COMP1521 25T3 — Processes

https://www.cse.unsw.edu.au/~cs1521/25T3/

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 1/38

Processes

A process is a program executing in an environment

The operating system manages processes (create, finish, pre-empt)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 2/38

Unix/Linux Processes

Environment for processes running on Unix/Linux systems

argc, argv, envp, uid, gid,

stdin (fd:0) —— stdout (fd:1)
stderr (fd:2)
return status

(0 = ok, !0 = error)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 3/38

Processes

A process is an instance of an executing program.
Each process has an execution state, defined by...

- current values of CPU registers
- current contents of its memory
- information about open files (and other results of system calls)

On Unix/Linux:

- each process has a unique process ID, or PID: a positive integer, type pid_t, defined in <unistd.h>
- PID 1: init, used to boot the system.

- low-numbered processes usually system-related, started at boot
- ... but PIDs are recycled, so this isn't always true

- some parts of the operating system may appear to run as processes
- many Unix-like systems use PID 0 for the operating system

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 4/38

Parent Processes

Each process has a parent process.

- initially, the process that created it;
- if a process’ parent terminates, its parent becomes init (PID 1)

A process may have child processes

- these are processes that it created

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 5/38

Unix Tools

Unix provides a range of tools for manipulating processes
Commands:

- sh .. creating processes via object-file name

- ps .. showing process information

- w ... showing per-user process information

- top .. showing high-cpu-usage process information
- kill .. sending a signal to a process

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 6/38

System Calls to Get information about a process

pid_t getpid()

- requires #include <sys/types.h>
- returns the process ID of the current process

pid_t getppid()

- requires #include <sys/types.h>
- returns the parent process ID of the current process

For more details: man 2 getpid
There is also one we don’t use in this course called:

- getpgid() .. get process group ID

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

System Calls to Get information about a process

Minimal example for getpid() and getppid():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void){
printf("My PID is (%d)\n", getpid());
printf("My parent's PID is (%d)\n", getppid());
return 0;

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

Environment Variables

- When run, a program is passed a set of environment variables

an array of strings of the form name=value, terminated with NULL.

- access via global variable environ

- many C implementations also provide as 3rd parameter to main:

int main(int argc, char =argv[], char =xenv[])

// print all environment variables

extern char *=*environ;

for (int i = 0; environ[i] !'= NULL; i++) {
printf("%s\n", environ[i]);

}

source code for environ.c

- Recommended you use getenv() and setenv() to access environment variables

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

7/38

8/38

9/38

Environment Variables - Why are they useful

- Unix-like shells have simple syntax to set environment variables
- common to set environment in startup files (e.g .profile)
- then passed to any programs they run

- Almost all program pass the environment variables they are given to any programs they run
- perhaps adding/changing the value of specific environment variables
- Provides simple mechanism to pass settings to all programs, e.g
- timezone (T2)
- user’s prefered language (LANG)
- directories to search for programs (PATH)
- user's home directory (HOME)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 10/38

getenv() — get an environment variable

#include <stdlib.h>

char =getenv(const char *name);

- search environment variable array for name=value
- returns value
- returns NULL if name not in environment variable array
int main(void) {
// print value of environment variable STATUS
char *value = getenv("STATUS");
printf("Environment variable 'STATUS' has value '%s'\n", value);

source code for get_status.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 11/38

setenv() — set an environment variable

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

- adds name=value to environment variable array

- if name in array, value changed if overwrite is non-zero

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 12/ 38

Multi-Tasking

On a typical modern operating system...

- multiple processes are active “simultaneously” (multi-tasking)
- operating systems provides a virtual machine to each process:
- each process executes as if the only process running on the machine
- eg. each process has its own address space (N bytes, addressed 0..N-1)

When there are multiple processes running on the machine,

- a process uses the CPU, until it is preempted or exits;
- then, another process uses the CPU, until it too is preempted.
- eventually, the first process will get another run on the CPU.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 13/38

Multi-tasking

time -
Process 1 e P
PrOCBSS D S ———— R e e
PrOCESS 3 trorvrevrvrersmrsoreneieia, —— — e e e

Overall impression: three programs running simultaneously. (In practice, these time divisions are imperceptibly small!)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 14 /38

Preemption — When? How?

