
COMP1521 25T1 — Processes

https://www.cse.unsw.edu.au/~cs1521/25T1/

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 1 / 38

Processes

A process is a program executing in an environment

The operating system manages processes (create, finish, pre-empt)

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 2 / 38

Unix/Linux Processes

Environment for processes running on Unix/Linux systems

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 3 / 38

Processes

A process is an instance of an executing program.

Each process has an execution state, defined by…

• current values of CPU registers
• current contents of its memory
• information about open files (and other results of system calls)

On Unix/Linux:

• each process has a unique process ID, or PID: a positive integer, type pid_t, defined in <unistd.h>
• PID 1: init, used to boot the system.
• low-numbered processes usually system-related, started at boot

• … but PIDs are recycled, so this isn’t always true

• some parts of the operating system may appear to run as processes
• many Unix-like systems use PID 0 for the operating system

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 4 / 38

Parent Processes

Each process has a parent process.

• initially, the process that created it;
• if a process’ parent terminates, its parent becomes init (PID 1)

A process may have child processes

• these are processes that it created

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 5 / 38

Unix Tools

Unix provides a range of tools for manipulating processes

Commands:

• sh … creating processes via object-file name
• ps … showing process information
• w … showing per-user process information
• top … showing high-cpu-usage process information
• kill … sending a signal to a process

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 6 / 38

System Calls to Get information about a process

pid_t getpid()

• requires #include <sys/types.h>
• returns the process ID of the current process

pid_t getppid()

• requires #include <sys/types.h>
• returns the parent process ID of the current process

For more details: man 2 getpid

There is also one we don’t use in this course called:

• getpgid() … get process group ID

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 7 / 38

System Calls to Get information about a process

Minimal example for getpid() and getppid():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void){
printf("My PID is (%d)\n", getpid());
printf("My parent's PID is (%d)\n", getppid());
return 0;

}

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 8 / 38

Environment Variables

• When run, a program is passed a set of environment variables
an array of strings of the form name=value, terminated with NULL.

• access via global variable environ

• many C implementations also provide as 3rd parameter to main:

int main(int argc, char *argv[], char *env[])

// print all environment variables
extern char **environ;
for (int i = 0; environ[i] != NULL; i++) {

printf("%s\n", environ[i]);
}

source code for environ.c

• Recommended you use getenv() and setenv() to access environment variables

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 9 / 38

Environment Variables - Why are they useful

• Unix-like shells have simple syntax to set environment variables
• common to set environment in startup files (e.g .profile)
• then passed to any programs they run

• Almost all program pass the environment variables they are given to any programs they run
• perhaps adding/changing the value of specific environment variables

• Provides simple mechanism to pass settings to all programs, e.g
• timezone (TZ)
• user’s prefered language (LANG)
• directories to search for promrams (PATH)
• user’s home directory (HOME)

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 10 / 38

getenv() — get an environment variable

#include <stdlib.h>

char *getenv(const char *name);

• search environment variable array for name=value
• returns value
• returns NULL if name not in environment variable array

int main(void) {
// print value of environment variable STATUS
char *value = getenv("STATUS");
printf("Environment variable 'STATUS' has value '%s'\n", value);

source code for get_status.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 11 / 38

setenv() — set an environment variable

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

• adds name=value to environment variable array
• if name in array, value changed if overwrite is non-zero

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 12 / 38

Multi-Tasking

On a typical modern operating system…

• multiple processes are active “simultaneously” (multi-tasking)
• operating systems provides a virtual machine to each process:

• each process executes as if the only process running on the machine
• e.g. each process has its own address space (N bytes, addressed 0..N-1)

When there are multiple processes running on the machine,

• a process uses the CPU, until it is preempted or exits;
• then, another process uses the CPU, until it too is preempted.
• eventually, the first process will get another run on the CPU.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 13 / 38

Multi-tasking

Overall impression: three programs running simultaneously. (In practice, these time divisions are imperceptibly small!)

