UNSW

SYDNEY

COMP1521 24T3 Lec02

MIPS:

Basics + Control

Adapted from Hammond &
Abiram’s slides

Andrew Taylor

Recap of lec01

e Exploring different types of storage/memory

e RAM contains everything a program needs in a given moment
e Instructions!

e Assembly language!

e Registers!

e System calls!

Andrew Taylor

The system call workflow

e We specify which system call we want in Sv@

o eg.print_int issyscall 1:
1i Sve,
e We specify arguments (if any)
1i Sa@,
e We transfer execution to the operating system

o The OS will fulfil our request if it looks sane
syscall

e Some syscalls may return a value - check syscall table

Andrew Taylor

Recap exercise

Open Mipsy

Store the value “1” in $t0

Store the value “4” in $t1

Sum these and print the result to the I/O window

Andrew Taylor

Recap exercise

. text
main:
1i $to, 1 #t0 =1
1i $tl, 4 #t1 = 4
add $a0, $t0, s$tl #a0 = t0 + t1 (5)
1i Svo, 1 #
syscall # syscall 1 - print int
li $vo, 0 #
jr Sra # exit the program

Andrew Taylor

DISCLAIMER:

Code written 1n lectures may not
necessarily have the best style!

e Lecture code is meant to be quick and dirty, to demonstrate a concept
e Will quickly overview good style soon, but refer to your tutor, tut solutions,
lab solutions

Andrew Taylor

11 vs la vs move

e li (load immediate) is for immediate, fixed values that you need
to load into a register with an instruction

e la (load address) is for loading fixed addresses into a register

o remember, labels really just represent addresses!

e move is for copying values between two registers

Andrew Taylor

Syntax - Assembly language contains:

e Assembly instructions, each on their own line
o Generally a 1:1 mapping from CPU instructions to real instructions
o However, assemblers also provide pseudo-instructions for convenience

o Some of pseudo-instructions turn into 2-3 real CPU instructions

m liis an example - ask why on the forum if curious!

e Labels ... appended with :
e Comments ... starting witha #
e Directives ... symbol beginning with .

e Constant definitions - like #defines in C: MAX_NUMBERS = 256

Andrew Taylor

Style

e We generally don't indent to show structure

o i.e noindenting within conditionals, if statements, etc.
e |[nstead:

o dontindent labels

o indent instructions by one step

o have equivalent C code as inline comments
e Huge recommendation: indent with 8-wide tabs

o Ask on forum if anyone wants my vscode config

Andrew Taylor

Simplified C

Translating C code directly to MIPS is not fun
Pro strat - simplify your C code and then translate it:
e Map down to ‘simplified’ C

o Simplified C is generally written so that each line of C code maps to one
MIPS instruction

o Compile your simplified C and make sure it still works as expected
o Translate each line of simplified C to MIPS

o Profit!l

Example: square_and_add

Andrew Taylor

11

MIPS Control

So far...

Our programs have implemented fixed, predictable behaviour.

e Execute linearly - we always go down to the next instruction
However, what if we want to implement logic in our code?

e |f statements - conditional code execution

e for/while loops - repeat some instructions?

if/else and loops don't exist in MIPS - we have to use branching to
implement these ourselves

Andrew Taylor

Branch/jump instructions

b label pc += T«2 pseudo-instruction
beqr,, r;, label if(==7,)pc+=I1«2 000100ssssstttttIIIIIIITIIIIIIIIT
bne r, r;, label (r‘5 I=7,)pc+=I«2 000101ssssstttttIIIIIIITIIIIIIIII
bler,,r,, label if(r,<=7r;)pc+=I«2 pseudo-instruction
bgtr,,r, label if(r,
bltr,,r,, label if(r,<r,)pc+=I«2 pseudo-instruction
bger,, r,, label if(r, >= rt) pc+= I«2 pseudo-instruction
if (r
if (
if (

