COMP1521 25T1

COMP1521 25T1

Week 1 Lecture 2

MIPS: Basics and Control

Adapted from slides by Abiram Nadarajah,
Hammond Pearce, Andrew Taylor and
John Shepherd’s slides



C Revision and recursion Lab Week 2

e Monday 11-1pm lute

e Tuesday 7-9pm online on BlackBoard Collaborate

e Bookings required: Book ticket

e Code: (you may be asked to enter a code when booking your
ticket) COMP1521

Content:
o Crevision and recursion lab style based questions

o Can also get help with regular lab week 1 if struggling

COMP1521 25T1


https://www.tickettailor.com/events/unsw2

Today's Lecture

Recap Lecture 1
System Calls

Style

Simplified C

o and goto

MIPS Control

o if statements

o boolean expressions
o while loops/for loops

COMP1521 25T1




DISCLAIMER:

Code written in lectures may not necessarily
have the best style!

o Live lecture code is meant to be quick and dirty, to

demonstrate a concept
o Will quickly overview good style soon, but refer to your tutor,

tut solutions, lab solutions and assignment resources.

COMP1521 25T1



Recap of Lecture 1 Intro to MIPS

o Exploring different types of storage/memory

e RAM contains everything a program needs in a given moment
e Instructions!

e Assembly language (MIPS)!

e Registers!

e We did not get up to System calls!

COMP1521 25T1



Recap exercise

e Open Mipsy

e Store the value 1in St0

e Store the value 4 in St1

e Sum these and put the result in $t2

COMP1521 25T1



Assembly Syntax overview

e Assembly instructions, each on their own line

e Generally a 1:1 mapping from assembly instructions to binary
instructions

e However, assemblers also provide pseudo-instructions for
convenience

e pseudo-instructions turn into 1-3 real CPU instructions

o Example:

= i $t0, 5 gets mapped to real equivalent CPU instruction
= addi St0, Szero, 5

o You will see many more as you write more code in MIPS.

COMP1521 25T1



More about registers

Registers have symbolic names and also numeric names
St0 is also known as S8
There are many registers we won't learn about or use till week 3.

Number Names Conventional Usage

0 zero Constant 0

1 at Reserved for assembler

2,3 vo,v1 Expression evaluation and results of a function
4.7 a0..a3 Arguments 1-4

8.16 10..t7 Temporary (not preserved across function calls)
16..23 s0..s7 Saved temporary (preserved across function calls)
24,25 t8,t9 Temporary (not preserved across function calls)
26,27 ko,k1 Reserved for Kernel use

28 gp Global Pointer

29 sp Stack Pointer

30 fp Frame Pointer

31 ra Return Address (used by function call instructions)

1

COMP1521 25T1



What do MIPS instructions look like?

e 32 Dbits |0ng opcobE| R1 | R2 | R3 | R4 |opcopE
° SpeC|fy 6 bits— 5 bitsd F5 bitsd F5 bitsd F5 bits1 6 bits—
o An Operatlon orcobe| R4 R2 Memory Address
. (The thing to dO) Constant Value
6 bits— k5 bitsH F5 bits | 16 bits
o 0 or more operands
: : Memory Address
= (The thing to do it over) OPCODE| R1 i S
6 bits— k5 bits | 21 bits

e Forexample:

0010000100001001
addi St1, St0,

COMP1521 25T1

R-type

I-type

J-type



Aside: Hexadecimal

Ox in C and mipsy
means hexadecimal.

Hexadecimal uses 16
digits. It uses 0-9
then A-F

We will learn more
about this later in the
course.