What can cause a process to be preempted?

- it ran “long enough”, and the OS replaces it by a waiting process
- it needs to wait for input, output, or other some other operation

On preemption...

- the process's entire state is saved

- the new process’s state is restored

- this change is called a context switch
- context switches are very expensive!

Which process runs next? The *scheduler answers this. The operating system’s process scheduling attempts to:

- fairly share the CPU(s) among competing processes,
- minimize response delays (lagginess) for interactive users,
- meet other real-time requirements (e.g. self-driving car),

- minimize number of expensive context switches

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 15/ 38

Process-related Unix/Linux Functions/System Calls

Creating processes

- system(), popen() .. create a new process via a shell - convenient but major security risk
- posix_spawn() .. create a new process.

- fork() vfork() .. duplicate current process. (do not use in new code)

- exec() family ... replace current process.

Destroying processes:

- exit() ..terminate current process, see also
- _exit() ..terminate immediately
atexit functions not called, stdio buffers not flushed

- waitpid() .. wait for state change in child process

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 16 /38

exec() family - replace yourself

#include <unistd.h>
int execv(const char *file, char =const argv[]);
int execvp(const char *file, char xconst argv[]);

- Run another program in place of the current process:
- file: an executable — either a binary, or script starting with #!
- argv: arguments to pass to new program

- Most of the current process is re-initialized:
- e.g. new address space is created - all variables lost

- open file descriptors survive
- eg, stdin & stdout remain the same

-+ PID unchanged
- if successful, exec does not return ... where would it return to?
-+ on error, returns -1 and sets errno

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 17/38

Example: using exec()

int main(void) {
char xecho_argv[] = {"/bin/echo", "good-bye","cruel", "world",NULL};
execv("/bin/echo", echo_argv);
// if we get here there has been an error
perror("execv");

source code for exec.c

$ dcc exec.c

$ a.out
good-bye cruel world
$

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 18 /38

fork() — clone yourself (OBSOLETE)

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

Creates new process by duplicating the calling process.
+ new process is the child, calling process is the parent
Both child and parent return from fork() call... how do we tell them apart?

- in the child, fork() returns 0
- in the parent, fork() returns the pid of the child
- if the system call failed, fork() returns -1

Child inherits copies of parent’'s address space, open file descriptors, ...
Do not use in new code! Use posix_spawn() instead.

fork() appears simple, but is prone to subtle bugs

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 19 /38
Example: using fork() (OBSOLETE)
// fork creates 2 identical copies of program
// only return value is different
pid_t pid = fork();
if (pid == -1) {
perror("fork"); // print why the fork failed
} else if (pid == 0) {
printf("I am the child because fork() returned %d.\n", pid);
} else {
printf("I am the parent because fork() returned %d.\n", pid);

}

source code for fork.c

$ dcc fork.c

$ a.out

I am the parent because fork() returned 2884551.
I am the child because fork() returned 0.

$

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 20 /38

waitpid() — wait for a process to change state

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int =*wstatus, int options);

- waitpid pauses current process until process pid changes state
- where state changes include finishing, stopping, re-starting, ...

- ensures that child resources are released on exit

- special values for pid ..

- if pid = -1, wait on any child process
- if pid = 0, wait on any child in process group
- if pid > 0, wait on specified process

pid_t wait(int *wstatus);

- equivalent towaitpid(-1, &status, 0)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 21/38

waitpid() — wait for a process to change state

pid_t waitpid(pid_t pid, int =*wstatus, int options);

status is set to hold info about pid.