S
r,>r,) pc+=I1«2 pseudo-instruction

S
blezr, label ry<=0)pc+=I«2 000110ssSSSOOOOOIIIIIITIITIIIIIIIT
bgtz r_,label o 0) pc += T«2 000111sssss0000OIIIIIIIIITIIIIIII
bltz r_ label 7y <0)pc+= I«2 O00001sSSSSOEOEOOITIIITIITIIITIIIIIIT
bgez r_ label |f (ry>=0)pc+=I«2 000001ssSSSOEEOLITIIIIIIIIITIIIIII
bnez r_, label if (r, 1= 0) pc += 1«2 pseudo-instruction

beqz r, label if (r, ==0) pc+=I«2 pseudo-instruction

e Allows you to transfer the flow of execution to a different instruction conditionally
o except b, which is unconditional

e Alsoj,jal, jalr, jr - unconditional jump instructions which we will talk about in MIPS Functions
e Canreplace r with a constant in mipsy

Andrew Taylor

In other words

A lot of these branch instructions are of the form:

“if condition is true, jump to instruction”

How do we implement this for our simplified C code?

Andrew Taylor

COMP1511 staff hate this one simple trick!

In C, goto allows jumping to any arbitrary label within a program.

This means we can effectively yeet around within a program
however we wish.

Andrew Taylor

Simplifying if, if/else:

Example: print_if_even

Andrew Taylor

With great power comes great responsibility

Edgar Dijkstra: Go To Statement Considered Harmful

- Go To Statement Considered Harmful

Key Words and Phrases: go to statement, jump instruction,
branch instruction, conditional clause, alternative clause, repet-
itive clause, program intelligibility, program sequencing

CR Categories: 4.22, 5.23, 5.24 :

- EDITOR:

For a number of years I have beeu familiar with the observation
that the quality of programmers is a decreasing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use oi the go Lo statement has such

. disastrous effeets, and T became convinced that the go to state-
- ment should be abolished from all “higher level” programming
¢ languages (i.e. everything except, perhaps, plain machine code).
At‘that time I did not attach 100 much importance to this dis-
covery; [now submit my considerations for publication beeause
in very recent discussions in which the subject turned up, I have
been urged to do so.
. My first remark is that, although the programmer’s aetivity
ends when he has constructed a correct program, the process

dynamic progress is only characterized when we also give to which
call of the procedurs we refer. With the inclusion of procedures
we can characterize the progress of the process via a sequence of
textusl indices, the length of this sequence being equal to the
dynamic depth of proecedure calling.

Let us now consider repetition clauses (like, while B repeat A

or repeat A until B). Logically speaking, such clauses are now

superfluous, because we can express repetition with the aid of
recursive procedures. For reasons of realism I don’s wish to ex-
clude them: on the one hand, repetition clauses ean be imple-
mented quile comfortably wich present day finite equipment; on
the other hand, the reasoning patlern known as “induction”
makes us well equipped to retain our intellectual grasp on the
processes generated by repetition clauses. With the inclusion of
the repetition clauses textual indices are no longer sulficient 1o
describe the dynamic progress of cthe process. With each entry into
a repetition clause, however, we can associate a so-called “‘dy-

namic index,"” inexorably counting the ordinal number of the
corresponding current repetition. As reperition elanses (just as
procedure calls) may be applied nestedly, we find that now the

Go To Considered Harmful (1968)

Andrew Taylor

, /ﬁAS\\%w\‘sE

/

Don't (ab)use goto

don't use it in your actual C programs.
e goto makes programs more difficult to read

e goto makes it hard for compilers to optimise code, resulting in
slower programs

e In general, do not use goto without good reason!

o Typically only kernel/embedded programmers use goto

Andrew Taylor

More complex conditionals:

Split combined “or” conditions

if (milk_age > 48 ||
milk_level < 10) {
printf("Replace milk\n");
} else {
printf("Milk okay!\n");
}

printf("Done!\n");

Andrew Taylor

More complex conditionals:

Split combined “or” conditions

if (milk_age > 48) goto milk_replace;
if (milk_level < 10) goto milk_replace;

if (milk_age > 48 ||
milk_level < 10) { : " PN -
printf("Replace milk\n"); E:> pr1ntf(Milk okayin)f

L else { goto milk_replace__end;
printf("Milk okay!\n"); .

