
COMP1521 25T1

COMP1521 25T1

File Systems

Week 7 Lecture 1

Adapted from Hammond Pearce,
Andrew Taylor and John Shepherd’s slides

COMP1521 25T1

Test 5 and Test 6 are due thursday 9pm

Assignment 2 coming out later this week!

Announcements

COMP1521 25T1

Today’s Lecture
● Recap Operating Systems

○ syscall, libc wrappers, stdio
● File Operations

○ open, close, read, write, seek

3

COMP1521 25T1

● Needs hardware to provide a privileged mode

○ OS kernel runs in this mode

○ code can access all hardware, memory and CPU instructions

● Needs hardware to provide a non-privileged mode which

○ code can not access hardware directly

○ code can only access the memory it was allocated

○ user code runs in this mode

Operating Systems: Privileged Mode

4

COMP1521 25T1

● System calls allow user level code to request hardware
operations

● System calls transfer execution to OS kernel code in privileged
mode
○ includes arguments specifying details of request being made
○ OS checks operation is valid & permitted
○ OS carries out operation
○ transfers execution back to user code in non-privileged mode

Operating Systems: System Calls

5

COMP1521 25T1

● Linux system calls also have a number

○ e.g system call 1 is write bytes to a file

● Linux provides 400+ system calls

Experimenting with Linux System Calls

$ cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h
...
#define __NR_read 0
#define __NR_write 1
#define __NR_open 2
#define __NR_close 3
...
#define __NR_set_mempolicy_home_node 450

COMP1521 25T1

syscall command
● not usually used in practice
● syscalls vary between operating system code is less portable
● hard to understand

Libc syscall wrapper:
● more meaningful names
● does syscall for you and helps with error checking
● more portable than syscall but not portable

○ some work on POSIX compliant systems (like linux and
MacOS)

System Calls in Linux

COMP1521 25T1

Higher level library functions like stdio.h:
● useful most of the time
● calls syscall wrapper for you
● portable
● does other cool stuff to make thing easier
● you have been using these to indirectly do your system calls

the whole time!

System Calls in Linux

COMP1521 25T1

Important file related system calls

System Calls to Manipulate Files

Id Name Function

0 read read some bytes from a file descriptor

1 write write some bytes to a file descriptor

2 open open a file system object, returning a file descriptor

3 close close a file descriptor

4 stat get file system metadata for a pathname

8 lseek move file descriptor to a specified offset within a file

COMP1521 25T1

Every process starts with the 3
standard streams, 0, 1, 2.

When a file is opened a new file
descriptor is added to the table.

When a file is closed the file
descriptor is removed

When a file is read to or written
from, the offset is updated

File Descriptors
File descriptor
Table

0 (stdin)

1 (stdout)

2 (stderr)

3

4

File Table

Offset 42, read, etc

Offset 0, write, etc

COMP1521 25T1

syscall : make a system call without writing assembler code
● not usually used by programmers
● use to experiment and learn

System call to print a message to stdout

Source code for hello_syscalls.c

char bytes[13] = "Hello, Zac!\n";

 // argument 1 to syscall is the system call number, 1 is write
 // remaining arguments are specific to each system call

 // write system call takes 3 arguments:
 // 1) file descriptor, 1 == stdout
 // 2) memory address of first byte to write
 // 3) number of bytes to write

 syscall(1, 1, bytes, 12); // prints Hello, Zac! on stdout

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/files/code/hello_syscalls.c

COMP1521 25T1

Libc wrapper to print message to stdout

Source code for hello_libc.c

 char bytes[13] = "Hello, Zac!\n";

 // write takes 3 arguments:

 // 1) file descriptor, 1 == stdout

 // 2) memory address of first byte to write

 // 3) number of bytes to write

 write(1, bytes, 12); // prints Hello, Zac! on stdout

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/files/code/hello_libc.c

COMP1521 25T1

printf will do the write system call for us!

