COMP1521 25T3 — Concurrency, Parallelism, Threads

https://www.cse.unsw.edu.au/~cs1521/25T3/

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 1/ 45

Concurrency + Parallelism

- Concurrency vs Parallelism

-+ Flynn’s taxonomy

- Threads in C

- What can go wrong?

- Synchronisation with mutexes
- What can still go wrong?

- Atomics

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 2 / 45

Concurrency? Parallelism?

Concurrency:
multiple computations in overlapping time periods ...
does not have to be simultaneous

< >

Computation A

Computation B

< >

Parallelism:
multiple computations executing simultaneously

Parallelism: Multiple computations executing simultaneously.
< =

Computation A

Computation B —

- >

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 3/45

Flynn's Taxonomy

Common classifications of types of parallelism (Flynn’s taxonomy):

- SISD: Single Instruction, Single Data (“no parallelism”)
- e.g our code in mipsy
- SIMD: Single Instruction, Multiple Data (“vector processing”):
- multiple cores of a CPU executing (parts of) same instruction
- eg, GPUs rendering pixels
- MISD: Multiple Instruction, Single Data (“pipelining”):
- data flows through multiple instructions; very rare in the real world

- eg, fault tolerance in space shuttles (task replication), sometimes A.l.

- MIMD: Multiple Instruction, Multiple Data (“multiprocessing”)
- multiple cores of a CPU executing different instructions

Both parallelism and concurrency need to deal with synchronisation.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Data Parallel Computing: Parallelism Across An Array

- multiple, identical processors

- each given one element of a data structure from main memory
- each performing same computation on that element: SIMD

- results copied back to data structure in main memory

() -

v’

Y
Y
AN | O |w

2
5
1
4

- But not totally independent: need to synchronise on completion

- Graphics processing units (GPUs) provide this form of parallelism
- used to compute the same calculation for every pixel in an image quickly
- popularity of computer gaming has driven availablity of powerful hardware
- there are tools & libraries to run some general-purpose programs on GPUs
- if the algorithm fits this model, it might run 5-10x faster on a GPU
- e.g, GPUs used heavily for building & running large language models

- beyond the scope of COMP1521!

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Distributed Parallel Computing: Parallelism Across Many Computers

Parallelism can also occur between multiple computers!
Example: Map-Reduce is a popular programming model for

- manipulating very large data sets
- on a large network of computers — local or distributed
. spread across a rack, data center or even across continents

The map step filters data and distributes it to nodes

- data distributed as (key, value) pairs
- each node receives a set of pairs with common key

Nodes then perform calculation on received data items.
The reduce step computes the final result
- by combining outputs (calculation results) from the nodes

There also needs a way to determine when all calculations completed.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

445

5/45

6/ 45

Parallelism Across Processes

One method for creating parallelism:
create multiple processes, each doing part of a job.

- child executes concurrently with parent
* runs in its own address space
- inherits some state information from parent, e.g. open fd’s

Processes have some disadvantages:

- process switching is expensive
- each require a significant amount of state — memory usage
- communication between processes potentially limited and/or slow

But one big advantage:
- separate address spaces make processes more robust.
The web server providing the class website uses process-level parallelism

An android phone will have several hundred processes running.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Threads: Parallelism within Processes

Threads allow us parallelism within a process.

- Threads allow simultaneous execution.

- Each thread has its own execution state
often called Thread control block (TCB).
- Threads within a process share address space:

Process

- threads share code: functions
- threads share global/static variables
- threads share heap: malloc

- But a separate stack for each thread:
- local variables not shared

- Threads in a process share file descriptors, signals.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Threading with POSIX Threads (pthreads)

POSIX Threads is a widely-supported threading model.
supported in most Unix-like operating systems, and beyond

Describes an API/model for managing threads (and synchronisation).

#include <pthread.h>

More recently, ISO C:2011 has adopted a pthreads-like model...
less well-supported generally, but very, very similar.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

7/ 45

8/ 45

9/ 45

pthread_create(3): create a new thread

int pthread_create (
pthread_t xthread,
const pthread_attr_t =*attr,
void *(*thread_main)(void *),
void *arg);

- Starts a new thread running the specified thread_main(arg)

- Information about newly-created thread stored in thread.