- e.g, exit status if pid terminated
- macros allow precise determination of state change
(e.g. WIFEXITED(status), WCOREDUMP(status))

options provide variations in waitpid() behaviour

- default: wait for child process to terminate
- WNOHANG: return immediately if no child has exited
- WCONTINUED: return if a stopped child has been restarted

For more information, man 2 waitpid.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

Example: Using fork() and exec() to run /bin/date

pid_t pid = fork();
if (pid == -1) {
perror("fork"); // print why fork failed
} else if (pid == 0) { // child
char *date_argv[] = {"/bin/date", "--utc", NULL};
execv("/bin/date", date_argv);
perror("execvpe"); // print why exec failed
} else { // parent
int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {
perror("waitpid");
exit(1);

4

printf("/bin/date exit status was %d\n", exit_status);

}

source code for fork_exec.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

Example: one of the dangers of fork - a fork bomb

#include <stdio.h>
#include <unistd.h>
int main(void) {
// creates 2 =% 10 = 1024 processes
// which all print fork bomb then exit
for (int 1 = 0; 1 < 10; i++) {
fork();
}
printf("fork bomb\n");
return 0;

}

source code for fork_bomb.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

22/38

23/38

24 /38

system() — convenient but unsafe way to run another program

#include <stdlib.h>

int system(const char *command);

Runs command via /bin/sh.
Waits for command to finish and returns exit status

Convenient ... but extremely dangerous —
very brittle; highly vulnerable to security exploits

- use for quick debugging and throw-away programs only

// run date --utc to print current UTC

int exit_status = system("/bin/date --utc");
printf("/bin/date exit status was %d\n", exit_status);
return 0;

source code for system.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

Making Processes

Old-fashioned way fork() then exec()

- fork() duplicates the current process (parent+child)
- exec() “overwrites” the current process (run by child)

New, standard way posix_spawn()

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

posix_spawn() — Run a new process

#include <spawn.h>

int posix_spawn(
pid_t *pid, const char =*path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t =*attrp,
char =const argv[], char =const envp[]);

Creates a new process. - path: path to the program to run - argv: arguments to pass to new program - envp:
environment to pass to new program - pid: returns process id of new program - file_actions: specifies file
actions to be performed before running program - can be used to redirect stdin, stdout to file or pipe - attrp:

specifies attributes for new process (not used/covered in COMP1521)

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

25/38

26/38

27/38

Example: using posix_spawn() to run /bin/date
pid_t pid;
extern char **environ;
char xdate_argv[] = {"/bin/date", "--utc", NULL};
// spawn "/bin/date" as a separate process
int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv, environ);
if (ret !'= 0) {
errno = ret; //posix_spawn returns error code, does not set errno
perror("spawn");
exit(1);
}
// wait for spawned processes to finish

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {
perror("waitpid");
exit(1);

}

printf("/bin/date exit status was %d\n", exit_status);

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 28 /38

Example:posix_spawn() versus system()

Running 1s -1d via posix_spawn()

char *1s_argv[2] = {"/bin/1s", "-1d", NULL};

pid_t pid; int ret;

extern char =+environ;

if((ret = posix_spawn(&pid, "/bin/1s", NULL, NULL, 1ls_argv, environ)) != 0) {
errno = ret; perror("spawn"); exit(1);

}

int exit_status;

if (waitpid(pid, &exit_status, 0) == -1) {
perror("waitpid");
exit(1);

}

Running 1s -1d via system()

system("ls -1d");

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 29 /38
Example: Setting and environment Variable in a child process
// set environment variable STATUS
setenv("STATUS", "great", 1);
char =getenv_argv[] = {"./get_status", NULL};
pid_t pid;
extern char *+environ;
int ret = posix_spawn(&pid, "./get_status", NULL, NULL,
getenv_argv, environ);
if (ret !'= 0) {
errno = ret;
perror("spawn");

return 1;
}
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
exit(1);

source code for set_status.c
https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 30/38

Example: Changing behaviour with an environment variable
pid_t pid;
char xdate_argv[] = { "/bin/date", NULL };
char xdate_environment[] = { "TZ=Australia/Perth", NULL };
// print time in Perth
int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv,
date_environment);
if (ret !'= 0) {
errno = ret;
perror("spawn");
return 1;
}

int exit_status;

if (waitpid(pid, &exit_status, 0) -1) {
perror("waitpid");
return 1;

}

printf("/bin/date exit status was %d\n", exit_status);