See more ways to print using stdio.h with hello_stdio.c

Source code for hello_stdio.c

stdio library to print message to stdout

https://cgi.cse.unsw.edu.au/~cs1521/25T1/topic/files/code/hello_syscalls.c

COMP1521 25T1

int open(char *pathname, int flags);

- open file at pathname, according to flags

- flags is a bit-mask defined in <fcntl.h>

int open(char *pathname, int flags, mode_t mode);

- Use this version when potentially creating a new file

- mode is an octal number to give the file sensible user access

permissions

if successful they return file descriptor (small non-negative int)
if unsuccessful they return -1 and set errno to value indicating reason

Libc wrapper to open a file

COMP1521 25T1

flags can be combined e.g. (O_WRONLY|O_CREAT)

Libc wrapper to open a file
Flag Use

O_RDONLY open for reading

O_WRONLY open for writing

O_APPEND append on each write

O_RDWR open object for reading and writing

O_CREAT create file if doesn't exist

O_TRUNC truncate to size 0

COMP1521 25T1

● C library has an interesting way of returning error information
○ functions typically return -1 to indicate error
○ and set errno to integer value indicating reason for error
○ you can think of errno as a global integer variable

● These integer values are #define-d in errno.h
○ see man errno for more information
○ perror() looks at errno and prints message with reason
○ strerror() converts errno to string describing reason for error

● To see all error codes type errno -l on command line

errno

COMP1521 25T1

int close(int fd);

- release open file descriptor fd

- if successful, return 0

- if unsuccessful, return -1 and set errno

- could be unsuccessful if fd is not an open file descriptor

- e.g. if fd has already been closed

number of file descriptors may be limited (maybe to 1024)

 - limited number of file open at any time, so use close()

Libc wrapper to close a file

COMP1521 25T1

ssize_t read(int fd, void *buf, size_t count);
 - read (up to) count bytes from fd into buf
 - buf should point to array of at least count bytes
 - read cannot check buf points to enough space
 - if successful, number of bytes actually read is returned
 - if no more bytes to read, 0 returned
 - if error, -1 is returned and errno set
 - file descriptor current position in file is updated

Libc library wrapper for read system call

COMP1521 25T1

ssize_t write(int fd, const void *buf, size_t count);
 - attempt to write count bytes from buf into stream identified by fd

 - if successful, number of bytes actually written is returned
 - if unsuccessful, -1 returned and errno is set
 - file descriptor current position in file is updated

Libc library wrapper for read system call

COMP1521 25T1

open_read.c
open_write.c
open_issue.c

Code Demo

COMP1521 25T1

FILE *fopen(const char *pathname, const char *mode);

- mode is string of 1 or more characters including:
 - r open file for reading.
 - w open file for writing
 truncated to 0 zero length if it exists
 created if does not exist
 - a open file for writing
 writes append to it if it exists
 created if does not exist

stdio.h - fopen()

COMP1521 25T1

fopen returns a FILE pointer

- FILE is an opaque struct - we can not access fields

- FILE stores file descriptor

- FILE may also for efficiency store buffered data

Demo: Modify open_read.c and open_write.c to use stdio.h

FILE *

COMP1521 25T1

int fclose(FILE *stream);
 - calls close
 - number of streams open at any time is limited (to maybe 1024)
 - writes unwritten buffered data to the stream

stdio.h fclose()

COMP1521 25T1

int fgetc(FILE *stream) ; // read a byte
int fputc(int c, FILE *stream); // write a byte

// read/write array of bytes (fgetc/fputc + loop often better)
size_t fread(void *ptr, size_t size, size_t nmemb,
 FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,
 FILE *stream);

stdio.h reading and writing

COMP1521 25T1

char *fputs(char *s, FILE *stream); // write a string

char *fgets(char *s, int size, FILE *stream); // read a line

//formatted input/output
int fscanf(FILE *stream, const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);

These functions can not be used for binary data as they may contain zero bytes
- can use to read text (ASCII/Unicode)

 - can not use to read a *jpg* for example

stdio.h reading and writing text only

COMP1521 25T1

To read/write to stdin/stdout
int getchar(void); // fgetc(stdin)
int putchar(int c); // fputc(c, stdout)
int puts(char *s); // fputs(s, stdout)
int scanf(char *format, ...); // fscanf(stdin, format, ...)
int printf(char *format, ...); // fprintf(stdout, format, ...)

