
COMP1521 25T1

COMP1521 25T1

MIPS: Basics and Control

Week 1 Lecture 2

Adapted from slides by Abiram Nadarajah,
Hammond Pearce, Andrew Taylor and

John Shepherd’s slides

COMP1521 25T1

● Monday 11-1pm lute
● Tuesday 7-9pm online on BlackBoard Collaborate
● Bookings required: Book ticket
● Code: (you may be asked to enter a code when booking your

ticket) COMP1521

Content:

○ C revision and recursion lab style based questions

○ Can also get help with regular lab week 1 if struggling

C Revision and recursion Lab Week 2

2

https://www.tickettailor.com/events/unsw2

COMP1521 25T1

Today’s Lecture
● Recap Lecture 1
● System Calls
● Style
● Simplified C

○ and goto
● MIPS Control

○ if statements
○ boolean expressions
○ while loops/for loops

3

COMP1521 25T1

DISCLAIMER:

● Live lecture code is meant to be quick and dirty, to
demonstrate a concept

● Will quickly overview good style soon, but refer to your tutor,
tut solutions, lab solutions and assignment resources.

Code written in lectures may not necessarily
have the best style!

4

COMP1521 25T1

● Exploring different types of storage/memory
● RAM contains everything a program needs in a given moment
● Instructions!
● Assembly language (MIPS)!
● Registers!
● We did not get up to System calls!

Recap of Lecture 1 Intro to MIPS

5

COMP1521 25T1

● Open Mipsy
● Store the value 1 in $t0
● Store the value 4 in $t1
● Sum these and put the result in $t2

Recap exercise

6

COMP1521 25T1

● Assembly instructions, each on their own line
● Generally a 1:1 mapping from assembly instructions to binary

instructions
● However, assemblers also provide pseudo-instructions for

convenience
● pseudo-instructions turn into 1-3 real CPU instructions

○ Example:
■ li $t0, 5 gets mapped to real equivalent CPU instruction
■ addi $t0, $zero, 5

○ You will see many more as you write more code in MIPS.

Assembly Syntax overview

7

COMP1521 25T1

More about registers

8

Registers have symbolic names and also numeric names
$t0 is also known as $8
There are many registers we won’t learn about or use till week 3.

COMP1521 25T1

● 32 bits long
● Specify:

○ An operation
■ (The thing to do)

○ 0 or more operands
■ (The thing to do it over)

● For example:

What do MIPS instructions look like?

9

00100001000010010000000000001100

addi $t1, $t0, 12

COMP1521 25T1

0x in C and mipsy
means hexadecimal.

Hexadecimal uses 16
digits. It uses 0-9
then A-F

We will learn more
about this later in the
course.

Aside: Hexadecimal

10

Decimal Hexadecimal Decimal Hexadecimal

0 0 10 A

1 1 11 B

2 2 12 C

3 3 13 D

4 4 14 E

5 5 15 F

6 6 16 10

7 7 17 11

8 8 18 12

9 9 19 13

COMP1521 25T1

● We often use Hexadecimal to represent addresses and other
binary data like instructions.
○ Easier for humans to read than binary as it is compact
○ Maps more easily to binary than decimal

● 8 hex digits can represent 32 bits
○ For example the instruction addi $t4, $zero, 7

 maps to binary instruction
00100000000010110000000000000111
Which can be represented in hexadecimal by

 0x200b0007

Aside: Hexadecimal

11

COMP1521 25T1

MIPS and mipsy documentation
Literally your best friend (it’ll even be there for you in the exam 🥺)

https://cgi.cse.unsw.edu.au/~cs1521/25T1/resources/mips-guide.html

COMP1521 25T1

But how can we do input and output?

13

COMP1521 25T1

● None of the instructions we have access to can interact with
the outside world (eg. printing, scanning)

● Instead, we request the operating system to perform these
tasks for us - this process is called a system call

● The operating system can access privileged instructions on the
CPU (eg. communicating to other devices)

● mipsy simulates a very basic operating system

● Will explore real system calls in the second half of the course

System calls

14

COMP1521 25T1

Common mipsy syscalls

15

COMP1521 25T1

More ✨advanced✨ syscalls

16

Probably only used for challenge exercises in COMP1521

COMP1521 25T1

Let’s try to print out the number 42

17

COMP1521 25T1 18

● We specify which system call we want in $v0

○ eg. print_int is syscall 1:
○ li $v0, 1

● We specify arguments (if any)

○ li $a0, 42
● We transfer execution to the operating system

○ The OS will fulfill our request if it looks sane
○ syscall

● Some syscalls may return a value - check syscall table

The system call workflow

COMP1521 25T1

Let’s try to print out the number 42
 and then 99 on the next line

19

COMP1521 25T1

Let’s add 2 numbers and print out the
result

20

COMP1521 25T1

How do we print strings?