COMP1521 25T1

Decimal

0
1

2

Hexadecimal

0
1

2

Decimal
10
11
12
13
14
15
16
17
18

19

Hexadecimal

o o ©® >

m

10

11

12

13

10



Aside: Hexadecimal

o We often use Hexadecimal to represent addresses and other

binary data like instructions.
o Easier for humans to read than binary as it is compact
o Maps more easily to binary than decimal

e 8 hex digits can represent 32 bits
o For example the instruction addi $t4, $zero, 7
maps to binary instruction
00100000000010110000000000000111
Which can be represented in hexadecimal by
0x200b0007

COMP1521 25T1 11



MIPS and mipsy documentation

Literally your best friend (it'll even be there for you in the exam €9)

COMP1521 - 25T1 Outline Timetable Forum Submissions

MIPS Instruction Set

An overview of the instruction set of the MIPS32 architecture as implemented by the mipsy and SPIM emulators. Adapted
from reference documents from the University of Stuttgart and Drexel University, from material in the appendix of
Patterson and Hennessey's Computer Organization and Design, and from the MIPS32 (r5.04) Instruction Set reference.

® Registers

* Memory

¢ Syntax

e |nstructions
o CPU Arithmetic Instructions
o CPU Logical Instructions
o CPU Shift Instructions


https://cgi.cse.unsw.edu.au/~cs1521/25T1/resources/mips-guide.html

But how can we do input and output?

COMP1521 25T1

13



System calls

None of the instructions we have access to can interact with
the outside world (eg. printing, scanning)

Instead, we request the operating system to perform these
tasks for us - this process is called a system call

The operating system can access privileged instructions on the
CPU (eg. communicating to other devices)

mipsy simulates a very basic operating system

Will explore real system calls in the second half of the course

COMP1521 25T1

14



Common mipsy syscalls

Service Svo Arguments Returns
printf("%d") 1 intin $a0

fputs 4 string in $a0

scanf ("%d") 5 none intin $vO
fgets 8 line in $a0, length in $al

exit(0) 10 none

printEf("%ec") 1 charin $a0

scanf("%c") 12 none charin $v0

COMP1521 25T1

15



More

advanced

syscalls

Service $vo Arguments Returns
printf ("%f") 2 floatin $f12
printf ("%Lf") 3 double in $f12
scanf ("%f") 6 none floatin $T0O
scanf ("%L1f") 7 none double in $f0
sbrk(nbytes) 9 nbytes in $a0 address in $v0O
open(filename, flags, mode) 13 filename in $a0, flags in $a1, mode fd in $vO
Sa2
read(fd, buffer, length) 14 fd in $a0, buffer in $a1, length in $a2  number of bytes read in
$vo
write(fd, buffer, length) 15 fd in $a0, buffer in $a1, length in $a2  number of written in $v0
close(fd) 16 fd in $ao
exit(status) 17 status in $a0

Probably only used for challenge exercises in COMP1521

COMP1521 25T1

16



COMP1521 25T1

Let's try to print out the number 42

17



The system call workflow

o We specify which system call we want in Sv©

o eg.print_int issyscall 1:
o 1i Sve, 1
e We specify arguments (if any)
o 1li Sa@, 42
o We transfer execution to the operating system

o The OS will fulfill our request if it looks sane
o syscall

e Some syscalls may return a value - check syscall table
COMP1521 25T1

18



COMP1521 25T1

Let's try to print out the number 42
and then 99 on the next line

19



Let's add 2 numbers and print out the
result

COMP1521 25T1

20



COMP1521 25T1

How do we print strings?

21



Printing Strings and the Data segment

o We need to define our string in the data section
e Then pass the address of our string to our system call in Sa0

o We need to use the .data directive so we can create global
data in our program

e We need to use the .asciiz directive so we can define a string
and give the string a label!

o We need to use the 1la to load the address of the string!!