- Thread has attributes specified in attr (NULL if you want no special attributes).
- Returns 0 if OK, -1 otherwise and sets errno

- analogous to posix_spawn(3)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 10 / 45

pthread_join(3): wait for, and join with, a terminated thread

int pthread_join (pthread_t thread, void =*x*retval);

- waits until thread terminates

- if thread already exited, does not wait
- thread return/exit value placed in *retval

- ifmain returns, or exit(3) called, all threads terminated

- program typically needs to wait for all threads before exiting

- analogous to waitpid(3)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 1 / 45

pthread_exit(3): terminate calling thread

void pthread_exit (void =*retval);

- terminates the execution of the current thread (and frees its resources)
- retval returned — see pthread_join(3)

- analagous to exit(3)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads. 12/ 45

Example: two_threads.c — creating two threads #1

#include <pthread.h>
#include <stdio.h>

// This function is called to start thread execution.

// It can be given any pointer as an argument.

void *run_thread(void =argument) {

}

int *p = argument;
for (int i = 0; 1 < 10; i++) {
printf("Hello this is thread #%d: i=%d\n", =*p, 1);
}
// A thread finishes when either the thread's start function
// returns, or the thread calls ‘pthread_exit(3)"'.
// A thread can return a pointer of any type --- that pointer
// can be fetched via “pthread_join(3)'
return NULL;

source code for two_threads.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Example: two_threads.c — creating two threads #2

int main(void) {

}

// Create two threads running the same task, but different inputs.
pthread_t thread_id1;

int thread_numberl = 1;

pthread_create(&thread_id1, NULL, run_thread, &thread_numberil);
pthread_t thread_id2;

int thread_number2 = 2;

pthread_create(&thread_id2, NULL, run_thread, &thread_number2);
// Wait for the 2 threads to finish.

pthread_join(thread_id1, NULL);

pthread_join(thread_id2, NULL);

return 0;

source code for two_threads.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Example: n_threads.c — creating many threads

}

int n_threads = strtol(argv[1], NULL, 0);

assert(0 < n_threads && n_threads < 100);

pthread_t thread_id[n_threads];

int argument[n_threads];

for (int i = 0; 1 < n_threads; i++) {
argument[i] = i;
pthread_create(&thread_id[i], NULL, run_thread, &Sargument[i]);

}

// Wait for the threads to finish

for (int i = 0; 1 < n_threads; i++) {
pthread_join(thread_id[i], NULL);

}

return 0;

source code for n_threads.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

13/45

14 | 45

15/ 45

Example: thread_sum.c — dividing a task between threads (i)

struct job {
long start, finish;
double sum;
Ji -
void *run_thread(void *argument) {
struct job *j = argument;
long start = j->start;
long finish = j->finish;
double sum = 0;
for (long i = start; i < finish; i++) {
sum += 1i;
}
j->sum = sum;

source code for thread_sum.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 16 / 45

Example: thread_sum.c — dividing a task between threads (ii)

printf("Creating %d threads to sum the first %lu integers\n
"Each thread will sum %lu integers\n",
n_threads, integers_to_sum, integers_per_thread);
pthread_t thread_id[n_threads];
struct job jobs[n_threads];
for (int i = 0; i < n_threads; i++) {
jobs[i].start = i * integers_per_thread;
jobs[i].finish = jobs[i].start + integers_per_thread;
if (jobs[i].finish > integers_to_sum) {
jobs[i].finish = integers_to_sum;
¥
// create a thread which will sum integers_per_thread integers
pthread_create(&thread_id[i], NULL, run_thread, &jobs[i]);
}

source code for thread_sum.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 17 / 45

Example: thread_sum.c — dividing a task between threads (iii)

double overall_sum = 0;
for (int 1 = 0; 1 < n_threads; i++) {
pthread_join(thread_id[i], NULL);
overall_sum += jobs[i].sum;
}
printf("\nCombined sum of integers 0 to %lu is %.0f\n", integers_to_sum,
overall _sum);
return 0;

source code for thread_sum.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 18/ 45

thread_sum. c performance

Seconds to sum the first 1e+10 (10,000,000,000) integers using double arithmetic,
with IV threads, on some different machines...