21

COMP1521 25T1

● We need to define our string in the data section

● Then pass the address of our string to our system call in $a0

● We need to use the .data directive so we can create global
data in our program

● We need to use the .asciiz directive so we can define a string
and give the string a label!

● We need to use the la to load the address of the string!!

Printing Strings and the Data segment

22

COMP1521 25T1

 .text
main:
 li $v0, 4 # syscall 4: print_string
 la $a0, hello_msg #
 syscall # printf("Hello COMP1521!!\n");

 li $v0, 0
 jr $ra # return 0;

 .data
hello_msg:
 .asciiz "Hello COMP1521!!\n"

Hello COMP1521 revisited

23

COMP1521 25T1

// Translate into MIPS

int main(void) {

 int a, b;

 printf("Enter a number: ");

 scanf("%d", &a);

 printf("Enter another number: ");

 scanf("%d", &b);

 printf("The average is %d\n", (a + b)/ 2);

 return 0;

}

Example: Integer Average

24

COMP1521 25T1

● Translating C code directly to MIPS is not fun
● Simplify your C code and then translate it to “simplified C”:

○ Simplified C is generally written so that each line of C code maps
to one MIPS instruction

○ Compile your simplified C and make sure it still works as
expected

○ Translate each line of simplified C to MIPS

Simplified C

25

COMP1521 25T1

● li (load immediate) is loading a fixed value into a register
○ li $t0, 7

● la (load address) is for loading a fixed address into a register

○ remember, labels really just represent addresses!

○ la $t0, my_label
● move is for copying value from a register into another register

○ move $t0, $t1

Putting data in registers

26

COMP1521 25T1

● Labels
○ Appended with :
○ They represent memory addresses

● Comments
○ Start with #

● Directives
○ Symbols beginning with . eg .asciiz .text .data

● Constant definitions
○ Like #define in C e.g.
○ MAX_NUMBERS = 10

Assembly Language Syntax Recap

27

COMP1521 25T1

We deserve a
quick break now!

28

COMP1521 25T1

MIPS Control

COMP1521 25T1

● Our programs have implemented fixed, predictable behaviour.

○ Execute linearly - we always go down to the next instruction
● However, what if we want to implement logic in our code?

● if statements - conditional code execution
● for/while loops - repeat some instructions?

if/else and loops don’t exist in MIPS - we have to use branching to
implement these ourselves

So far

30

COMP1521 25T1

● We have many conditional branch instructions of the form:
○ “if condition is true, jump to instruction at a given label” e.g.
○ ble $t0, $t1, label1 # if ($t0 <= $t1)
○ bgt $t0, 5, label1 # if ($t0 > 5)

● We have an unconditional branch instruction too
○ b label1

● How do we implement this in our simplified C code?

Branch Instructions

31

COMP1521 25T1

Branch/jump instructions

● Allows you to transfer the flow of execution to a different instruction conditionally

○ except b, which is unconditional

● Can replace with a constant in mipsy

COMP1521 25T1

In C, goto allows jumping to any arbitrary label within a program.

This means we can effectively jump around within a program
however we wish.

COMP1511 staff hid this simple trick!

33

COMP1521 25T1

int main(void) {

 goto sleep;

 printf("Please pay close attention\n");

sleep:

 printf("You are getting sleepy\n");

 goto sleep;

 printf("Please wake up now!");

 return 0;

}

What will this code do?

34

COMP1521 25T1 35

Go To Considered Harmful (1968)

With great power comes great responsibility

COMP1521 25T1

Don’t use it in your actual C programs.
● goto makes programs more difficult to read
● goto makes it hard for compilers to optimise code, resulting in

slower programs
● In general, do not use goto without good reason!

○ Typically only kernel/embedded programmers use goto
● We will use it in this course ONLY for writing simplified C to

translate into MIPS.

