
Andrew Taylor

Adapted from Hammond &
Abiram’s slides

1

COMP1521 24T3 Lec02

MIPS:

Basics + Control

Andrew Taylor

Recap of lec01

● Exploring different types of storage/memory

● RAM contains everything a program needs in a given moment

● Instructions!

● Assembly language!

● Registers!

● System calls!

Andrew Taylor

The system call workflow
● We specify which system call we want in $v0

○ eg. print_int is syscall 1:

● We specify arguments (if any)

● We transfer execution to the operating system

○ The OS will fulfil our request if it looks sane

● Some syscalls may return a value - check syscall table

li $v0, 1

li $a0, 42

syscall

Andrew Taylor

● Open Mipsy
● Store the value “1” in $t0
● Store the value “4” in $t1
● Sum these and print the result to the I/O window

Recap exercise

4

Andrew Taylor

Recap exercise

5

.text

main:

 li $t0, 1 #t0 = 1

 li $t1, 4 #t1 = 4

 add $a0, $t0, $t1 #a0 = t0 + t1 (5)

 li $v0, 1 #

 syscall # syscall 1 - print_int

 li $v0, 0 #

 jr $ra # exit the program

Andrew Taylor

DISCLAIMER:

Code written in lectures may not
necessarily have the best style!

● Lecture code is meant to be quick and dirty, to demonstrate a concept
● Will quickly overview good style soon, but refer to your tutor, tut solutions,

lab solutions

Andrew Taylor

li vs la vs move

● li (load immediate) is for immediate, fixed values that you need
to load into a register with an instruction

● la (load address) is for loading fixed addresses into a register

○ remember, labels really just represent addresses!

● move is for copying values between two registers

Andrew Taylor

Syntax - Assembly language contains:
● Assembly instructions, each on their own line

○ Generally a 1:1 mapping from CPU instructions to real instructions

○ However, assemblers also provide pseudo-instructions for convenience

○ Some of pseudo-instructions turn into 2-3 real CPU instructions

■ li is an example - ask why on the forum if curious!

● Labels … appended with :

● Comments … starting with a #

● Directives … symbol beginning with .

● Constant definitions - like #defines in C: MAX_NUMBERS = 256

Andrew Taylor

Style

● We generally don’t indent to show structure

○ i.e no indenting within conditionals, if statements, etc.

● Instead:

○ don’t indent labels

○ indent instructions by one step

○ have equivalent C code as inline comments

● Huge recommendation: indent with 8-wide tabs

○ Ask on forum if anyone wants my vscode config

Andrew Taylor

Simplified C

Translating C code directly to MIPS is not fun

Pro strat - simplify your C code and then translate it:

● Map down to ‘simplified’ C

○ Simplified C is generally written so that each line of C code maps to one
MIPS instruction

○ Compile your simplified C and make sure it still works as expected

○ Translate each line of simplified C to MIPS

○ Profit!!

Andrew Taylor

Example: square_and_add

11

Andrew Taylor

MIPS Control

Andrew Taylor

So far…

Our programs have implemented fixed, predictable behaviour.

● Execute linearly - we always go down to the next instruction

However, what if we want to implement logic in our code?

● If statements - conditional code execution

● for/while loops - repeat some instructions?

if/else and loops don’t exist in MIPS - we have to use branching to
implement these ourselves

Andrew Taylor

Branch/jump instructions

● Allows you to transfer the flow of execution to a different instruction conditionally
○ except b, which is unconditional

● Also j, jal, jalr, jr - unconditional jump instructions which we will talk about in MIPS Functions
● Can replace with a constant in mipsy

Andrew Taylor

In other words

A lot of these branch instructions are of the form:

“if condition is true, jump to instruction”

How do we implement this for our simplified C code?

Andrew Taylor

COMP1511 staff hate this one simple trick!

In C, goto allows jumping to any arbitrary label within a program.

This means we can effectively yeet around within a program
however we wish.

Andrew Taylor

Simplifying if, if/else:

Example: print_if_even

Andrew Taylor 18

Go To Considered Harmful (1968)

With great power comes great responsibility

Andrew Taylor

Don’t (ab)use goto

don’t use it in your actual C programs.

● goto makes programs more difficult to read

● goto makes it hard for compilers to optimise code, resulting in
slower programs

● In general, do not use goto without good reason!