host 1 2 4 12 24 50 500
5800X 6.6 33 1.6 0.8 0.6 0.6 0.6
3900X 6.9 3.6 1.8 0.6 0.3 0.3 0.3
15-4590 8.6 4.3 22 22 2.2 2.2 2.2
E7330 12.9 6.3 3.2 1.0 0.9 0.9 0.8
11 136.6 68.4 68.6 68.4 68.5 68.6 68.6
5800X: AMD Ryzen 5800X; 8 cores, 16 threads, 3.8 GHz, 2020
3900X: AMD Ryzen 3900X; 12 cores, 24 threads, 3.8 GHz, 2019
15-4590: Intel Core i5-4590; 4 cores, 4 threads, 3.3 GHz, 2014
E7330: Intel Xeon E7330; 4 sockets, 4 cores, 4 threads, 2.4 GHz, 2007
[1li: Sun UltraSPARC Illi; 2 sockets, 1 core, 1 thread, 1.5 GHz, 2003
https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 19 / 45
Example: two_threads_broken.c — shared mutable state gonna hurt you
int main(void) {
pthread_t thread_id1;
int thread_number = 1;
pthread_create(&thread_idl, NULL, run_thread, &thread_number);
thread_number = 2;
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, run_thread, &thread_number);
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;
}
source code for tvio_threads_broken c
- variable thread_number will probably change in main, before thread 1 starts executing...
- = thread 1 will probably print Hello this is thread 2 ..7!
https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 20/ 45

Example: bank_account_broken.c — unsafe access to global variables (i)

int bank_account = 0;

// add $1 to Andrew's bank account 100,000 times

void *add_100000(void *argument) {

for (int 1 = 0; 1 < 100000; i++) {

// execution may switch threads in middle of assignment
// between load of variable value
// and store of new variable value
// changes other thread makes to variable will be lost
nanosleep(&(struct timespec){ .tv_nsec = 1 }, NULL);

// RECALL: shorthand for “bank _account = bank_account + 1°

bank_account++;

}
return NULL;

}

source code for bank_account_broken.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

21/ 45

Example: bank_account_broken.c — unsafe access to global variables (ii)

int main(void) {

// create two threads performing the same task

pthread_t thread_id1;

pthread_create(&thread_idl, NULL, add_100000, NULL);

pthread_t thread_id2;

pthread_create(&thread_id2, NULL, add_100000, NULL);

// wait for the 2 threads to finish
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);

// will probably be much less than $200000
printf("Andrew's bank account has $%d\n", bank_account);

return 0;

}

source code for bank_account_broken.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/

Global Variables and Race Conditions

Incrementing a global variable is not an atomic operation.

- (atomic, from Greek — “indivisible”)

int bank_account;

void *thread(void =*a) {
VAR

bank_account++;

/7.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/

Global Variables and Race Condition

If, initially, bank_account =

la
{| bank_account =
lw $t1, ($to)
{| $t1 = 42 |}
addi $t1, $t1, 1
{| $t1 = 43 |}
$t1, ($to)

{| bank_account =

$t0, bank_account
42 |}

sSw
43 |}

Oops! We lost an increment.

Threads do not share registers or stack (local variables)...
but they do share global variables.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/

COMP1521 25T3 — Concurrency, Parallelism, Threads

COMP1521 25T3 — Concurrency, Parallelism, Threads

COMP1521 25T3 — Concurrency, Parallelism, Threads

22 /45

la $to,
w $t1,
addi $t1,
$t1,

bank_account
($to)

$t1, 1

sw ($to)
.data

bank_account: .word 0

23 /45

42, and two threads increment simultaneously...

la
{| bank_account =
1w $t1, ($to)
{| $t1 = 42 |}
addi $t1, $t1, 1
{| $t1 = 43 [}
$t1, ($to)

{| bank_account =

$t0, bank_account
42 |}

sw
43 |}

24 [45

Global Variable: Race Condition

If, initially, bank_account = 100, and two threads change it simultaneously...

la $t0, bank_account la $t0, bank_account

{| bank_account = 100 [} # {| bank_account = 100 |[}

lw $t1, ($to) lw $t1, ($to)

{| $t1 = 100 |} # {| $t1 = 100 |}

addi $t1, $t1, 100 addi $t1, $t1, -50

{| $t1 = 200 [} # {] $t1 = 50 |}

sw $t1, ($t0) sw $t1, ($t0)

{| bank _account = ...? [} # {| bank_account = 50 or 200 [}

Animation here
This is a critical section.

