
COMP1521 25T1 — Concurrency, Parallelism, Threads

https://www.cse.unsw.edu.au/~cs1521/25T1/

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 1 / 45

Concurrency + Parallelism

• Concurrency vs Parallelism

• Flynn’s taxonomy

• Threads in C

• What can go wrong?

• Synchronisation with mutexes

• What can still go wrong?

• Atomics

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 2 / 45

Concurrency? Parallelism?

Concurrency:
multiple computations in overlapping time periods …
does not have to be simultaneous

Parallelism:
multiple computations executing simultaneously

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 3 / 45

Flynn’s Taxonomy

Common classifications of types of parallelism (Flynn’s taxonomy):

• SISD: Single Instruction, Single Data (“no parallelism”)
• e.g. our code in mipsy

• SIMD: Single Instruction, Multiple Data (“vector processing”):
• multiple cores of a CPU executing (parts of) same instruction
• e.g., GPUs rendering pixels

• MISD: Multiple Instruction, Single Data (“pipelining”):
• data flows through multiple instructions; very rare in the real world
• e.g., fault tolerance in space shuttles (task replication), sometimes A.I.

• MIMD: Multiple Instruction, Multiple Data (“multiprocessing”)
• multiple cores of a CPU executing different instructions

Both parallelism and concurrency need to deal with synchronisation.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 4 / 45

Data Parallel Computing: Parallelism Across An Array

• multiple, identical processors
• each given one element of a data structure from main memory
• each performing same computation on that element: SIMD
• results copied back to data structure in main memory

• But not totally independent: need to synchronise on completion
• Graphics processing units (GPUs) provide this form of parallelism

• used to compute the same calculation for every pixel in an image quickly
• popularity of computer gaming has driven availablity of powerful hardware
• there are tools & libraries to run some general-purpose programs on GPUs
• if the algorithm fits this model, it might run 5-10x faster on a GPU
• e.g., GPUs used heavily for building & running large language models

• beyond the scope of COMP1521!
https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 5 / 45

Distributed Parallel Computing: Parallelism Across Many Computers

Parallelism can also occur between multiple computers!

Example: Map-Reduce is a popular programming model for

• manipulating very large data sets
• on a large network of computers — local or distributed

• spread across a rack, data center or even across continents

The map step filters data and distributes it to nodes

• data distributed as (key, value) pairs
• each node receives a set of pairs with common key

Nodes then perform calculation on received data items.

The reduce step computes the final result

• by combining outputs (calculation results) from the nodes

There also needs a way to determine when all calculations completed.

(Beyond the scope of COMP1521!)https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 6 / 45

Parallelism Across Processes

One method for creating parallelism:
create multiple processes, each doing part of a job.

• child executes concurrently with parent
• runs in its own address space
• inherits some state information from parent, e.g. open fd’s

Processes have some disadvantages:

• process switching is expensive
• each require a significant amount of state — memory usage
• communication between processes potentially limited and/or slow

But one big advantage:

• separate address spaces make processes more robust.

The web server providing the class website uses process-level parallelism

An android phone will have several hundred processes running.
https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 7 / 45

Threads: Parallelism within Processes

Threads allow us parallelism within a process.

• Threads allow simultaneous execution.
• Each thread has its own execution state
often called Thread control block (TCB).

• Threads within a process share address space:
• threads share code: functions
• threads share global/static variables
• threads share heap: malloc

• But a separate stack for each thread:
• local variables not shared

• Threads in a process share file descriptors, signals.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 8 / 45

Threading with POSIX Threads (pthreads)

POSIX Threads is a widely-supported threading model.
supported in most Unix-like operating systems, and beyond

Describes an API/model for managing threads (and synchronisation).

#include <pthread.h>

More recently, ISO C:2011 has adopted a pthreads-like model…
less well-supported generally, but very, very similar.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 9 / 45

pthread_create(3): create a new thread

int pthread_create (
pthread_t *thread,
const pthread_attr_t *attr,
void *(*thread_main)(void *),
void *arg);

• Starts a new thread running the specified thread_main(arg).

• Information about newly-created thread stored in thread.

• Thread has attributes specified in attr (NULL if you want no special attributes).