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

Aside: Zombie Processes (advanced)

A process cannot terminate until its parent is notified. - notification is via wait/waitpid or SIGCHLD signal
Zombie process = exiting process waiting for parent to handle notification

- parent processes which don't handle notification create long-term zombie processes
+ wastes some operating system resources

Orphan process = a process whose parent has exited

- when parent exits, orphan assigned PID 1 (init) as its parent
- init always accepts notifications of child terminations

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

exit() — terminate yourself

#include <stdlib.h>

void exit(int status);

- triggers any functions registered as atexit()
- flushes stdio buffers; closes open FILE *'s

- terminates current process

- a SIGCHLD signal is sent to parent

- returns status to parent (viawaitpid())

- any child processes are inherited by init (pid 1)

void _exit(int status);

- terminates current process without triggering functions registered as atexit()
- stdio buffers not flushed

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes

31/38

32/38

33/38

pipe() — stream bytes between processes

#include <unistd.h>

int pipe(int pipefd[2]);

A pipe is a unidirectional byte stream provided by the operating system.

- pipefd[0]: set to file descriptor of read end of pipe
- pipefd[1]: set to file descriptor of write end of pipe
- bytes written to pipefd[1] will be read from pipefd[0]

Child processes (by default) inherits file descriptors including for pipe
Parent can send/receive bytes (not both) to child via pipe

- parent and child should both close the pipe file descriptor they are not using

- eg if bytes being written (sent) parent to child
- parent should close read end pipefd[0]
- child should close write end pipefd[1]

Pipe file descriptors can be used with stdio via fdopen.

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 34/38

popen() — a convenient but unsafe way to set up pipe

#include <stdio.h>
FILE *popen(const char xcommand, const char =type);
int pclose(FILE xstream);

-+ runs command via /bin/sh

- if type is “w” pipe to stdin of command created

w n

- if type is “r" pipe from stdout of command created
- FILE = stream returned - get then use fgetc/fputc etc
- NULL returned if error
- close stream with pclose (not fclose)
- pclose waits for command and returns exit status

Convenient, but brittle and highly vulnerable to security exploits ...
use for quick debugging and throw-away programs only

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 35/38

Example: capturing process output with popen()

// popen passes string to a shell for evaluation
// brittle and highly-vulnerable to security exploits
// popen is suitable for quick debugging and throw-away programs only
FILE »p = popen("/bin/date --utc", "r");
if (p == NULL) {
perror("");
return 1;
}
char line[256];
if (fgets(line, sizeof line, p) == NULL) {
fprintf(stderr, "no output from date\n");
return 1;
}
printf("output captured from /bin/date was: '%s'\n", line);
pclose(p); // returns command exit status

source code for read_popen.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 36/38

Example: sending input to a process with popen()

int main(void) {
// popen passes command to a shell for evaluation
// brittle and highly-vulnerable to security exploits
// popen is suitable for quick debugging and throw-away programs only
//
// tr a-z A-Z - passes stdin to stdout converting lower case to upper case
FILE »p = popen("tr a-z A-Z", "w");
if (p == NULL) {
perror("");
return 1;
}
fprintf(p, "plz date me - I know every SPIM system call\n");
pclose(p); // returns command exit status
return 0;
}
source code for write_popen.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 37/38

posix_spawn and pipes (advanced topic)

int posix_spawn_file_actions_destroy(
posix_spawn_file_actions_t =file_actions);
int posix_spawn_file_actions_init(
posix_spawn_file_actions_t =file_actions);
int posix_spawn_file_actions_addclose(
posix_spawn_file_actions_t =file_actions, int fildes);
int posix_spawn_file_actions_adddup2(
posix_spawn_file_actions_t *file_actions, int fildes, int newfildes);

- functions to combine file operations with posix_spawn process creation
- awkward to understand and use — but robust

Example: capturing output from a process:

source code for spawn_read_pipe.c

Example: sending input to a process:

source code for spawn_write_pipe.c

https:/ /www.cse.unsw.edu.au/~cs1521/25T3/ COMP1521 25T3 — Processes 38/38

