
COMP1521 25T1 — Floating-Point Numbers

https://www.cse.unsw.edu.au/~cs1521/25T1/

https://www.cse.unsw.edu.au/~cs1521/25T1/ COMP1521 25T1 — Floating-Point Numbers 1 / 34

Floating Point Numbers

• C has three floating point types

• float … typically 32-bit (lower precision, narrower range)
• double … typically 64-bit (higher precision, wider range)
• long double … typically 128-bits (but maybe only 80 bits used)

• Floating point constants, e.g : 3.14159 1.0e-9 are double

• Reminder: division of 2 ints in C yields an int.

• but division of double and int in C yields a double.
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Floating Point Number - Output

double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d); // prints 0.571429
// prints in scientific notation
printf("%le\n", d); // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d); // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d); // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d); // prints 0.6

source code for float_output.c
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Fractions in different Bases

The decimal fraction 0.75 means

• 7*10-1 + 5*10-2 = 0.7 + 0.05 = 0.75
• or equivalently 75/102 = 75/100 = 0.75

Similary 0.112 means

• 1*2-1 + 1*2-2 = 0.5 + 0.25 = 0.75
• or equivalently 3/22 = 3/4 = 0.75

Similarly 0.𝐶16 means

• 12*16-1 = 0.75
• or equivalently 12/161 = 3/4 = 0.75

Note: We call the . a radix point rather than a decimal point when we are dealing with other bases.
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Fractions in different Bases

The algorithm to convert a decimal fraction to another base is:

• take the fractional component and multiply by the base
• the whole number becomes the next digit to the right of the radix point in our fraction.
• repeat this process until the fractional part becomes exhausted or we have sufficient digits
• this process is not guaranteed to terminate.
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Converting Decimal Fractions to Binary

For example if we want to convert 0.3125 to base 2

• 0.3125 * 2 = 0.625
• 0.625 * 2 = 1.25
• 0.25 * 2 = 0.5
• 0.5 * 2 = 1.0

Therefore 0.3125 = 0b0.0101
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Exercise 2: Fractions: Decimal → Binary

Convert the following decimal values into binary

• 12.625
• 0.1
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Floating Point Numbers

• can have fractional numbers in other bases, e.g.:110.1012 == 6.62510

• if we represent floating point numbers with a fixed small number of bits

• there are only a finite number of bit patterns
• can only represent a finite subset of reals

• almost all real values will have no exact representation

• value of arithmetic operations may be real with no exact representation

• we must use closest value which can be exactly represented

• this approximation introduces an error into our calculations

• often, does not matter

• sometimes … can be disasterous
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Fixed-Point Representation

• fixed-point is a simple trick to represent fractional numbers as integers
• every value is multiplied by a particular constant, e.g. 1000 and stored as integer
• so if constant is 1000, could represent 56.125 as an integer (56125)
• but not 3.141592

• usable for some problems, but not ideal

• used on small embedded processors without silicon floating point

• major limitation is only small range of values can be represented
• for example with 32 bits, and using 65536 ( 216 ) as constant

• 16 bits used for integer part
• 16 bits used for the fraction

• minimum 2−16 ≈ 0.000015
• maximum 215 ≈ 32768
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exponentional representation - a better approach

• you met scientific notation, e.g 6.0221515 * 10^23 in physics or other science classes

• we can represent numbers on a computer in a similar way to scientific notation

• but using binary instead of base ten, e.g 10.6875

=1010.1011 = 1.0101011 ∗ 2112 = (1 + 43/128) ∗ 23 = 1.3359375 ∗ 8 = 10.6875

• allows a much bigger range of values to be represented than fixed point

• using only 8 bits for the exponent, we can represent numbers from 10−38 .. 10+38

• using only 11 bits for the exponent, we can represent numbers from 10−308 .. 10+308

• leads to numbers close to zero having higher precision (more accurate) which is good
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choosing which exponentional representation

• exponent notation allows multiple representations for a single value
• e.g 1.0101011 ∗ 2112 == 10.6875 and 10.101011 ∗ 2102 == 10.6875

• having multiple representations would make implementing arithmetic slower on CPU

• better to have only one representation (one bit pattern) representing a value

• decision - use representation with exactly one digit in front of decimal point

• use 1.0101011 ∗ 2112 not 10.101011 ∗ 2102 or 1010.1011 ∗ 202

• this is called normalization

• weird hack: as we are using binary the first digit must be a one we don’t need to store it