• Returns 0 if OK, -1 otherwise and sets errno

• analogous to posix_spawn(3)

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 10 / 45

pthread_join(3): wait for, and join with, a terminated thread

int pthread_join (pthread_t thread, void **retval);

• waits until thread terminates

• if thread already exited, does not wait

• thread return/exit value placed in *retval

• if main returns, or exit(3) called, all threads terminated

• program typically needs to wait for all threads before exiting

• analogous to waitpid(3)

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 11 / 45

pthread_exit(3): terminate calling thread

void pthread_exit (void *retval);

• terminates the execution of the current thread (and frees its resources)

• retval returned — see pthread_join(3)

• analagous to exit(3)

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 12 / 45

Example: two_threads.c — creating two threads #1

#include <pthread.h>
#include <stdio.h>
// This function is called to start thread execution.
// It can be given any pointer as an argument.
void *run_thread(void *argument) {

int *p = argument;
for (int i = 0; i < 10; i++) {

printf("Hello this is thread #%d: i=%d\n", *p, i);
}
// A thread finishes when either the thread's start function
// returns, or the thread calls `pthread_exit(3)'.
// A thread can return a pointer of any type --- that pointer
// can be fetched via `pthread_join(3)'
return NULL;

}

source code for two_threads.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 13 / 45

Example: two_threads.c — creating two threads #2

int main(void) {
// Create two threads running the same task, but different inputs.
pthread_t thread_id1;
int thread_number1 = 1;
pthread_create(&thread_id1, NULL, run_thread, &thread_number1);
pthread_t thread_id2;
int thread_number2 = 2;
pthread_create(&thread_id2, NULL, run_thread, &thread_number2);
// Wait for the 2 threads to finish.
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}

source code for two_threads.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 14 / 45

Example: n_threads.c — creating many threads

int n_threads = strtol(argv[1], NULL, 0);
assert(0 < n_threads && n_threads < 100);
pthread_t thread_id[n_threads];
int argument[n_threads];
for (int i = 0; i < n_threads; i++) {

argument[i] = i;
pthread_create(&thread_id[i], NULL, run_thread, &argument[i]);

}
// Wait for the threads to finish
for (int i = 0; i < n_threads; i++) {

pthread_join(thread_id[i], NULL);
}
return 0;

}

source code for n_threads.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 15 / 45

Example: thread_sum.c — dividing a task between threads (i)

struct job {
long start, finish;
double sum;

};
void *run_thread(void *argument) {

struct job *j = argument;
long start = j->start;
long finish = j->finish;
double sum = 0;
for (long i = start; i < finish; i++) {

sum += i;
}
j->sum = sum;

source code for thread_sum.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 16 / 45

Example: thread_sum.c — dividing a task between threads (ii)

printf("Creating %d threads to sum the first %lu integers\n"
"Each thread will sum %lu integers\n",
n_threads, integers_to_sum, integers_per_thread);

pthread_t thread_id[n_threads];
struct job jobs[n_threads];
for (int i = 0; i < n_threads; i++) {

jobs[i].start = i * integers_per_thread;
jobs[i].finish = jobs[i].start + integers_per_thread;
if (jobs[i].finish > integers_to_sum) {

jobs[i].finish = integers_to_sum;
}
// create a thread which will sum integers_per_thread integers
pthread_create(&thread_id[i], NULL, run_thread, &jobs[i]);

}

source code for thread_sum.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 17 / 45

Example: thread_sum.c — dividing a task between threads (iii)

double overall_sum = 0;
for (int i = 0; i < n_threads; i++) {

pthread_join(thread_id[i], NULL);
overall_sum += jobs[i].sum;

}
printf("\nCombined sum of integers 0 to %lu is %.0f\n", integers_to_sum,

overall_sum);
return 0;

source code for thread_sum.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 18 / 45

thread_sum.c performance

Seconds to sum the first 1e+10 (10,000,000,000) integers using double arithmetic,
with 𝑁 threads, on some different machines…

host 1 2 4 12 24 50 500

5800X 6.6 3.3 1.6 0.8 0.6 0.6 0.6
3900X 6.9 3.6 1.8 0.6 0.3 0.3 0.3
i5-4590 8.6 4.3 2.2 2.2 2.2 2.2 2.2
E7330 12.9 6.3 3.2 1.0 0.9 0.9 0.8
IIIi 136.6 68.4 68.6 68.4 68.5 68.6 68.6

