
Andrew Taylor

Based on
Hammond & Abiram’s Slides

1

COMP1521 24T2 Lec03

MIPS: DATA



Andrew Taylor

li vs la vs move

● li (load immediate) is for immediate, fixed values that you need 
to load into a register with an instruction

● la (load address) is for loading fixed addresses into a register

○ remember, labels really just represent addresses!

● move is for copying values between two registers



Andrew Taylor

How do we store/use interesting data?

3

How does the data segment really work?

How do we:

● Store and increment a global variable?
● Work with 1D arrays?
● Work with 2D arrays??
● C Structs !?



Andrew Taylor

● We mentioned you can think of it like a large 1D array
● Typically memory systems let us load and store bytes (not bits)
● Each byte (usually 8 bits) has a unique address

○ So memory can be thought of as one large array of bytes
○ Address = index into the array, e.g.:

What be memory

4



Andrew Taylor

● Typically, small groups of bytes can be loaded/stored at once
● E.g. in MIPS:

○ 1-byte (a byte) loaded/stored with …………………………..lb/sb
○ 2-bytes (a half-word) loaded/stored with……………………lh/sh
○ 4-bytes (a word) loaded/stored with…………………………lw/sw

Bytes, half-words, words

5



Andrew Taylor

● Memory addresses in load/store instructions are the sum of:
○ Value in a specific register
○ And a 16-bit constant (often 0)

Memory addresses

6



Andrew Taylor

● Storing and loading a value (no labels)

Code example

7



Andrew Taylor

● Storing and loading a value (no labels)

Code example

8

.text

main:

        li $t0, 0x12345678

        la $t1, 0x10010000

        sw $t0, 0($t1)

.data

        .word 0



Andrew Taylor

● Storing and loading a value (no labels)

Code example

9

.text

main:

        li $t0, 0x12345678

        la $t1, 0x10010000

        sw $t0, 0($t1)

.data

        .word 0



Andrew Taylor

● Storing and loading a value (no labels)

Code example

10

.text

main:

        li $t0, 0x12345678

        la $t1, 0x10010000

        sw $t0, 0($t1)

.data

        .word 0

What order will these bytes be?



Andrew Taylor

● “What order to put things in” is a hard question to answer

New concept: Endian-ness

11



Andrew Taylor

● “What order to put things in” is a hard question to answer
● The answer is based on an egg

New concept: Endian-ness

12



Andrew Taylor

● “Endian” comes from the 
1726 novel “Gulliver's 
Travels” by Jonathan Swift 

● In the story, there is conflict 
between sects of Lilliputians 
divided into those breaking 
the shell of a boiled egg 
from the big end or from the 
little end.

Which “end” of a boiled egg to break?

13



Andrew Taylor

● The difference between 
Big-Endians (break big end) 
and Little-Endians led to:
○ Six rebellions
○ One Emperor losing his life
○ Another his crown

● This was perhaps a 
commentary on something 
other than “byte” order

Which “end” of a boiled egg to break?

14



Andrew Taylor

● “What order to put things in” is a hard question to answer

New concept: Endian-ness

15



Andrew Taylor

● “What order to put things in” is a hard question to answer
● Two schools of thought:

○ Big-endian: MSB at the “low address” - big bits “first!”
○ Little-endian: MSB at the “high address” - big bits “last!”

New concept: Endian-ness

16



Andrew Taylor

● “What order to put things in” is a hard question to answer
● Two schools of thought:

○ Big-endian: MSB at the “low address” - big bits “first!”
○ Little-endian: MSB at the “high address” - big bits “last!”

BIG: LITTLE:

New concept: Endian-ness

17



Andrew Taylor

● Mipsy-web is little-endian

Code example

18

.text

main:

        li $t0, 0x12345678

        la $t1, 0x10010000

        sw $t0, 0($t1)

.data

        .word 0



Andrew Taylor

● Storing and loading a value (labels)

Code example

19



Andrew Taylor

● Storing and loading a value (labels)

Code example

20

.text

main:

        li $t0, 0x12345678

        la $t1, my_label

        sw $t0, 0($t1)

.data

my_label:

        .word 0



Andrew Taylor

● sh/sb use the low (least-significant) bits of the source register
● lh/lb assume the loaded byte/halfword is signed

○ The destination register top bits are set to the sign bit

● lhu/lbu for doing the same thing, but unsigned 

Bytes, half-words, words (part 2)

21



Andrew Taylor

Examples

22

.text

main:

        li $t0, 0x12345678

        la $t1, my_label

        sh $t0, 0($t1)

.data

my_label:

        .word 0



Andrew Taylor

Examples

23

.text

main:

        li $t0, 0x12345678

        la $t1, my_label

        sh $t0, 0($t1)

.data

my_label:

        .word 0



Andrew Taylor

Examples

24

.text

main:

        li $t0, 0x12345678

        la $t1, my_label

        sh $t0, 0($t1)

.data

my_label:

        .word 0



Andrew Taylor

Examples

25

.text

main:

        li $t0, 0x12345678

        la $t1, my_label

        sb $t0, 0($t1)

.data

my_label:

        .word 0



Andrew Taylor

Examples

26

.text

main:

        li $t0, 0x12345678

        la $t1, my_label

        sb $t0, 0($t1)

.data

my_label:

        .word 0



Andrew Taylor

Examples

27

.text

main:

        li $t0, 0x12345678

        la $t1, my_label

        sb $t0, 0($t1)

.data

my_label:

