
Andrew Taylor

2024
Adapted from Hammond
Pearce & Abiram’s slides

1

COMP1521 24T3 Lec01

MIPS:

An Introduction

Andrew Taylor

MIPS

2

MIPS?
… but why?

Andrew Taylor

What is a computer?

3

● A machine that “computes”

● A machine that executes a program

● How do we make a machine that executes a program?

Andrew Taylor

In COMP1[59]11:

● We run a compiler (dcc?)
● ./hello
● profit ??

What’s going on here? What’s even in hello?

What is a program? How do they execute?

4

Andrew Taylor

● A program is a set of instructions and data

For example:

So what is a “program”??

5

Andrew Taylor

● The program is a set of instructions and data… somewhere
○ Maybe a “hard disk”
○ Long-term, non-volatile

● We load the program into “memory” - RAM!
○ RAM is like a massive 1D array which we divide into sections
○ It has addresses, which are like indexes into that array
○ RAM is volatile

So how do we execute the program?

6

Andrew Taylor

Disks and RAM

7

or

Andrew Taylor

And then… the CPU “runs” the program!

8

Andrew Taylor

● A program contains information on how to set up memory
○ What instructions need to be followed?
○ What data do we need to load into the memory?

■ Variables?
● Globals and locals

● Then, during operation, we might request more memory
○ malloc
○ So greedy

● Where do we put all these things?

Programs and Program Memory

9

Andrew Taylor

A program’s memory map

10

Andrew Taylor

● There are a finite number of possible instructions
○ We assemble programs by combining the instructions in sequences

● E.g if we have just “x = a + b” - how do we get “y = a + b + c”?
○ temp = a + b
○ y = temp + c

● The CPU is built to execute all the possible instructions
● i.e. the CPU implements an “Instruction Set Architecture”

How does the CPU know what to do?

11

Andrew Taylor

MIPS, ARM, x86, Itanium, x86_64, Power, AVR, PIC, RISC-V …

Lots of possible implementations

Lots of possible uses/users

E.g. games consoles:

Some ISAs

12

Andrew Taylor

What can instructions do?

● Load/store: Got data? Need to load it! Need to store it!

● Computations: eg. add, subtract, multiply, divide, bitwise

● Branch: jump to execute different instructions

○ Can’t have logic (eg. if statements) if our program continues linearly

● System calls: phone-a-friend

● Coprocessor: Do hard, special things needing special hardware

○ E.g. floating point math

Andrew Taylor

● Not often…

○ But sometimes we do!

○ (Someone has to!)

● Instead, we tend to write in a higher-level compiled language

○ C, C++, D, Go, Zig, Rust, Java, Swift, and many more…

● A compiler will input programs in these languages and output
the corresponding assembly instructions

Do we write the instructions directly?

14

Andrew Taylor

Assembly

Instructions are really just 0s and 1s

● Would be a pain to read/write literal instructions

● Instead, we use assembly language to form a human-readable
representation of each instruction

○ Each instruction we write in assembly language typically represents a
single CPU instruction

○ An assembler translates this to binary CPU instructions

Andrew Taylor

● We have a program in some language (e.g. C)
● We have a processor that runs some ISA (e.g. MIPS)
● We compile the program into assembly (and a binary)
● The binary is stored to a file

Then…

● The program is loaded into memory
● The CPU is pointed at the memory
● And we are off!

So, to recap: how do we make a program?

16

Andrew Taylor

More about CPUs

17

Andrew Taylor

● a set of data registers

● a set of control registers

● a control unit

● an arithmetic-logic unit

● a floating-point unit

● caches

● connection to Memory/RAM

What’s in there?

18

Andrew Taylor

A day in the life of a CPU - as C code

int program_counter = START_ADDRESS;

while (1) {
 // Fetch an instruction from memory
 int instruction = memory[program_counter];
 // Move to the next instruction
 program_counter++;
 // Execute the next instruction
 execute(instruction, &program_counter);
 // ^ note: some instructions may
 // modify the program counter
}

It’s more
fun

than it sounds
I swear

Andrew Taylor

So… writing instructions ourselves?
In this course we write assembly ourselves instead of compiling.
But why would anyone do that?
● To optimise code for performance

○ Less instructions = faster to execute = saving picoseconds!

● To write for edge cases not supported by compilers
○ eg. writing code to interact directly with a device (i.e. drivers)

● To learn how a compiled program executes
○ Primary reason in this course
○ Can be helpful when debugging
○ Also handy to identify security vulnerabilities and exploit binaries

● And sometimes, someone has to!
○ E.g. who’s going to make your compiler in the first place?