COMP1521 25T1 22



Hello COMP1521 revisited

. text
main:
1i $v0o, 4 # syscall 4: print string
la $a0, hello msg #
syscall # printf ("Hello COMP1521!'!'\n");
1i $vo, O
jr Sra # return O;
.data
hello msg:

.asciiz "Hello COMP1521!!\n"

COMP1521 25T1

23



Example: Integer Average

// Translate into MIPS
int main (void) {
int a, b;
printf ("Enter a number: ") ;

scanf ("%d", &a);

printf ("Enter another number:

scanf ("%d", &b);
printf ("The average is %d\n"
return O;

}

COMP1521 25T1

4

");

(a + b)/ 2);

24



Simplified C

e Translating C code directly to MIPS is not fun

o Simplify your C code and then translate it to “simplified C":
o Simplified C is generally written so that each line of C code maps
to one MIPS instruction
o Compile your simplified C and make sure it still works as
expected
o Translate each line of simplified C to MIPS

COMP1521 25T1

25



Putting data in registers

e li (load immediate) is loading a fixed value into a register
o 1li $t0, 7
o la (load address) is for loading a fixed address into a register

o remember, labels really just represent addresses!

o la $t0, my label
e move is for copying value from a register into another register

o move $t0, $tl

COMP1521 25T1

26



Assembly Language Syntax Recap

o Labels
o Appended with :
o They represent memory addresses
e Comments
o Start with #
e Directives
o Symbols beginning with. eg .asciiz .text .data
e Constant definitions

o Like #definein C e.g.
o MAX_NUMBERS = 10

COMP1521 25T1

27



After adding two numbers
successfully in Assembly
Language

ey " WY
. N 3
ok % o 8 E.d
v Y A YA g b
% 2 b A s W

COMP1521 25T1

We deserve a
quick break now!

28



MIPS Control

COMP1521 25T1



So far

o Our programs have implemented fixed, predictable behaviour.

o Execute linearly - we always go down to the next instruction
o However, what if we want to implement logic in our code?

o 1if statements - conditional code execution

e for/while loops - repeat some instructions?

if/else and loops don't exist in MIPS - we have to use branching to
implement these ourselves

COMP1521 25T1 30



Branch Instructions

o We have many conditional branch instructions of the form:
o “if condition is true, jump to instruction at a given label” e.g.
o ble $to, St1, labell # if (St6 <= S$t1)
o bgt S$to@, 5, labell # if (St@ > 5)

e We have an unconditional branch instruction too
o b labeli

e How do we implement this in our simplified C code?

COMP1521 25T1

31



Branch/jump instructions

b label pc += T«2 pseudo-instruction
beqr,, 1, label if(r,==7;)pc+=I1«2 000100ssssstttttIIIIIIIIIIIIIIIT
bner,, r;, label if(r !=7r,)pc+=I«2 000101ssssstttttIIIITIIIIITITIIIIIT
bler,,r,, label if(r,<=7r;)pc+=I«2 pseudo-instruction
bgtr,,r, label if (r.> rt) pc += 1«2 pseudo-instruction
bltr,,r,, label if(r,<r,)pc+=I«2  pseudo-instruction

(

(

(

bge r,, 1, label if(r,>=7;)pc+=I«2 pseudo-instruction
blez r_, label if(ry<=0)pc+=I«2 000110ssSSSOEEEOIIIIIIIIIIIIIIII
bgtz r_,label if (r, >0)pc+=I«2 000111sSSSSOEOEOOIIITIITIIIITIIIIIIT
bltz r, label if (ry <0) pc += I«2 000001ssSSSOOOOOITIIITITIIIIIIIIIT
bgez r, label if(ry>=0)pc+=I«2 000001ssssSOOEOLIIITITIIIITIIIIIIT
bnez r_, label if (r_!=0)pc+= 1«2 pseudo-instruction

beqz 7, label if (r.==0)pc+=I«2  pseudo-instruction

e Allows you to transfer the flow of execution to a different instruction conditionally

O  except b, which is unconditional
e Canreplace r, with a constant in mipsy

COMP1521 25T1



COMP1511 staff hid this simple trick!

In C, goto allows jumping to any arbitrary label within a program.

This means we can effectively jump around within a program
however we wish.