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 14 / 38

Preemption — When? How?

What can cause a process to be preempted?

• it ran “long enough”, and the OS replaces it by a waiting process
• it needs to wait for input, output, or other some other operation

On preemption…

• the process’s entire state is saved
• the new process’s state is restored
• this change is called a context switch
• context switches are very expensive!

Which process runs next? The *scheduler answers this. The operating system’s process scheduling attempts to:

• fairly sharing the CPU(s) among competing processes,
• minimize response delays (lagginess) for interactive users,
• meet other real-time requirements (e.g. self-driving car),
• minimize number of expensive context switches

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 15 / 38

Process-related Unix/Linux Functions/System Calls

Creating processes:

• system(), popen() … create a new process via a shell - convenient but major security risk
• posix_spawn() … create a new process.
• fork() vfork() … duplicate current process. (do not use in new code)
• exec() family … replace current process.

Destroying processes:

• exit() … terminate current process, see also
• _exit() … terminate immediately
atexit functions not called, stdio buffers not flushed

• waitpid() … wait for state change in child process

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 16 / 38

exec() family - replace yourself

#include <unistd.h>
int execv(const char *file, char *const argv[]);
int execvp(const char *file, char *const argv[]);

• Run another program in place of the current process:
• file: an executable — either a binary, or script starting with #!
• argv: arguments to pass to new program

• Most of the current process is re-initialized:
• e.g. new address space is created - all variables lost

• open file descriptors survive
• e.g, stdin & stdout remain the same

• PID unchanged
• if successful, exec does not return … where would it return to?
• on error, returns -1 and sets errno

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 17 / 38

Example: using exec()

int main(void) {
char *echo_argv[] = {"/bin/echo","good-bye","cruel","world",NULL};
execv("/bin/echo", echo_argv);
// if we get here there has been an error
perror("execv");

source code for exec.c

$ dcc exec.c
$ a.out
good-bye cruel world
$

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 18 / 38

fork() — clone yourself (OBSOLETE)
#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

Creates new process by duplicating the calling process.

• new process is the child, calling process is the parent

Both child and parent return from fork() call… how do we tell them apart?

• in the child, fork() returns 0
• in the parent, fork() returns the pid of the child
• if the system call failed, fork() returns -1

Child inherits copies of parent’s address space, open file descriptors, …

Do not use in new code! Use posix_spawn() instead.

fork() appears simple, but is prone to subtle bugs
https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 19 / 38

Example: using fork() (OBSOLETE)
// fork creates 2 identical copies of program
// only return value is different
pid_t pid = fork();
if (pid == -1) {

perror("fork"); // print why the fork failed
} else if (pid == 0) {

printf("I am the child because fork() returned %d.\n", pid);
} else {

printf("I am the parent because fork() returned %d.\n", pid);
}

source code for fork.c

$ dcc fork.c
$ a.out
I am the parent because fork() returned 2884551.
I am the child because fork() returned 0.
$

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 20 / 38

waitpid() — wait for a process to change state
#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *wstatus, int options);

• waitpid pauses current process until process pid changes state

• where state changes include finishing, stopping, re-starting, …

• ensures that child resources are released on exit

• special values for pid …

• if pid = -1, wait on any child process
• if pid = 0, wait on any child in process group
• if pid > 0, wait on specified process

pid_t wait(int *wstatus);

• equivalent to waitpid(-1, &status, 0)
• pauses until any child processes terminates.https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 21 / 38

waitpid() — wait for a process to change state

pid_t waitpid(pid_t pid, int *wstatus, int options);

status is set to hold info about pid.

• e.g., exit status if pid terminated
• macros allow precise determination of state change
(e.g. WIFEXITED(status), WCOREDUMP(status))

options provide variations in waitpid() behaviour

• default: wait for child process to terminate
• WNOHANG: return immediately if no child has exited
• WCONTINUED: return if a stopped child has been restarted

For more information, man 2 waitpid.