Andrew Taylor

● Once used from game consoles to supercomputers

○ Still used in routers and TVs

● Considerable learning resources available

● Inspired many other ISAs

○ If you know MIPS, you can easily branch to ARM, RISC-V, and others

● All ISAs have tradeoffs

○ Some focus on performance and special features

● MIPS is “simple” yet powerful - good foundation for knowledge

So why “MIPS”?

21

Andrew Taylor

More about MIPS

22

Andrew Taylor

● 32 bits long
● Specify:

○ An operation
■ (The thing to do)

○ 0 or more operands
■ (The thing to do it over)

● For example:

What do MIPS instructions look like?

23

00100001000010010000000000001100

addi $t1, $t0, 12

Andrew Taylor

● True (probably).
● We can’t run our MIPS instructions directly on x86_64/ARM.
● But, we can emulate them using mipsy
● recreates the behaviour of a real MIPS CPU

○ written by Zac* (past course admin, now graduated/lecturing COMP6991)
○ can download on your own machine: https://github.com/insou22/mipsy/
○ comes with a command-line interface to run in your terminal

● mipsy_web runs entirely in your browser
○ by Shrey*, on course website: https://cgi.cse.unsw.edu.au/~cs1521/mipsy

● vscode extension
○ written by Xavier 🎉 - can download the ‘mipsy editor features’ extension

“But I don’t have a MIPS CPU!”

24
* some contributions from Josh Harcombe, Dylan Brotherston and Abiram

https://github.com/insou22/mipsy/
https://cgi.cse.unsw.edu.au/~cs1521/mipsy

Andrew Taylor

Can we write some MIPS?

25

Andrew Taylor

Soon™

26

Andrew Taylor

● Most CPU architectures perform operations over registers

● They are part of the processor itself, not the memory

● Speed advantages:

○ Memory is fast, but not as fast as the CPU

○ Caches store some memory for faster access

■ Usually not as fast as registers!

● Simplifies processor design considerably

All about registers

27

Andrew Taylor

● MIPS specifies 32 general-purpose registers

○ 32-bits each, same size as a typical C integer - coincidence?

○ Floating point registers (not used in COMP1521)

○ Hi/Lo special registers for multiply and divide (not important in this course)

○ Program counter

■ Keeps track of which instruction to fetch and execute next

■ Modified by branch and jump instructions

All about registers

28

Andrew Taylor

Registers

Almost all of our computations happen between registers!

Want to multiply 2 and 3 and store the result
Load 2 and 3 into registers:

li $t0, 2

li $t1, 3

And store the result:
mul $t2, $t0, $t1

Andrew Taylor

More about registers

30

Registers are denoted by a $ and can be referred to using a
number ($0…$31) or by symbolic names ($zero…$ra)

$zero ($0) is special!

● Always has the value 0 -> attempts to change it have no effect

$ra ($31) is also special!

● Directly affected by two instructions we use in Week 3

Andrew Taylor

More about registers

31

Can use the other 30 registers however we want, technically, but:
There are conventions to prevent utter chaos and madness

(Discussed more in next week’s tutorials and Week 3 lectures)

Andrew Taylor

More about registers

32

Convention says $t0 to $t9 can be
used however you want

Will also need $v0, $a0, $ra for
certain things at the moment

Should not need to use any other
registers (yet)

We will cover the other registers when we
talk about functions in Week 3

Andrew Taylor

Now let’s make something

33

Andrew Taylor

Our programs are useless

34

Andrew Taylor

● We mentioned these earlier

● System call ==

○ Hi system friend

○ Can you do this thing for me

○ Thanks

● What sort of things?

System calls

35

Andrew Taylor

● None of the instructions we have access to can interact with
the outside world (eg. printing, scanning)

● Instead, we request the operating system to perform these
tasks for us - this process is called a system call

● The operating system can access privileged instructions on the
CPU (eg. communicating to other devices)

● mipsy simulates a very basic operating system

● Will explore real system calls in the second half of the course

System calls

36

Andrew Taylor

We don’t use syscalls 8 and 12 much in COMP1521

Most input will be integers

Common mipsy syscalls

37

Andrew Taylor

More ✨advanced✨ syscalls

38

Probably only used for challenge exercises in COMP1521

Andrew Taylor

The system call workflow
● We specify which system call we want in $v0

○ eg. print_int is syscall 1:

● We specify arguments (if any)

● We transfer execution to the operating system

○ The OS will fulfil our request if it looks sane

● Some syscalls may return a value - check syscall table

li $v0, 1

li $a0, 42

syscall

Andrew Taylor

MIPS and mipsy documentation

Literally your best friend (it’ll even be there for you in the exam 🥺)

Andrew Taylor

Now we can say hello world

41