COMP1521 25T1

33



What will this code do?

int main (void) {
goto sleep;

printf ("Please pay close attention\n");
sleep:

printf ("You are getting sleepy\n") ;

goto sleep;

printf ("Please wake up now!");

return 0;

}

COMP1521 25T1

34



With great power comes great responsibility

Edgar Dijkstra: Go To Statement Considered Harmful

Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22,5.23,5.24

 EDITOR:

For a number of years I have beeu familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use oi the go Lo statement has such
disastrous effeets, and [ became convinced that the go to state-

- ment should be abolished from all “higher level” programming
¢ languages (i.e. everything except, perhaps, plain machine code).
At‘that time I did not attach 100 much importance to this dis-
covery; [ now submit my considerations for publication beeause
in very recent discussions in which the subject turned up, I have
been urged to do so.
. My first remark is that, although the programmer’s aetivity
ends when he has constructed a correct program, the process

dynamic progress is only characterized when we also give to which
call of the procedure we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of proecedure calling.

Let us now consider repetition clauses (like, while B repeat A
or repeat A until B). Logically speaking, such clauses are now

" superfluous, because we can express repetition with the aid of

recursive procedures. For reasons of realism I don’s wish to ex-
clude them: on the one hand, repetition clauses ean be imple-
mented quile comfortably wich present day finite equipment; on
the other hand, the reasoning patlern known as “induction”
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sulficient Lo
describe the dynamic progress of the process. With each entry into

a repetition clause, however, we can associate a so-called “‘dy-

namic index,"” inexorably counting the ordinal number of the
correspending current repetition. As reperition elinses (just as
procedure calls) may be applied nestedly, we find that now the

Go To Considered Harmful (1968)

COMP1521 25T1

=2\ LTt

l

35



Don’t (ab)use goto

Don't use it in your actual C programs.

o goto makes programs more difficult to read

o goto makes it hard for compilers to optimise code, resulting in
slower programs

e In general, do not use goto without good reason!

o Typically only kernel/embedded programmers use goto
o We will use it in this course ONLY for writing simplified C to
translate into MIPS.

COMP1521 25T1 36



Simplifying if-else statements

int main (void) { int main (void) {
int n;
printf ("Enter a number: ") ;

scanf ("%d", &n);

int n;

printf ("Enter a number: ");

scanf ("%d", &n);

int tmp = n % 2;

if (tmp '= 0) goto if even end;
printf ("even\n") ;

if (n $ 2 == 0) {
printf ("even\n") ;
}

return 0O; return O;

—

Now we can write it in MIPS.
Exercise: add an else statement for odd numbers

COMP1521 25T1 37



Style

e Have equivalent C code as inline comments
e Huge recommendation: indent with 8-wide tabs
e We generally don't indent to show structure

o i.e no indenting within loops or if statements, etc.
e Instead:

o don'tindent labels

o indent instructions by one step
e Forthis course: focus on readable code, not reducing number
of registers used or lines of code

COMP1521 25T1

38



More complex conditionals:

Split combined “or” conditions

if (milk_age > 48 ||
milk_level < 10) {
printf("Replace milk\n");

} else {
printf("Milk okay!\n");
}

printf("Done!\n");

COMP1521 25T1



More complex conditionals:

Split combined “or” conditions

if (milk_age > 48) goto milk_replace;
if (milk_level < 10) goto milk_replace;

if (milk_age > 48 ||
milk_level < 10) { : " PN -
printf("Replace milk\n"); E:> prlntf( Milk okayin ){

L else { goto milk_replace__end;
printf("Milk okay!\n"); _

} milk_replace:

rintf("Replace milk\n");
printf("Done!\n"); P ( P )

milk_replace__end:
printf("Done!");

COMP1521 25T1



More complex conditionals: &&

Invert the condition to use || (De Morgan’s Law)

if (x >= 0 & & x <= 100) {

// in bounds t>
} else {

// out of bounds
}

return 0;

COMP1521 25T1



More complex conditionals: &&

Invert the condition to use || (De Morgan’s Law)

if (x >= 0 & & x <= 100) { if (x <@ || x > 100) {
// in bounds ;> // out of bounds