5800X: AMD Ryzen 5800X; 8 cores, 16 threads, 3.8 GHz, 2020
3900X: AMD Ryzen 3900X; 12 cores, 24 threads, 3.8 GHz, 2019
i5-4590: Intel Core i5-4590; 4 cores, 4 threads, 3.3 GHz, 2014
E7330: Intel Xeon E7330; 4 sockets, 4 cores, 4 threads, 2.4 GHz, 2007
IIIi: Sun UltraSPARC IIIi; 2 sockets, 1 core, 1 thread, 1.5 GHz, 2003

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 19 / 45

Example: two_threads_broken.c — shared mutable state gonna hurt you

int main(void) {
pthread_t thread_id1;
int thread_number = 1;
pthread_create(&thread_id1, NULL, run_thread, &thread_number);
thread_number = 2;
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, run_thread, &thread_number);
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}

source code for two_threads_broken.c

• variable thread_number will probably change in main, before thread 1 starts executing…
• ⟹ thread 1 will probably print Hello this is thread 2 … ?!

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 20 / 45

Example: bank_account_broken.c — unsafe access to global variables (i)

int bank_account = 0;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
// execution may switch threads in middle of assignment
// between load of variable value
// and store of new variable value
// changes other thread makes to variable will be lost
nanosleep(&(struct timespec){ .tv_nsec = 1 }, NULL);
// RECALL: shorthand for `bank_account = bank_account + 1`
bank_account++;

}
return NULL;

}

source code for bank_account_broken.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 21 / 45

Example: bank_account_broken.c — unsafe access to global variables (ii)

int main(void) {
// create two threads performing the same task
pthread_t thread_id1;
pthread_create(&thread_id1, NULL, add_100000, NULL);
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, add_100000, NULL);
// wait for the 2 threads to finish
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
// will probably be much less than $200000
printf("Andrew's bank account has $%d\n", bank_account);
return 0;

}

source code for bank_account_broken.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 22 / 45

Global Variables and Race Conditions

Incrementing a global variable is not an atomic operation.

• (atomic, from Greek — “indivisible”)

int bank_account;

void *thread(void *a) {
// ...
bank_account++;
// ...

}

la $t0, bank_account
lw $t1, ($t0)
addi $t1, $t1, 1
sw $t1, ($t0)
.data
bank_account: .word 0

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 23 / 45

Global Variables and Race Condition

If, initially, bank_account = 42, and two threads increment simultaneously…

la $t0, bank_account
{| bank_account = 42 |}
lw $t1, ($t0)
{| $t1 = 42 |}
addi $t1, $t1, 1
{| $t1 = 43 |}
sw $t1, ($t0)
{| bank_account = 43 |}

la $t0, bank_account
{| bank_account = 42 |}
lw $t1, ($t0)
{| $t1 = 42 |}
addi $t1, $t1, 1
{| $t1 = 43 |}
sw $t1, ($t0)
{| bank_account = 43 |}

Oops! We lost an increment.

Threads do not share registers or stack (local variables)…
but they do share global variables.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 24 / 45

Global Variable: Race Condition

If, initially, bank_account = 100, and two threads change it simultaneously…

la $t0, bank_account
{| bank_account = 100 |}
lw $t1, ($t0)
{| $t1 = 100 |}
addi $t1, $t1, 100
{| $t1 = 200 |}
sw $t1, ($t0)
{| bank_account = ...? |}

la $t0, bank_account
{| bank_account = 100 |}
lw $t1, ($t0)
{| $t1 = 100 |}
addi $t1, $t1, -50
{| $t1 = 50 |}
sw $t1, ($t0)
{| bank_account = 50 or 200 |}

Animation here

This is a critical section.