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 22 / 38

Example: Using fork() and exec() to run /bin/date

pid_t pid = fork();
if (pid == -1) {

perror("fork"); // print why fork failed
} else if (pid == 0) { // child

char *date_argv[] = {"/bin/date", "--utc", NULL};
execv("/bin/date", date_argv);
perror("execvpe"); // print why exec failed

} else { // parent
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
exit(1);

}
printf("/bin/date exit status was %d\n", exit_status);

}

source code for fork_exec.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 23 / 38

Example: one of the dangers of fork - a fork bomb

#include <stdio.h>
#include <unistd.h>
int main(void) {

// creates 2 ** 10 = 1024 processes
// which all print fork bomb then exit
for (int i = 0; i < 10; i++) {

fork();
}
printf("fork bomb\n");
return 0;

}

source code for fork_bomb.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 24 / 38

system() — convenient but unsafe way to run another program

#include <stdlib.h>

int system(const char *command);

Runs command via /bin/sh.

Waits for command to finish and returns exit status

Convenient … but extremely dangerous —
very brittle; highly vulnerable to security exploits

• use for quick debugging and throw-away programs only

// run date --utc to print current UTC
int exit_status = system("/bin/date --utc");
printf("/bin/date exit status was %d\n", exit_status);
return 0;

source code for system.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 25 / 38

Making Processes

Old-fashioned way fork() then exec()

• fork() duplicates the current process (parent+child)
• exec() “overwrites” the current process (run by child)

New, standard way posix_spawn()

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 26 / 38

posix_spawn() — Run a new process

#include <spawn.h>

int posix_spawn(
pid_t *pid, const char *path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *attrp,
char *const argv[], char *const envp[]);

Creates a new process. - path: path to the program to run - argv: arguments to pass to new program - envp:
environment to pass to new program - pid: returns process id of new program - file_actions: specifies file
actions to be performed before running program - can be used to redirect stdin, stdout to file or pipe - attrp:
specifies attributes for new process (not used/covered in COMP1521)

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 27 / 38

Example: using posix_spawn() to run /bin/date
pid_t pid;
extern char **environ;
char *date_argv[] = {"/bin/date", "--utc", NULL};
// spawn "/bin/date" as a separate process
int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv, environ);
if (ret != 0) {

errno = ret; //posix_spawn returns error code, does not set errno
perror("spawn");
exit(1);

}
// wait for spawned processes to finish
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
exit(1);

}
printf("/bin/date exit status was %d\n", exit_status);

source code for spawn.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 28 / 38

Example:posix_spawn() versus system()

Running ls -ld via posix_spawn()

char *ls_argv[2] = {"/bin/ls", "-ld", NULL};
pid_t pid; int ret;
extern char **environ;
if((ret = posix_spawn(&pid, "/bin/ls", NULL, NULL, ls_argv, environ)) != 0) {

errno = ret; perror("spawn"); exit(1);
}
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
exit(1);

}

Running ls -ld via system()

system("ls -ld");

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 29 / 38

Example: Setting and environment Variable in a child process
// set environment variable STATUS
setenv("STATUS", "great", 1);
char *getenv_argv[] = {"./get_status", NULL};
pid_t pid;
extern char **environ;
int ret = posix_spawn(&pid, "./get_status", NULL, NULL,

getenv_argv, environ);
if (ret != 0) {

errno = ret;
perror("spawn");
return 1;

}
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
exit(1);

source code for set_status.c
https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 30 / 38

Example: Changing behaviour with an environment variable
pid_t pid;
char *date_argv[] = { "/bin/date", NULL };
char *date_environment[] = { "TZ=Australia/Perth", NULL };
// print time in Perth
int ret = posix_spawn(&pid, "/bin/date", NULL, NULL, date_argv,

date_environment);
if (ret != 0) {

errno = ret;
perror("spawn");
return 1;

}
int exit_status;
if (waitpid(pid, &exit_status, 0) == -1) {

perror("waitpid");
return 1;