} milk_replace:

rintf("Replace milk\n");
printf("Done!\n"); P (P)

milk_replace__end:
printf("Done!");

Andrew Taylor

More complex conditionals: &&

Invert the condition to use || (De Morgan’s Law)

if (x >= 0 & & x <= 100) {

// in bounds E>
} else {

// out of bounds
}

return 90;

Andrew Taylor

More complex conditionals: &&

Invert the condition to use || (De Morgan’s Law)

if (x >= 0 & & x <= 100) {
// in bounds

} else {

)

// out of bounds
}

return 90;

if (x <@ || x > 100) {
// out of bounds
} else {

// in bounds
}

return 9;

Andrew Taylor

More complex conditionals:

Split into separate conditionals:

if (x <@ || x > 100) {

// out of bounds t>
} else {

// in bounds
}
return 90;

Andrew Taylor

More complex conditionals:

Split into separate conditionals:

if (x < @) goto x_out_of_bounds;

if (x <8 || x > 100) { if (x > 100) goto x_out_of_bounds;
} eléé ?ut of bounds ;>// in bounds
// in bounds .
) goto epilogue;
return 0; x_out_of_bounds:

// out of bounds

epilogue:
return 0;

Andrew Taylor

Your turn

if (y < 10 || z > 50) {
// condition met

} else {

// condition not met >
}

return 1;

Andrew Taylor

26

Your turn

if (y < 10 || z > 50) { if (y < 10) goto condition met;
// condition met if (z > 50) goto condition met;
} else { goto condition_not met;
// condition not met :> condition met:
} // condition met
return 1; goto epilogue;

condition_not_met:
// condition not met
epilogue:

return 1;

Andrew Taylor 27

Your turn

if (y < 10 || z > 50) { if (y < 10) goto condition met;

// condition met if (z > 50) goto condition met;
} else { // condition not met

// condition not met :::::E>, goto epilogue;
} condition met:
return 1; // condition met

epilogue:
return 1;

Andrew Taylor 28

Your turn

if (y < 10 |] (z > 50 && w < 5)) {
// condition met
} else {
// condition not met :>
}
return 1;

Andrew Taylor

29

Your turn

if (y < 10 || (z > 50 && w < 5)) { if (y < 10) goto condition met;
if (z <= 50) goto condition not met;

// condition met
} else {

condition_met:
// condition not met > // condition met
}

goto epilogue;

if (w >= 5) goto condition_not met;

return 1; condition not met:
// condition not met
epilogue:

return 1;

Andrew Taylor 30

Simplifying loop structures
e for loops should be broken down to while loops
e while loops should be broken down into if/goto

General structure:

loop init

loop condition (do we need to exit the loop?)
loop body

loop step

loop end

Use labels to show structure!

Andrew Taylor

Simplifying for loops:

sum_100_squares

Andrew Taylor

Counting to 10

int 1 = 9;
for (int i = 0; i < 19; i++) A while (i < 10) {
printf("%d\n", 1i); > printf("%d\n", 1i);
} i++;
}

Andrew Taylor

Counting to 10

int 1 = 0;

while (i < 10) {
printf("%d\n", 1i); >
i++:

}

loop_i_to_16__init:;
int 1 = 0;
loop_i_to_16__cond:

if (i >= 10) goto loop_i_to_16__end

loop_i_to_16__body:
printf("%d", 1i);
putchar('\n");

loop_i_to_10__step:
1++;

loop_i_to_10__end:
//

Andrew Taylor

)

Sidenote: C break/continue

break can be used in a loop to completely exit the loop.

The loop condition here makes this look like an infinite loop:

while (1) A
int ¢ = getchar();
if (c == EOF) break;

h
but break means it's possible for the loop to be exited.

In simplified C/MIPS, a break is really just equivalent to going to
the loop’s end label.

Andrew Taylor

Sidenote: C break/continue

continue can be used to proceed to the next iteration of a for
loop.

This would be a (terrible) way to print even numbers:

for (int i = 0; i < 19; i++) {
if (i % 2 != 0) continue;
printf("%d\n", 1i);

}

In simplified C/MIPS, a continue is really just equivalent to going
to the loop’s step label.

Andrew Taylor