We don’t want two processes in the critical section — we must establish mutual exclusion.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 25 / 45

pthread_mutex_lock(3), pthread_mutex_unlock(3): Mutual Exclusion

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

• We associate a mutex with the resource we want to protect.
• in the case the resources is access to a global variable

• For a particular mutex, only one thread can be running between _lock and _unlock
• Other threads attempting to pthread_mutex_lock will block (wait) until the first thread executes
pthread_mutex_unlock

For example:

pthread_mutex_lock (&bank_account_lock);
andrews_bank_account += 1000000;
pthread_mutex_unlock (&bank_account_lock);

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 26 / 45

Example: bank_account_mutex.c — guard a global with a mutex

int bank_account = 0;
pthread_mutex_t bank_account_lock = PTHREAD_MUTEX_INITIALIZER;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
pthread_mutex_lock(&bank_account_lock);
// only one thread can execute this section of code at any time
bank_account = bank_account + 1;
pthread_mutex_unlock(&bank_account_lock);

}
return NULL;

}

source code for bank_account_mutex.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 27 / 45

Mutex the world!

• Mutexes solve all our data race problems!
• So, just put a mutex around everything?
• This works, but then we lose the advantages of parallelism
• Python does this - the global interpreter lock (GIL)

• although they are (trying to stop)[https://peps.python.org/pep-0703/]

• Linux used to do this - the Big Kernel Lock
• removed in 2011

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 28 / 45

Deadlock

• No thread can make progress!
• The system is deadlocked

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 29 / 45

Example: bank_account_deadlock.c — deadlock with two resources (i)

void *andrew_send_xavier_money(void *argument) {
for (int i = 0; i < 100000; i++) {

pthread_mutex_lock(&andrews_bank_account_lock);
pthread_mutex_lock(&xaviers_bank_account_lock);
if (andrews_bank_account > 0) {

andrews_bank_account--;
xaviers_bank_account++;

}
pthread_mutex_unlock(&xaviers_bank_account_lock);
pthread_mutex_unlock(&andrews_bank_account_lock);

}
return NULL;

}

source code for bank_account_deadlock.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 30 / 45

Example: bank_account_deadlock.c — deadlock with two resources (ii)

void *xavier_send_andrew_money(void *argument) {
for (int i = 0; i < 100000; i++) {

pthread_mutex_lock(&xaviers_bank_account_lock);
pthread_mutex_lock(&andrews_bank_account_lock);
if (xaviers_bank_account > 0) {

xaviers_bank_account--;
andrews_bank_account++;

}
pthread_mutex_unlock(&andrews_bank_account_lock);
pthread_mutex_unlock(&xaviers_bank_account_lock);

}
return NULL;

}

source code for bank_account_deadlock.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 31 / 45

Example: bank_account_deadlock.c — deadlock with two resources (iii)
int main(void) {

// create two threads sending each other money
pthread_t thread_id1;
pthread_create(&thread_id1, NULL, andrew_send_xavier_money, NULL);
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, xavier_send_andrew_money, NULL);
// threads will probably never finish
// deadlock will likely likely occur
// with one thread holding andrews_bank_account_lock
// and waiting for xaviers_bank_account_lock
// and the other thread holding xaviers_bank_account_lock
// and waiting for andrews_bank_account_lock
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}

source code for bank_account_deadlock.c
https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 32 / 45

Avoiding Deadlock

• A simple rule can avoid deadlock in many programs
• All threads should acquire locks in same order

• also best to release in reverse order (if possible)

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 33 / 45

Avoiding Deadlock

• Previous program deadlocked because one thread executed:

pthread_mutex_lock(&andrews_bank_account_lock);
pthread_mutex_lock(&xaviers_bank_account_lock);

and the other thread executed:

pthread_mutex_lock(&xaviers_bank_account_lock);
pthread_mutex_lock(&andrews_bank_account_lock);

• Deadlock avoided if same order used in both threads, e.g

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 34 / 45

Atomics!

Atomic instructions provide a small subset of operations, that are guaranteed to execute atomically, e.g.:

fetch_add: n += value

fetch_sub: n -= value

fetch_and: n &= value

fetch_or: n |= value

fetch_xor: n ^= value

compare_exchange:

if (n == v1) {
n = v2;

}
return n;

Complete list: https://en.cppreference.com/w/c/atomic
https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 35 / 45

Atomics!

• With mutexes, a program can lock mutex A, and then (before unlocking A) lock some mutex B.

• multiple mutexes can be locked simultaneously.

• Atomic instructions are (by definition!) atomic, so there’s no equivalent to the above problem.