These should never be used: security vulnerability, buffer overflow
char *gets(char *s);
scanf("%s", array); // Ok in general.
 // Don’t use with %s

stdio.h convenience functions

COMP1521 25T1

stdio.h provides useful functions which operate on strings

// like scanf, but input comes from char array str
int sscanf(const char *str, const char *format, ...);

// like printf, but output goes to char array str
// handy for creating strings passed to other functions
// size contains size of str
// Do not use similar function sprintf as it is a security vulnerability
int snprintf(char *str, size_t size, const char *format, ...);

stdio.h - IO to strings

COMP1521 25T1

Implement linux cp command
1. byte at a time stdio.h
2. using fgets and fprintf/fputs - what is the problem with this approach?

We also have implementations using syscall and libc

Which is the best approach?

Exercise

COMP1521 25T1

● To make a buggy version:
○ Use char instead of int for fgetc (this creates bugs with getchar too)

● Reminder: getchar and fgetc return int
○ Legal values they can return -1..255. (257 possible values)
○ This can’t fit in signed char or unsigned char!

● signed char (or char on our system) can store -1 and detect EOF,
○ but valid byte value 0xFF gets mistaken for EOF

● unsigned char can’t store -1 and can’t detect EOF

Demo: fgetc return type bug

COMP1521 25T1

● Using fgets and fprintf to copy a file
● Seems to work fine when copying text files BUT

○ Breaks for binary files with 0x00 bytes
○ They are interpreted as end of string ‘\0’ character

Reminder: only use fgets, fprintf, fscanf, or fputs for text

Demo: cp using fgets and fprintf

COMP1521 25T1

Let’s compare our implementations of cp!
$ clang -O3 cp_x.c -o cp_x
$ dd bs=1M count=10 </dev/urandom >random_file
10485760 bytes (10 MB, 10 MiB) copied, 0.183075 s, 57.3 MB/s
$ time ./cp_x random_file random_file_copy

Can we get any insights from strace?
$strace ./cp_x random_file random_file_copy

Compare:
Linux cp command, cp_fgetc_one_byte.c, cp_libc_one_byte.c, cp_libc.c

IO Performance & Buffering libc vs stdio

COMP1521 25T1

● Goal: reduce number of system calls (expensive)
● Reading:

○ Uses a read system call to fill whole buffer
○ subsequent reads get bytes from the buffer
○ does not do another read system call till it runs out of data in the buffer

● Writing:
○ Delays calls to write system call by storing data in buffer (array) instead
○ calls write system call only when

■ buffer is full,
■ file is closed,
■ fflush is called
■ a newline is encountered for output to terminal

stdio.h buffering for efficiency

COMP1521 25T1

You can manually flush stdio buffers by using:
int fflush(FILE *stream);

For example
● this would force a write system call to stdout and empty the output buffer

fflush(stdout);
● Can also be used for files that have been opened for writing.
● Should not be used for stdin or files opened for read only.

fflush stdio buffers

COMP1521 25T1

off_t lseek(int fd, off_t offset, int whence);
- change the current position in given stream
- offset is in bytes, and can be negative
- whence can be one of
 - SEEK_SET : set offset from start of file

 - SEEK_CUR: set file offset from current position
 - SEEK_END: set file offset from end of file
- seeking beyond end of file leaves a gap which reads as 0's
- seeking back beyond start of file sets position to start of file

`

Seeking with libc system call wrapper

COMP1521 25T1

int fseek(FILE *stream, long offset, int whence);
- is stdio equivalent to lseek() except:

- requires a FILE * input instead of int file descriptor
 - influences stdio buffers
 - returns 0 or -1 for error

fseek(stream, 42, SEEK_SET); // move to after 42nd byte
fseek(stream, 58, SEEK_CUR); // 58 bytes forward from current position
fseek(stream, -7, SEEK_CUR); // 7 bytes backward from current position
fseek(stream, -1, SEEK_END); // move to before last byte in file

long ftell(FILE *stream); //return current file position
Demo code fseek.c and fuzz.c and advanced example: create_gigantic_file.c

Seeking with stdio.h

COMP1521 25T1

● System calls relate to files:
○ open, close, read, write, lseek

● Equivalent stdio portable functions:
○ fopen, fclose, fgetc, fputc etc. fseek

What we learnt today

COMP1521 25T1

● File Systems:
○ File metadata

■ Permissions
■ system call stat

○ Hard Links and Symbolic Links
○ Working with directories

Next Lecture

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

38

https://forms.office.com/r/kD5B7X4L47

COMP1521 25T1 39

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

40

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

