider a new process commencing execution ...
- initially has zero pages loaded
- load page containing code for main()
- load page for main()’s stack frame
- load other pages when process references address within page

Do we ever need to load all process pages at once?

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 16 /25

Virtual Memory - Working Sets

From observations of running programs ...
- in any given window of time, process typically access only a small subset of their pages
- often called locality of reference
- subset of pages called the working set

Implications:

- if each process has a relatively small working set,
can hold pages for many active processes in memory at same time

- if only need to hold some of process’'s pages in memory,
process address space can be larger than physical memory

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 17/ 25

Virtual Memory - Loading Pages

We say that we "load” pages into physical memory
But where are they loaded from?
- code is loaded from the executable file stored on disk into read-only pages
- some data (e.g. C strings) also loaded into read-only pages
- initialised data (C global/static variables) also loaded from executable file
- pages for uninitialised data (heap, stack) are zero-ed
- prevents information leaking from other processes

- results in uninitialised local (stack) variables often containing 0

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory 18 /25

Virtual Memory - Loading Pages

We can imagine that a process’'s address space ...
- exists on disk for the duration of the process's execution

- and only some parts of it are in memory at any given time

(0] [K-11
Frocess
Address pagel page1l pageZ2 page3d paged s pageK-2 | pageK-1
Space
(0] [L-1]
Physical | | .
WE T paged page0 page1 pagek-1 pagek-2

t=4 t=1 =3 t=1 t=2

Transferring pages between disk<+memory is very expensive

- need to ensure minimal reading from / writing to disk

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory

Virtual Memory - Handling Page Faults

An access to a page which is not-loaded in RAM is called a page fault.
Where do we load it in RAM?
First need to check for a free frame
- need a way of quickly identifying free frames
- commonly handled via a free list
What if there are currently no free page frames, possibilities:
- suspend the requesting process until a page is freed
- replace one of the currently loaded/used pages
Suspending requires the operating system to
- mark the process as unable to run until page available

- switch to running another process

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory

Page Replacement

If no free pages we need to choose a page to evict:

- best page is one that won’t be used again by its process

- prefer pages that are read-only (no need to write to disk)

- prefer pages that are unmodified (no need to write to disk)

- prefer pages that are used by only one process (see later)
OS can't predict whether a page will be required again by its process
But we do know whether it has been used recently (if we record this)
One good heuristic - replace Least Recently Used (LRU) page.

- page not used recently probably not needed again soon

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory

19/25

20/25

21/25

Virtual Memory - Read-only Pages
Virtual memory allows sharing of read-only pages (e.g. for library code)
- several processes include same frame in virtual address space

- allows all running programs to use same pages for e.g. C library code (printf)

f;ag;;’gﬁ;eT Physical Pages (memory) fg‘ragggggéeg
o page [1] for p1 /o
o] page [2] for p2 |_-O
O] page [0] for p1 —O
\L
e shared library code]
o page [N-1] for p1
O"_'/'
page [0] for p2

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory

Memory Management Hardware

Address translation is very important/frequent
- provide specialised hardware (MMU) to do it efficiently

- sometimes located on CPU chip, sometimes separate

RAM CPU
Cache
MMU
System Bus
Disk SSD
Network
https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory
Cache Memory
Cache memory = small* fast memory* close to CPU
RAM CPU
Cache
System Bus
Disk SSD
Network
Small =MB, Fast=5 x RAM
https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory

22/25

23/25

24 [25

Cache Memory

- cache memory makes memory accesses (e.g. lw, sw) faster
- cache memory implemented entirely in silicon typically on same chip as CPU
- independent of virtual memory (works with physical address)
- holds small blocks of RAM that are have been recently used
- cache blocks also called cache lines
- typical size of cache blocks (line) 64 bytes
- CPU hardware (silicon) when loading or storing adddress first looks in cache

- if block containing address is there, cache is used
- for load operations value in cache is used
- for store operations value in cache is changed
- in both cases, much faster than access RAM

- if not, block containing address is fetched from RAM into cache

- possibly evicting an existing cache block
- which may require writing (flushing) its contents to RAM

- cache replacement strategies have similar issues to virtual memory
- modern CPU may have multiple (3+) levels of caching

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Virtual Memory

25/25