We don’t want two processes in the critical section — we must establish mutual exclusion.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 25/ 45

pthread_mutex_lock(3), pthread_mutex_unlock(3): Mutual Exclusion

int pthread_mutex_lock (pthread_mutex_t =*mutex);
int pthread_mutex_unlock (pthread_mutex_t =mutex);

- We associate a mutex with the resource we want to protect.
- in the case the resources is access to a global variable
- For a particular mutex, only one thread can be running between _lock and _unlock
- Other threads attempting to pthread_mutex_lock will block (wait) until the first thread executes

pthread_mutex_unlock

For example:

pthread_mutex_lock (&bank_account_lock);
andrews_bank_account += 1000000;
pthread_mutex_unlock (&bank_account_lock);

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 26 / 45

Example: bank_account_mutex.c — guard a global with a mutex

int bank_account = 0;
pthread_mutex_t bank_account_lock = PTHREAD_MUTEX_INITIALIZER;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {
for (int i = 0; i < 100000; i++) {
pthread_mutex_lock(&bank_account_lock);
// only one thread can execute this section of code at any time
bank_account = bank_account + 1;
pthread_mutex_unlock(&bank_account_lock);
}
return NULL;
}

source code for bank_account_mutex.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 27 | 45

Mutex the world!

- Mutexes solve all our data race problems!
- S0, just put @ mutex around everything?
- This works, but then we lose the advantages of parallelism
- Python does this - the global interpreter lock (GIL)
- although they are (trying to stop)[https://peps.python.org/pep-0703/]
- Linux used to do this - the Big Kernel Lock
- removed in 2011

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Deadlock
THREAD 1 THREAD 2
— 1. acquire lock_A — 1. acquire lock_B
— 2. acquire lock_B X BLOCKED! — 2. acquire lock A)X BLOCKED!
3. do_somthing(A, B) 3. do_somthing(A, B)
4. release lock_B 4. release lock_A
5. release lock_A 5. release lock_B
lock_A & lock A & lock B &

lock_B &

- No thread can make progress
-+ The system is deadlocked

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Example: bank_account_deadlock.c — deadlock with two resources (i)

void *andrew_send_xavier_money(void xargument) {
for (int 1 = 0; i1 < 100000; i++) {
pthread_mutex_lock(&andrews_bank_account_lock);
pthread_mutex_lock(&xaviers_bank_account_lock);
if (andrews_bank_account > 0) {
andrews_bank_account--;
xaviers_bank_account++;
}
pthread_mutex_unlock(&xaviers_bank_account_lock);
pthread_mutex_unlock(&andrews_bank_account_lock);
t
return NULL;
}

source code for bank_account_deadlock.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

28 / 45

29 [45

30/ 45

Example: bank_account_deadlock.c — deadlock with two resources (ii)

void xxavier_send_andrew_money(void xargument) {
for (int 1 = 0; 1 < 100000; i++) {
pthread_mutex_lock(&xaviers_bank_account_lock);
pthread_mutex_lock(&andrews_bank_account_lock);
if (xaviers_bank_account > 0) {
xaviers_bank_account--;
andrews_bank_account++;
}
pthread_mutex_unlock(&andrews_bank_account_lock);
pthread_mutex_unlock(&xaviers_bank_account_lock);
t
return NULL;
}

source code for bank_account_deadlock.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 31/ 45

Example: bank_account_deadlock.c — deadlock with two resources (iii)

int main(void) {
// create two threads sending each other money
pthread_t thread_idi1;
pthread_create(&thread_idl, NULL, andrew_send_xavier_money, NULL);
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, xavier_send_andrew_money, NULL);
// threads will probably never finish
// deadlock will likely likely occur
// with one thread holding andrews_bank_account_lock
// and waiting for xaviers_bank_account_lock
// and the other thread holding xaviers_bank_account_lock
// and waiting for andrews_bank_account_lock
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}

source code for bank account deadlock.c
https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 32 /45

Avoiding Deadlock

- A simple rule can avoid deadlock in many programs

- All threads should acquire locks in same order
- also best to release in reverse order (if possible)

THREAD 1 THREAD 2

acquire lock_A acquire lock_A
acquire lock_B acquire lock_B
do_somthing(A, B) do_somthing(A, B)
release lock_B release lock_B
release lock_A release lock_A

arONE
arONE

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 33 /45

Avoiding Deadlock

- Previous program deadlocked because one thread executed:

pthread_mutex_lock(&andrews_bank_account_lock);
pthread_mutex_lock(&xaviers_bank_account_lock);

and the other thread executed:

pthread_mutex_lock(&xaviers_bank_account_lock);
pthread_mutex_lock(&andrews_bank_account_lock);

- Deadlock avoided if same order used in both threads, e.g

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 34 [45

Atomics!
Atomic instructions provide a small subset of operations, that are guaranteed to execute atomically, e.g.:
fetch_add: n += value
fetch_sub: n -= value
fetch_and: n &= value
fetch_or: n |= value
fetch_xor: n "= value

compare_exchange:

if (n == v1) {
n = v2;
}

return n;

Complete list: https://en.cppreference.com/w/c/atomic

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 35 / 45

Atomics!