○ Typically only kernel/embedded programmers use goto

Andrew Taylor

More complex conditionals:

if (milk_age > 48 ||
 milk_level < 10) {
 printf("Replace milk\n");
} else {
 printf("Milk okay!\n");
}

printf("Done!\n");

Split combined “or” conditions

Andrew Taylor

More complex conditionals:

if (milk_age > 48 ||
 milk_level < 10) {
 printf("Replace milk\n");
} else {
 printf("Milk okay!\n");
}

printf("Done!\n");

 if (milk_age > 48) goto milk_replace;
 if (milk_level < 10) goto milk_replace;

 printf("Milk okay!\n");
 goto milk_replace__end;

milk_replace:
 printf("Replace milk\n");

milk_replace__end:
 printf("Done!");

Split combined “or” conditions

Andrew Taylor

More complex conditionals: &&

if (x >= 0 && x <= 100) {
 // in bounds
} else {
 // out of bounds
}

return 0;

Invert the condition to use || (De Morgan’s Law)

Andrew Taylor

More complex conditionals: &&

if (x >= 0 && x <= 100) {
 // in bounds
} else {
 // out of bounds
}

return 0;

if (x < 0 || x > 100) {
 // out of bounds
} else {
 // in bounds
}

return 0;

Invert the condition to use || (De Morgan’s Law)

Andrew Taylor

More complex conditionals:

if (x < 0 || x > 100) {
 // out of bounds
} else {
 // in bounds
}

return 0;

Split into separate conditionals:

Andrew Taylor

More complex conditionals:

if (x < 0 || x > 100) {
 // out of bounds
} else {
 // in bounds
}

return 0;

Split into separate conditionals:

if (x < 0) goto x_out_of_bounds;
if (x > 100) goto x_out_of_bounds;

// in bounds

goto epilogue;

x_out_of_bounds:
 // out of bounds

epilogue:
 return 0;

Andrew Taylor

Your turn

26

if (y < 10 || z > 50) {

 // condition met

} else {

 // condition not met

}

return 1;

Andrew Taylor

Your turn

27

if (y < 10 || z > 50) {

 // condition met

} else {

 // condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z > 50) goto condition_met;

goto condition_not_met;

condition_met:

 // condition met

goto epilogue;

condition_not_met:

 // condition not met

epilogue:

 return 1;

Andrew Taylor

Your turn

28

if (y < 10 || z > 50) {

 // condition met

} else {

 // condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z > 50) goto condition_met;

// condition not met

goto epilogue;

condition_met:

 // condition met

epilogue:

 return 1;

Andrew Taylor

Your turn

29

if (y < 10 || (z > 50 && w < 5)) {

 // condition met

} else {

 // condition not met

}

return 1;

Andrew Taylor

Your turn

30

if (y < 10 || (z > 50 && w < 5)) {

 // condition met

} else {

 // condition not met

}

return 1;

if (y < 10) goto condition_met;

if (z <= 50) goto condition_not_met;

if (w >= 5) goto condition_not_met;

condition_met:

 // condition met

goto epilogue;

condition_not_met:

 // condition not met

epilogue:

 return 1;

Andrew Taylor

Simplifying loop structures
● for loops should be broken down to while loops

● while loops should be broken down into if/goto

General structure:

● loop init
● loop condition (do we need to exit the loop?)
● loop body
● loop step
● loop end
Use labels to show structure!

Andrew Taylor

Simplifying for loops:
sum_100_squares

Andrew Taylor

Counting to 10

for (int i = 0; i < 10; i++) {
 printf("%d\n", i);
}

int i = 0;
while (i < 10) {
 printf("%d\n", i);
 i++;
}

Andrew Taylor

Counting to 10

int i = 0;
while (i < 10) {
 printf("%d\n", i);
 i++;
}

loop_i_to_10__init:;
 int i = 0;
loop_i_to_10__cond:
 if (i >= 10) goto loop_i_to_10__end;

loop_i_to_10__body:
 printf("%d", i);
 putchar('\n');
loop_i_to_10__step:
 i++;

loop_i_to_10__end:
 // ...

Andrew Taylor

Sidenote: C break/continue
break can be used in a loop to completely exit the loop.

The loop condition here makes this look like an infinite loop:

while (1) {
 int c = getchar();
 if (c == EOF) break;
}

but break means it’s possible for the loop to be exited.

In simplified C/MIPS, a break is really just equivalent to going to
the loop’s end label.

Andrew Taylor

Sidenote: C break/continue
continue can be used to proceed to the next iteration of a for
loop.

This would be a (terrible) way to print even numbers:

In simplified C/MIPS, a continue is really just equivalent to going
to the loop’s step label.

for (int i = 0; i < 10; i++) {
 if (i % 2 != 0) continue;
 printf("%d\n", i);
}