• Goodbye deadlocks!

• Atomics are a fundamental tool for lock-free/wait-free programming.

• Non-blocking: If a thread fails or is suspended, it cannot cause failure or suspension of another thread.

• Lock-free: non-blocking + the system (as a whole) always makes progress.

• Wait-free: lock-free + every thread always makes progress.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 36 / 45

Example: bank_account_atomic.c — safe access to a global variable

#include <stdatomic.h>
atomic_int bank_account = 0;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
// NOTE: This *cannot* be `bank_account = bank_account + 1`,
// as that will not be atomic!
// However, `bank_account++` would be okay
// and, `atomic_fetch_add(&bank_account, 1)` would also be okay
bank_account += 1;

}
return NULL;

}

source code for bank_account_atomic.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 37 / 45

What’s the catch with atomics?

• Specialised hardware support is required

• essentially all modern computers provide atomic support
• may be missing on more niche / embedded systems.

• Although faster and simpler than traditional locking, there is still a performance penalty using atomics (and
increases program complexity).

• Can be incredibly tricky to write correct code at a low level (e.g. memory ordering, which we won’t cover in
COMP1521).

• Some issues can arise in application; e.g. ABA problem.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 38 / 45

Final issue: data lifetime

• When sharing data with a thread, we can only pass the address of our data.

• This presents a lifetime issue

• what if by the time the thread reads the data, that data no longer exists?

• How have we avoided this so far?

• What kind of code could trigger this issue?

• How can this issue be avoided?

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 39 / 45

Data lifetime: avoiding so far

• so far we have put data in local variables in main

• local variables live until their function returns

• main has created threads by calling ‘pthread_create

• main has waited for all threads to finish by calling pthread_join

• so main “outlives” all the created threads.

• hence the local variables in main outlive the threads
• so the data we pass to each thread will be valid for the entire lifetime of each thread.

• but what if we pass data with a lifetime shorter than the thread lifetime?

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 40 / 45

Data lifetime: triggering the issue
pthread_t create_thread(void) {

int super_special_number = 0x42;
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, &super_special_number);
// super_special_number is destroyed when create_thread returns
// but the thread just created may still be running and access it
return thread_handle;

}

source code for thread_data_broken.c

void *my_thread(void *data) {
int number = *(int *)data;
sleep(1);
// should print 0x42, probably won't
printf("The number is 0x%x!\n", number);
return NULL;

}

source code for thread_data_broken.chttps://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 41 / 45

Data lifetime: solving our problem – malloc

• stack memory is automatically cleaned up when a function returns

• in mipsy $sp returns to its orignal value
• local variable are destroyed
• the lifetime of a local variable ends with return

• when function create_thread return super_special_number is destroyed -which is causing us problems.

• the function say_hello makes this obvious

• it changes the stack memory which used to hold super_special_number (by using it for greeting)

• we’ve solved this problem before in COMP1[59]11 by using malloc

• the programmer controls the lifetime of memory allocated with malloc
• it lives until free is called
• the thread can call free when it is finished with the data

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 42 / 45

Data lifetime: solving our problem – malloc

pthread_t function_creates_thread(void) {
int *super_special_number = malloc(sizeof(int));
*super_special_number = 0x42;
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, super_special_number);
return thread_handle;

}

source code for thread_data_malloc.c

void *my_thread(void *data) {
int number = *(int *)data;
sleep(1);
printf("The number is 0x%x!\n", number);
free(data);
return NULL;

}

source code for thread_data_malloc.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 43 / 45

Data lifetime: solving our problem – barriers

• For interested students, another solution is to use barriers.
• This will not be covered and is not examined in the course.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 44 / 45

Concurrency is really complex!

• This is just a taste of concurrency!

• Other fun concurrency problems/concepts: livelock, starvation, thundering herd, memory ordering, semaphores,
software transactional memory, user threads, fibers, etc.

• A number of courses at UNSW offer more:

• COMP3231/COMP3891: [Extended] operating systems e.g more on deadlock
• COMP3151: Foundations of Concurrency
• COMP6991: Solving Modern Programming Problems with Rust - e e.g safety through types
• and more!

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Concurrency, Parallelism, Threads 45 / 45