}
printf("/bin/date exit status was %d\n", exit_status);

source code for spawn_environment.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 31 / 38

Aside: Zombie Processes (advanced)

A process cannot terminate until its parent is notified. - notification is via wait/waitpid or SIGCHLD signal

Zombie process = exiting process waiting for parent to handle notification

• parent processes which don’t handle notification create long-term zombie processes
• wastes some operating system resources

Orphan process = a process whose parent has exited

• when parent exits, orphan assigned PID 1 (init) as its parent
• init always accepts notifications of child terminations

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 32 / 38

exit() — terminate yourself

#include <stdlib.h>

void exit(int status);

• triggers any functions registered as atexit()
• flushes stdio buffers; closes open FILE *’s
• terminates current process
• a SIGCHLD signal is sent to parent
• returns status to parent (via waitpid())
• any child processes are inherited by init (pid 1)

void _exit(int status);

• terminates current process without triggering functions registered as atexit()
• stdio buffers not flushed

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 33 / 38

pipe() — stream bytes between processes
#include <unistd.h>

int pipe(int pipefd[2]);

A pipe is a unidirectional byte stream provided by the operating system.

• pipefd[0]: set to file descriptor of read end of pipe
• pipefd[1]: set to file descriptor of write end of pipe
• bytes written to pipefd[1] will be read from pipefd[0]

Child processes (by default) inherits file descriptors including for pipe

Parent can send/receive bytes (not both) to child via pipe

• parent and child should both close the pipe file descriptor they are not using
• e.g if bytes being written (sent) parent to child

• parent should close read end pipefd[0]
• child should close write end pipefd[1]

Pipe file descriptors can be used with stdio via fdopen.
https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 34 / 38

popen() — a convenient but unsafe way to set up pipe

#include <stdio.h>
FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

• runs command via /bin/sh

• if type is “w” pipe to stdin of command created

• if type is “r” pipe from stdout of command created

• FILE * stream returned - get then use fgetc/fputc etc

• NULL returned if error

• close stream with pclose (not fclose)

• pclose waits for command and returns exit status

Convenient, but brittle and highly vulnerable to security exploits …
use for quick debugging and throw-away programs only

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 35 / 38

Example: capturing process output with popen()

// popen passes string to a shell for evaluation
// brittle and highly-vulnerable to security exploits
// popen is suitable for quick debugging and throw-away programs only
FILE *p = popen("/bin/date --utc", "r");
if (p == NULL) {

perror("");
return 1;

}
char line[256];
if (fgets(line, sizeof line, p) == NULL) {

fprintf(stderr, "no output from date\n");
return 1;

}
printf("output captured from /bin/date was: '%s'\n", line);
pclose(p); // returns command exit status

source code for read_popen.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 36 / 38

Example: sending input to a process with popen()

int main(void) {
// popen passes command to a shell for evaluation
// brittle and highly-vulnerable to security exploits
// popen is suitable for quick debugging and throw-away programs only
//
// tr a-z A-Z - passes stdin to stdout converting lower case to upper case
FILE *p = popen("tr a-z A-Z", "w");
if (p == NULL) {

perror("");
return 1;

}
fprintf(p, "plz date me - I know every SPIM system call\n");
pclose(p); // returns command exit status
return 0;

}

source code for write_popen.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 37 / 38

posix_spawn and pipes (advanced topic)

int posix_spawn_file_actions_destroy(
posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_init(
posix_spawn_file_actions_t *file_actions);

int posix_spawn_file_actions_addclose(
posix_spawn_file_actions_t *file_actions, int fildes);

int posix_spawn_file_actions_adddup2(
posix_spawn_file_actions_t *file_actions, int fildes, int newfildes);

• functions to combine file operations with posix_spawn process creation
• awkward to understand and use — but robust

Example: capturing output from a process:
source code for spawn_read_pipe.c

Example: sending input to a process:
source code for spawn_write_pipe.c

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Processes 38 / 38