        .word 0



Andrew Taylor

Loading Examples

28

.text

main:

        la $t1, my_label

        lw $t0, 0($t1)

.data

my_label:

        .word 0x12345678



Andrew Taylor

Loading Examples

29

.text

main:

        la $t1, my_label

        lw $t0, 0($t1)

.data

my_label:

        .word 0x12345678



Andrew Taylor

Loading Examples

30

.text

main:

        la $t1, my_label

        lh $t0, 0($t1)

.data

my_label:

        .word 0x12345678



Andrew Taylor

Loading Examples

31

.text

main:

        la $t1, my_label

        lh $t0, 0($t1)

.data

my_label:

        .word 0x12345678



Andrew Taylor

Loading Examples

32

.text

main:

        la $t1, my_label

        lb $t0, 0($t1)

.data

my_label:

        .word 0x12345678



Andrew Taylor

Loading Examples

33

.text

main:

        la $t1, my_label

        lb $t0, 0($t1)

.data

my_label:

        .word 0x12345678



Andrew Taylor

● Normally la is used to load addresses, li for data
● But this is just convention, and instructions don’t actually differ

○ Both are also pseudo-instructions!

● These are all the same instruction! (assume my_label = 0x1001000)

● But, convention is still useful!

Setting registers to addresses

34

li $t1, 0x10010000

li $t1, my_label

la $t1, 0x10010000

la $t1, my_label



Andrew Taylor

● We can just write constant memory address locations
● (We) don’t need to load to another register

Mipsy-web helper pseudo-instruction

35

.text

main:

        li $t0, 0x12345678

        sw $t0, my_label

.data

my_label:

        .word 0

.text

main:

        li $t0, 0x12345678

        la $t1, my_label

        sw $t0, 0($t1)

.data

my_label:

        .word 0



Andrew Taylor

Other assembler shortcuts

36

sb $t0, 0($t1) # store $t0 in byte at address in $t1

sb $t0, ($t1) # same

sb $t0, x # store $t0 in byte at address labelled x

sb $t1, x+15 # store $t1 15 bytes past address labelled x

sb $t2, x($t3) # store $t2 $t3 bytes past address labelled x



Andrew Taylor

● Let’s write a program which has a global variable
● We will increment it 

Demo program time - global_increment.c

37

#include <stdio.h>

int global_counter = 0;

int main(void) {

    // Increment the global counter.  

    global_counter++;

    printf("%d", global_counter);

    putchar('\n');

}



Andrew Taylor

Demo program time

38

.text

main:

        lw      $t1, global_counter

        addi    $t1, $t1, 1

        sw      $t1, global_counter     # global_counter = global_counter + 1;

        li      $v0, 1                  # syscall 1: print_int

        la      $t0, global_counter     #

        lw      $a0, ($t0)

        syscall                         # printf("%d", global_counter);

        li      $v0, 11                 # syscall 11: print_char

        li      $a0, '\n'

        syscall                         # putchar('\n');

        li      $v0, 0

        jr      $ra # return 0;

.data

global_counter:

        .word 0                         # int global_counter = 0;



Andrew Taylor

• char ... as byte in memory, or register

• int ... as 4 bytes in memory, or register

• double ... as 8 bytes in memory, or $f? register

• arrays ... sequence of bytes, elements accessed by calculated 
index 

• structs ... sequence of bytes in memory, accessed by constant 
offset fields

C has lots of different types

39



Andrew Taylor

Demo - sizeof.c

40



Andrew Taylor

C standard requires simple types of size N bytes to be stored only 
at addresses which are divisible by N

• if int is 4 bytes, must be stored at address divisible by 4

• if ‘double is 8 bytes, must be stored at address divisible by 8

• compound types (arrays, structs) must be aligned so their 
components are aligned

• MIPS requires this alignment

Alignment

41



Andrew Taylor

Alignment problems demo - sample_data.s

42

.text  

.data                  

a: .word 16             # int a = 16

b: .space 4             # int b;

c: .space 4             # char c[4];

d: .byte 1,2,3,4        # char d[4] = {1, 2, 3, 4};

e: .byte 0:4            # int8_t e[4] = {0};

f: .asciiz "hello"      # char *f = "hello";

g: .space 4             # int g;



Andrew Taylor

Padding with .space

Alignment fix with .align

Solutions?

43



Andrew Taylor

Loop through an array

Demo program - array.c, array_bytes.c

44



Andrew Taylor

Loop through a 2D array

Demo program - flag.c

45



Andrew Taylor

● Struct values are really just sets of variables at known offsets
● E.g.

Structs!

46



Andrew Taylor

Demo program - struct.c

47



Andrew Taylor

A char, int or double:

• can be stored in register if local variable and no pointer to it

• otherwise stored on stack if local variable - we’ll revisit this

• stored in data segment if global variable

This includes pointer addresses!

Stack variables vs globals?

48



Andrew Taylor

Mipsy assembler directives

49

.text                   # following instructions placed in text segment

.data                   # following objects placed in data segment

a: .space 18            # int8_t a[18];

.align 2                # align next object on 4-byte addr

i: .word 42             # int32_t i = 42;

v: .word 1,3,5          # int32_t v[3] = {1,3,5};

h: .half 2,4,6          # int16_t h[3] = {2,4,6};

b: .byte 7:5            # int8_t b[5] = {7,7,7,7,7};

f: .float 3.14          # float f = 3.14;

s: .asciiz "abc"        # char s[4] {'a','b','c','\0'};

t: .ascii "abc"         # char t[3] {'a','b','c'};