Don’t (ab)use goto

36

COMP1521 25T1

int main(void){
 int n;
 printf("Enter a number: ");
 scanf("%d", &n);

 if (n % 2 == 0) {
 printf("even\n");
 }
 return 0;
}

Simplifying if-else statements

37

int main(void){
 int n;
 printf("Enter a number: ");
 scanf("%d", &n);

int tmp = n % 2;
 if (tmp != 0) goto if_even_end;
 printf("even\n");
if_even_end:
 return 0;
}

Now we can write it in MIPS.
Exercise: add an else statement for odd numbers

COMP1521 25T1

● Have equivalent C code as inline comments
● Huge recommendation: indent with 8-wide tabs
● We generally don’t indent to show structure

○ i.e no indenting within loops or if statements, etc.
● Instead:

○ don’t indent labels

○ indent instructions by one step
● For this course: focus on readable code, not reducing number

of registers used or lines of code

Style

38

COMP1521 25T1

More complex conditionals:

if (milk_age > 48 ||
 milk_level < 10) {
 printf("Replace milk\n");
} else {
 printf("Milk okay!\n");
}

printf("Done!\n");

Split combined “or” conditions

COMP1521 25T1

More complex conditionals:

if (milk_age > 48 ||
 milk_level < 10) {
 printf("Replace milk\n");
} else {
 printf("Milk okay!\n");
}

printf("Done!\n");

 if (milk_age > 48) goto milk_replace;
 if (milk_level < 10) goto milk_replace;

 printf("Milk okay!\n");
 goto milk_replace__end;

milk_replace:
 printf("Replace milk\n");

milk_replace__end:
 printf("Done!");

Split combined “or” conditions

COMP1521 25T1

More complex conditionals: &&

if (x >= 0 && x <= 100) {
 // in bounds
} else {
 // out of bounds
}

return 0;

Invert the condition to use || (De Morgan’s Law)

COMP1521 25T1

More complex conditionals: &&

if (x >= 0 && x <= 100) {
 // in bounds
} else {
 // out of bounds
}

return 0;

if (x < 0 || x > 100) {
 // out of bounds
} else {
 // in bounds
}

return 0;

Invert the condition to use || (De Morgan’s Law)

COMP1521 25T1

More complex conditionals:

if (x < 0 || x > 100) {
 // out of bounds
} else {
 // in bounds
}

return 0;

Split into separate conditionals:

COMP1521 25T1

More complex conditionals:

if (x < 0 || x > 100) {
 // out of bounds
} else {
 // in bounds
}

return 0;

Split into separate conditionals:

if (x < 0) goto x_out_of_bounds;
if (x > 100) goto x_out_of_bounds;

// in bounds

goto epilogue;

x_out_of_bounds:
 // out of bounds

epilogue:
 return 0;

COMP1521 25T1

Your turn

45

if (y < 10 || z > 50) {

 // condition met

} else {

 // condition not met

}

return 1;

COMP1521 25T1

Your turn

46

if (y < 10 || z > 50) {

 // condition met

} else {

 // condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z > 50) goto condition_met;

goto condition_not_met;

condition_met:

 // condition met

goto epilogue;

condition_not_met:

 // condition not met

epilogue:

 return 1;

COMP1521 25T1

Your turn

47

if (y < 10 || z > 50) {

 // condition met

} else {

 // condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z > 50) goto condition_met;

// condition not met

goto epilogue;

condition_met:

 // condition met

epilogue:

 return 1;

COMP1521 25T1

Your turn to try

48

if (y < 10 || (z > 50 && w < 5)) {

 // condition met

} else {

 // condition not met

}

return 1;

COMP1521 25T1

Your turn

49

if (y < 10 || (z > 50 && w < 5)) {

 // condition met

} else {

 // condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z <= 50) goto condition_not_met;

if (w >= 5) goto condition_not_met;

condition_met:

 // condition met

goto epilogue;

condition_not_met:

 // condition not met

epilogue:

 return 1;

COMP1521 25T1

Simplifying loop structures

● for loops should be broken down to while loops
● while loops should be broken down into if/goto

General structure:
● loop init
● loop condition (do we need to exit the loop?)
● loop body
● loop step
● loop end

Use labels to show structure!

COMP1521 25T1

Simplifying for loops: Counting

for (int i = 0; i < 10; i++) {
 printf("%d\n", i);
}

int i = 0;
while (i < 10) {
 printf("%d\n", i);
 i++;
}

COMP1521 25T1

Counting

int i = 0;
while (i < 10) {
 printf("%d\n", i);
 i++;
}

int i;
loop_i_to_10__init:
 i = 0;
loop_i_to_10__cond:
 if (i >= 10) goto loop_i_to_10__end;

loop_i_to_10__body:
 printf("%d", i);
 putchar('\n');
loop_i_to_10__step:
 i++;

goto loop_i_to_10__cond;
loop_i_to_10__end:
 // ...