• as we long we have a separate representation for zero
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floating_types.c - print characteristics of floating point types

float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_MAX);

source code for floating_types.c

$ ./floating_types
float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
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IEEE 754 - history

• 1970s Intel building microprocessors (single-chip CPUs)
• 1976 Intel developing coprocessor (separate chip) for floating-point arithmetic
• Intel asked William Kahan, University of California to design format
• other manufacturers didn’t want to be left out
• IEEE 754 standard working group formed
• Kahan and others produced well-designed robust specification
• accepted by manufacturers who begin using it for new architectures
• IEEE 754 standard released in 1985 (update to standard in 2008)
• today, almost all computers use IEEE 754
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IEEE 754 standard

• C floats almost always IEEE 754 single precision (binary32)

• C double almost always IEEE 754 double precision (binary64)

• C long double might be IEEE 754 (binary128)

• IEEE 754 representation has 3 parts: sign, fraction and exponent

• numbers have form 𝑠𝑖𝑔𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 , where 𝑠𝑖𝑔𝑛 is +/-

• fraction always has 1 digit before decimal point (normalized)

• exponent is stored as positive number by adding constant value (bias)
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Internal structure of floating point values
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Floating Point Numbers

Example of normalising the fraction part in binary:

• 1010.1011 is normalized as 1.0101011 ∗ 2011

• 1010.1011 = 10 + 11/16 = 10.6875

• 1.0101011 ∗ 2011 = (1 + 43/128) ∗ 23 = 1.3359375 ∗ 8 = 10.6875

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

• if exponent is 8-bits, then the bias = 28−1 − 1 = 127

• valid bit patterns for exponent are 00000001 .. 11111110

• these correspond to exponent values of -126 .. 127
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Floating Point Numbers

Example (single-precision):

150.75 = 10010110.11

// normalise fraction, compute exponent

= 1.001011011 × 27

// sign bit = 0

// exponent = 10000110

// fraction = 001011011000000000000000

= 010000110001011011000000000000000
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Distribution of Floating Point Numbers

• floating point numbers not evenly distributed

• representations get further apart as values get bigger
• this works well for most calculations
• but can cause weird bugs

• double (IEEE 754 64 bit) has 52-bit fractions so:

• between 2𝑛 and 2𝑛+1 there are 252 doubles evenly spaced
• e.g. in the interval 2−42 and 2−43 there are 252 doubles
• and in the interval between 1 and 2 there are 252 doubles
• and in the interval between 242 and 243 there are 252

• near 0.001 - doubles are about 0.0000000000000000002 apart

• near 1000 - doubles are about 0.0000000000002 apart

• near 1000000000000000 - doubles are about 0.25 apart

• above 253 - doubles are more than 1 apart
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IEEE-754 Single Precision example: 0.15625

0.15625 is represented in IEEE-754 single-precision by these bits:
00111110001000000000000000000000
sign | exponent | fraction

0 | 01111100 | 01000000000000000000000
sign bit = 0
sign = +
raw exponent = 01111100 binary

= 124 decimal
actual exponent = 124 - exponent_bias

= 124 - 127
= -3

number = +1.01000000000000000000000 binary * 2**-3
= 1.25 decimal * 2**-3
= 1.25 * 0.125
= 0.15625

source code for explain_float_representation.c
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IEEE-754 Single Precision example: -0.125

$ ./explain_float_representation -0.125
-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000
sign | exponent | fraction

1 | 01111100 | 00000000000000000000000
sign bit = 1
sign = -
raw exponent = 01111100 binary

= 124 decimal
actual exponent = 124 - exponent_bias

= 124 - 127
= -3

number = -1.00000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125
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IEEE-754 Single Precision example: 150.75

$ ./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000
sign | exponent | fraction

0 | 10000110 | 00101101100000000000000
sign bit = 0
sign = +
raw exponent = 10000110 binary

= 134 decimal
actual exponent = 134 - exponent_bias

= 134 - 127
= 7

number = +1.00101101100000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= 150.75
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IEEE-754 Single Precision example: -96.125

$ ./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
11000010110000000100000000000000
sign | exponent | fraction

1 | 10000101 | 10000000100000000000000
sign bit = 1
sign = -
raw exponent = 10000101 binary