} else { } else {
// out of bounds // in bounds

} }

return 0; return 9;

COMP1521 25T1



More complex conditionals:

Split into separate conditionals:

if (x <@ || x > 100) {

// out of bounds t>
} else {

// in bounds
}
return 0;

COMP1521 25T1



More complex conditionals:

Split into separate conditionals:

if (x < @) goto x_out_of_bounds;

if (x <8 || x > 100) { if (x > 100) goto x_out_of_bounds;
f
) eléé ?Ut of bounds ;>// in bounds
// in bounds :
) goto epilogue;
return 0; x_out_of_bounds:

// out of bounds

epilogue:
return 0;

COMP1521 25T1



Your turn

if (y < 10 || z > 50) {
// condition met

} else {

// condition not met

}

return 1;

COMP1521 25T1

45



Your turn

if (y < 10 || z > 50) {
// condition met
} else {

// condition not met

}

return 1;

COMP1521 25T1

if (y < 10) goto condition met;
if (z > 50) goto condition met;

goto condition_not met;
condition met:

// condition met
goto epilogue;
condition not met:

// condition not met
epilogue:

return 1;

46



Your turn

if (y < 10 || z > 50) {
// condition met
} else {

// condition not met

}

return 1;

COMP1521 25T1

if (y < 10) goto condition met;
if (z > 50) goto condition met;

// condition not met
goto epilogue;
condition_met:

// condition met

epilogue:

return 1;

47



Your turn to try

if (y < 10 |] (z > 50 && w < 5)) {
// condition met
} else {
// condition not met :>
}
return 1;

COMP1521 25T1

48



Your turn

if (y < 10 || (z > 50 && w < 5)) {

// condition met
} else {
// condition not met

}

return 1;

COMP1521 25T1

=

if (y < 10) goto condition met;
if (z <= 50) goto condition not met;
if (w >= 5) goto condition_not met;
condition met:
// condition met
goto epilogue;
condition not met:
// condition not met
epilogue:

return 1;

49



Simplifying loop structures

e for loops should be broken down to while loops
e while loops should be broken down into if/goto
General structure:

o |oop init

e loop condition (do we need to exit the loop?)
e loop body

e loop step

e |oop end

Use labels to show structure!

COMP1521 25T1



Simplifying for loops: Counting

int 1 = 0;

while (i < 10) {
for (int i = 0; 1 < 10; i++) { :> printf("%d\n", i);

printf("%d\n", 1i); i++;

} }

COMP1521 25T1



Counting

int 1i;
loop_i_to_16__init:
1= 0;
loop_i_to_16__cond:
if (i >= 10) goto loop_i_to_10__end;

int 1 = 9; .

while (i < 10) { 1oop_1Tto_19__?ody:
printf("%d\n", 1i); > printf( fd : i);
id+: putchar('\n");

} ’ loop_i_to_10__step:

1++;

goto loop_i_to_10__cond;
loop_i_to_10__end:

//

COMP1521 25T1



Exercise: Sum 100 squares

Convert to MIPS

int sum = 0;

for (int i = 1; i <= 100; i++) {
sum += 1 * 1;

}

COMP1521 25T1



Sidenote: C break/continue

break can be used in a loop to completely exit the loop.
The loop condition here makes this look like an infinite loop:

while (1) A
int ¢ = getchar();
if (c == EOF) break;

¥
but break means it's possible for the loop to be exited.

In simplified C/MIPS, a break is really just equivalent to going to
the loop's end label.

COMP1521 25T1



Sidenote: C break/continue

continue can be used to proceed to the next iteration of a for
loop.
This would be a (terrible) way to print even numbers:

for (int i = 0; i < 19; i++) {
if (i % 2 != 0) continue;
printf("%d\n", 1i);

}

In simplified C/MIPS, a continue is really just equivalent to going
to the loop’s step label.