COMP1521 25T1

Exercise: Sum 100 squares

int sum = 0;
for (int i = 1; i <= 100; i++) {
 sum += i * i;
}

Convert to MIPS

COMP1521 25T1

Sidenote: C break/continue

break can be used in a loop to completely exit the loop.
The loop condition here makes this look like an infinite loop:

while (1) {
 int c = getchar();
 if (c == EOF) break;
}

but break means it’s possible for the loop to be exited.

In simplified C/MIPS, a break is really just equivalent to going to
the loop’s end label.

COMP1521 25T1

Sidenote: C break/continue

continue can be used to proceed to the next iteration of a for
loop.
This would be a (terrible) way to print even numbers:

In simplified C/MIPS, a continue is really just equivalent to going
to the loop’s step label.
Beware: Writing this as a while loop in C needs care not to miss the
i++

for (int i = 0; i < 10; i++) {
 if (i % 2 != 0) continue;
 printf("%d\n", i);
}

COMP1521 25T1 56

● MIPS
○ recap of basics from lecture 1
○ system calls

■ printing out and reading in integers, and chars
■ printing out strings

○ simplified C
○ control

■ goto statements
■ if statements,
■ boolean expressions
■ loops

What did we learn today?

COMP1511/COMP1911

Feedback Please!
Your feedback is valuable!

If you have any feedback from
today's lecture, please follow the
link below or use the QR Code.

Please remember to keep your
feedback constructive, so I can
action it and improve your
learning experience.

57

https://forms.office.com/r/EYPYy0KG5E

COMP1521 25T1 58

Content Related Questions:
Forum

Admin related Questions email:
cs1521@cse.unsw.edu.au

Reach Out

https://discourse01.cse.unsw.edu.au/25T1/COMP1521/
mailto:cs1521@cse.unsw.edu.au

COMP1521 25T1

Student Support | I Need Help With…

59

— student.unsw.edu.au/advisorsStudent Support
Indigenous Student
Support

Equity Diversity and Inclusion
(EDI)

— edi.unsw.edu.au/sexual-misconduct

Equitable Learning Service
(ELS)

— student.unsw.edu.au/els

Academic Language
Skills

— student.unsw.edu.au/skills

Special Consideration — student.unsw.edu.au/special-consideration

My Feelings and Mental
Health

Managing Low Mood, Unusual Feelings & Depression

Mental Health
Connect

Mind
HUB

student.unsw.edu.au/counselling
Telehealth

student.unsw.edu.au/mind-hub
Online Self-Help Resources

1300 787 026
5pm-9am

In Australia Call Afterhours
UNSW Mental Health Support
Line

Outside Australia
Afterhours 24-hour
Medibank Hotline

+61 (2) 8905 0307

Uni and Life Pressures
Stress, Financial, Visas, Accommodation & More

Reporting Sexual Assault/Harassment

Educational Adjustments
To Manage my Studies and Disability / Health Condition

Academic and Study Skills

Special Consideration
Because Life Impacts our Studies and Exams

Introducing ACS
Supported Student Membership (SSM)

Our vision

An Australia powered by highly skilled, diverse technology
professionals inspiring positive change through technology.

Our mission

We work to accelerate the growth of diverse and highly skilled
technology professionals, equipping them with the right skills
and knowledge needed to advance their careers and
Australia’s technology, now and in the future.

We set the standard for
assessing, developing and
recognising the skills and
experience of technology
professionals

We create career pathways to
guide technology
professionals and ensure
Australia has a pipeline of
talent with the right skills and
knowledge

Our focus is on fostering an
innovative and inclusive
community that is dedicated
to powering positive change
through technology

We assess and support skilled
technology migrants to
address critical skills
shortages, improve diversity
and enrich Australia’s
workforce

Receive advice and support from your local ACS
branch manager and team

Understand the types of tech roles and career
pathways available in Australia’s ever-changing tech
sector

Gain relevant technical and vital interpersonal skills
with unlimited access to the ACS Learning Accelerator,
a digital library of 44,000+ learning resources

Build contacts and relationships with employers at
networking and professional development events

Scan me now

Should you have any questions,
please contact ACS member services
member.services@acs.org.au

Join ACS today and gain access to ACS career advice and support.
Just follow the steps outlined below:

Scan the QR code and visit the ACS
membership web page. Click ‘Join Now’

Click ‘Sign-up Now’ and complete the
email verification

Select ‘Supported Student ICT
Membership’. The fee will be $0

Select your educational institution
from the drop-down menu

Complete sections 1 and 2 with your
personal and student details

Click ‘Browse Files’ to upload your
student ID or enrolment confirmation

Click ‘Submit’ to activate your
complimentary ACS membership

How to get your complimentary ACS
student membership

mailto:member.services@acs.org.au