- With mutexes, a program can lock mutex A, and then (before unlocking A) lock some mutex B.

- multiple mutexes can be locked simultaneously.

- Atomic instructions are (by definition!) atomic, so there’s no equivalent to the above problem.

- Goodbye deadlocks!
- Atomics are a fundamental tool for lock-free/wait-free programming.
- Non-blocking: If a thread fails or is suspended, it cannot cause failure or suspension of another thread.
- Lock-free: non-blocking + the system (as a whole) always makes progress.

- Wait-free: lock-free + every thread always makes progress.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 36/ 45

Example: bank_account_atomic.c — safe access to a global variable

#include <stdatomic.h>
atomic_int bank_account = 0;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void =argument) {
for (int 1 = 0; i < 100000; i++) {
// NOTE: This =*cannot* be “bank _account = bank_account + 17,
// as that will not be atomic!
// However, “bank_account++ would be okay
// and, ‘atomic_fetch_add(&bank_account, 1) would also be okay
bank_account += 1;

}

return NULL;

}

source code for bank_account_atomic.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 37/ 45

What's the catch with atomics?

- Specialised hardware support is required

- essentially all modern computers provide atomic support
< may be missing on more niche / embedded systems.

- Although faster and simpler than traditional locking, there is still a performance penalty using atomics (and
increases program complexity).

- Can be incredibly tricky to write correct code at a low level (e.g. memory ordering, which we won't cover in
COMP1521).

- Some issues can arise in application; e.g. ABA problem.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 38/45

Final issue: data lifetime

- When sharing data with a thread, we can only pass the address of our data.

- This presents a lifetime issue

- what if by the time the thread reads the data, that data no longer exists?
- How have we avoided this so far?
- What kind of code could trigger this issue?

- How can this issue be avoided?

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 39/ 45

Data lifetime: avoiding so far

- so far we have put data in local variables in main

- local variables live until their function returns
- main has created threads by calling ‘pthread_create
- main has waited for all threads to finish by calling pthread_join

- somain “outlives” all the created threads.

- hence the local variables in main outlive the threads
- 50 the data we pass to each thread will be valid for the entire lifetime of each thread.

- but what if we pass data with a lifetime shorter than the thread lifetime?

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Data lifetime: triggering the issue

pthread_t create_thread(void) {
int super_special_number = 0x42;
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, &super_special_number);
// super_special_number is destroyed when create_thread returns
// but the thread just created may still be running and access it
return thread_handle;

}

source code for thread_data_broken.c

void *my_thread(void xdata) {
int number = x(int =)data;
sleep(1);
// should print 0x42, probably won't
printf("The number is 0x%x!\n", number);
return NULL;

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

Data lifetime: solving our problem - malloc

- stack memory is automatically cleaned up when a function returns

- inmipsy $sp returns to its orignal value
- local variable are destroyed
- the lifetime of a local variable ends with return

40 [45

41/ 45

- when function create_thread return super_special_number is destroyed -which is causing us problems.

- the function say_hello makes this obvious

- it changes the stack memory which used to hold super_special_number (by using it for greeting)

- we've solved this problem before in COMP1[59]11 by using malloc

- the programmer controls the lifetime of memory allocated with malloc
- it lives until free is called
- the thread can call free when it is finished with the data

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads

42 [45

Data lifetime: solving our problem — malloc

pthread_t function_creates_thread(void) {
int *super_special_number = malloc(sizeof(int));
xsuper_special_number = 0x42;
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, super_special_number);
return thread_handle;

}

source code for thread_data_malloc.c

void *my_thread(void =*data) {
int number = *(int *)data;
sleep(1);
printf("The number is 0x%x!\n", number);
free(data);
return NULL;
}

source code for thread_data_malloc.c
https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 43 | 45

Data lifetime: solving our problem - barriers

- For interested students, another solution is to use barriers
-+ This will not be covered and is not examined in the course.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads [/ 45

Concurrency is really complex!

- This is just a taste of concurrency!

- Other fun concurrency problems/concepts: livelock, starvation, thundering herd, memory ordering, semaphores,
software transactional memory, user threads, fibers, etc.

+ A number of courses at UNSW offer more:

- COMP3231/COMP3891: [Extended] operating systems e.g more on deadlock

- COMP3151: Foundations of Concurrency

- COMP6991: Solving Modern Programming Problems with Rust - e e.g safety through types
- and more!

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Concurrency, Parallelism, Threads 45 [45