Beware: Writing this as a while loop in C needs care not to miss the
i++

COMP1521 25T1



What did we learn today?

e MIPS
o recap of basics from lecture 1

o system calls
= printing out and reading in integers, and chars
m printing out strings
o simplified C
o control
= goto statements
s if statements,
s boolean expressions
s loops

COMP1521 25T1

56



Feedback Please!

Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so | can
action it and improve your
learning experience.

COMP1511/COMP1911

=
=5

https://forms.office.com/r/EYPYy0OKGSE

57



Reach Out

Content Related Questions:
Forum

Admin related Questions email:

cs15271@cse.unsw.edu.au

COMP1521 25T1

58


https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

Student Support | | Need Help With...

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration

Because Life Impacts our Studies and Exams

COMP1521 25T1

student.unsw.edu.au/counselling A [InAustralia Call Afterhours 1300 787 026
el Z'E::Z'c:'ea'th Telehealth RS  UNSW Mental Health Support  5pm-9am
Line
. student.unsw.edu.au/mind-hub Outside Australia

@ Mind Online Self-Help Resources @ Afterhours 24-hour el ) e

HUB Medibank Hotline
m Student Support — student.unsw.edu.au/advisors

A’ Indigenous Student

Support

Equity Diversity and Inclusion — edi.unsw.edu.au/sexual-misconduct

(EDI)

Equitable Learning Service — student.unsw.edu.au/els

(ELS)

Academic Language — student.unsw.edu.au/skills

Skills

Special Consideration — student.unsw.edu.au/special-consideration

59



acs

Powering Australia’s
technology brilliance

Introducing ACS
Supported Student Membership (SSM)




‘/,,« = %
| aCcs

We are the professional association for Australia’'s
Tfechnology sector and the largest community with 47,000+
members from across business, government and education.

Our vision

@ An Australia powered by highly skilled, diverse technology
professionals inspiring positive change through technology.

L@ Our mission

D We work to accelerate the growth of diverse and highly skilled
technology professionals, equipping them with the right skills
and knowledge needed to advance their careers and
Australia’s technology, now and in the future.



%
aCs

ACS champions the technologies, people and
skills critical to powering Australia’'s future.

z Community

Our focus is on fostering an
innovative and inclusive
community that is dedicated
to powering positive change
through technology

47000*

members

12,000

event attendees/year

‘ Capability

We set the standard for
assessing, developing and
recognising the skills and
experience of technology
professionals

11128

Learning Accelerator
unique users

44,000

digital resources

» Careenr

We create career pathways to
guide technology
professionals and ensure
Australia has a pipeline of
talent with the right skills and
knowledge

46

accredited
universities

48,000

CPD hours
uploaded

‘ Migration

We assess and support skilled
technology migrants to
address critical skills
shortages, improve diversity
and enrich Australia’s
workforce

39,202

skilled migrant
applicants in the
past 12 months

107

ACS Professional
Year graduates in
the past 12 months



As an ACS member, you will:

0]
O
=

Receive advice and support from your local ACS
branch manager and team

Understand the types of tech roles and career
pathways available in Australia’s ever-changing tech
sector

Gain relevant technical and vital interpersonal skills
with unlimited access to the ACS Learning Accelerator,
a digital library of 44,000+ learning resources

Build contacts and relationships with employers at
networking and professional development events

2

How to get your complimentary ACS
student membership

Join ACS today and gain access to ACS career advice and support.
Just follow the steps outlined below:

Scan the QR code and visit the ACS
membership web page. Click ‘Join Now"

&

\

Click ‘Sign-up Now’ and complete the
email verification

N

Select ‘Supported Student ICT
Membership’. The fee will be $0

N

L

&

\

Select your educational institution
from the drop-down menu

Complete sections 1 and 2 with your
personal and student details

Click ‘Browse Files’ to upload your
student ID or enrolment confirmation

] ] €O

Click ‘Submit’ to activate your
complimentary ACS membership

*\

Scan me now

¢

Should you have any questions,

please contact ACS member services
member.servicesacs.or.au


mailto:member.services@acs.org.au