= 133 decimal
actual exponent = 133 - exponent_bias

= 133 - 127
= 6

number = -1.10000000100000000000000 binary * 2**6
= -1.50195 decimal * 2**6
= -1.50195 * 64
= -96.125
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IEEE-754 Single Precision exploring bit patterns #1

$ ./explain_float_representation 00111101110011001100110011001101
sign bit = 0
sign = +
raw exponent = 01111011 binary

= 123 decimal
actual exponent = 123 - exponent_bias

= 123 - 127
= -4

number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1
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infinity.c: exploring infinity

• IEEE 754 has a representation for +/- infinity
• propagates sensibly through calculations

double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)

source code for infinity.c
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nan.c: handling errors robustly

• C (IEEE-754) has a representation for invalid results:
• NaN (not a number)

• ensures errors propagates sensibly through calculations

double x = 0.0/0.0;
printf("%lf\n", x); //prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)

source code for nan.c
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IEEE-754 Single Precision example: inf

$ ./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111100000000000000000000000
sign | exponent | fraction

0 | 11111111 | 00000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary

= 255 decimal
number = +inf
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IEEE-754 Single Precision exploring bit patterns #2

$ ./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary

= 255 decimal
number = NaN
source code for explain_float_representation.c
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Consequences of most reals not having exact representations

double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) { // better would be fabs(b) > 0.000001

printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16

source code for double_imprecision.c

• do not use == and != with floating point values
• instead check if values are close
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Consequences of most reals not having exact representations

• The approximate representation of reals can produce unexpected errors.
• If we subtract or divide two values which are very close together a large relative error can result.
• This is called cancellation or catastrophic cancellation.
• For example, if x is close to 0, cos(x) is close to 1

• calculating 1 - cos(x) can produce a large error in a calculation

• we can avoid the error by replacing 1 - cos(x) with 2 * sin(x/2) * sin(x/2)
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Consequences of most reals not having exact representations

double x;
printf("Enter x: ");
scanf("%lf", &x);
printf("(1 - cos(x)) / (x * x) = %lf\n", (1 - cos(x)) / (x * x));
printf("(2 * sin(x/2) * sin(x/2)) / (x * x) = %lf\n", (2 * sin(x/2) * sin(x/2)) / (x * x));

source code for cancelled.c

$ ./a.out
Enter x: 0.123
(1 - cos(x)) / (x * x) = 0.499370
(2 * sin(x/2) * sin(x/2)) / (x * x) = 0.499370
$ ./a.out
Enter x: 0.000000011
(1 - cos(x)) / (x * x) = 0.917540
(2 * sin(x/2) * sin(x/2)) / (x * x) = 0.500000
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Another reason not to use == with floating point values

if (d == d) {
printf("d == d is true\n");

} else {
// will be executed if d is a NaN
printf("d == d is not true\n");

}
if (d == d + 1) {

// may be executed if d is large
// because closest possible representation for d + 1
// is also closest possible representation for d
printf("d == d + 1 is true\n");

} else {
printf("d == d + 1 is false\n");

}

source code for double_not_always.c
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Another reason not to use == with floating point values

$ dcc double_not_always.c -o double_not_always
$ ./double_not_always 42.3
d = 42.3
d == d is true
d == d + 1 is false
$ ./double_not_always 4200000000000000000
d = 4.2e+18
d == d is true
d == d + 1 is true
$ ./double_not_always NaN
d = nan
d == d is not true
d == d + 1 is false

because closest possible representation for d + 1 is also closest possible representation for d
source code for double_not_always.c
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Consequences of most reals not having exact representations

// loop looks to print 10 numbers but actually never terminates
double d = 9007199254740990;
while (d < 9007199254741000) {

printf("%lf\n", d); // always prints 9007199254740992.000000
// 9007199254740993 can not be represented as a double
// closest double is 9007199254740992.0
// so 9007199254740992.0 + 1 = 9007199254740992.0
d = d + 1;

}

source code for double_disaster.c

• 9007199254740993 is 253 + 1
it is smallest integer which can not be represented exactly as a double

• The closest double to 9007199254740993 is 9007199254740992.0
• aside: 9007199254740993 can not be represented by a int32_t
it can be represented by int64_t
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Exercise: Floating point → Decimal

Convert the following floating point numbers to decimal.

Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000
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