COMP1521 24 T2 - Floating-Point Numbers

https://www.cse.unsw.edu.au/~cs1521/24T2/

Floating Point Numbers

- C has three floating point types
- float ... typically 32-bit (lower precision, narrower range)
- double ... typically 64-bit (higher precision, wider range)
- long double ... typically 128 -bits (but maybe only 80 bits used)
- Floating point constants, e.g: 3.141591.0e-9 are double
- Reminder: division of 2 ints in C yields an int.
- but division of double and int in C yields a double.

Floating Point Number - Output

```
double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d); // prints 0.571429
// prints in scientific notation
printf("%le\n", d); // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d); // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d); // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d); // prints 0.6

\section*{Fractions in different Bases}

The decimal fraction 0.75 means
- \(7^{*} 10^{-1}+5^{*} 10^{-2}=0.7+0.05=0.75\)
- or equivalently \(75 / 10^{2}=75 / 100=0.75\)

Similary 0b0.11 means
- \(1 * 2^{-1}+1 * 2^{-2}=0.5+0.25=0.75\)
- or equivalently \(3 / 2^{2}=3 / 4=0.75\)

Similarly 0x0.C means
- \(12^{\star} 16^{-1}=0.75\)
- or equivalently \(12 / 16^{1}=3 / 4=0.75\)

Note: We call the . a radix point rather than a decimal point when we are dealing with other bases.

\section*{Fractions in different Bases}

The algorithm to convert a decimal fraction to another base is:
- take the fractional component and multiply by the base
- the whole number becomes the next digit to the right of the radix point in our fraction.
- repeat this process until the fractional part becomes exhausted or we have sufficient digits
- this process is not guaranteed to terminate.

\section*{Converting Decimal Fractions to Binary}

For example if we want to convert 0.3125 to base 2
- 0.3125 * \(2=0.625\)
- 0.625 * \(2=1.25\)
- \(0.25 * 2=0.5\)
- 0.5 * \(2=1.0\)

Therefore \(0.3125=0 \mathrm{~b} 0.0101\)

\section*{Exercise 2: Fractions: Decimal \(\rightarrow\) Binary}

Convert the following decimal values into binary
- 12.625
- 0.1

\section*{Floating Point Numbers}
- can have fractional numbers in other bases, e.g.:110.101 \(1_{2}==6.625_{10}\)
- if we represent floating point numbers with a fixed small number of bits
- there are only a finite number of bit patterns
- can only represent a finite subset of reals
- almost all real values will have no exact representation
- value of arithmetic operations may be real with no exact representation
- we must use closest value which can be exactly represented
- this approximation introduces an error into our calculations
- often, does not matter
- sometimes ... can be disasterous

\section*{Fixed-Point Representation}
- fixed-point is a simple trick to represent fractional numbers as integers
- every value is multiplied by a particular constant, e.g. 1000 and stored as integer
- so if constant is 1000 , could represent 56.125 as an integer (56125)
- but not 3.141592
- usable for some problems, but not ideal
- used on small embedded processors without silicon floating point
- major limitation is only small range of values can be represented
- for example with 32 bits, and using 65536 ( \(2^{16}\) ) as constant
- 16 bits used for integer part
- 16 bits used for the fraction
- minimum \(2^{-16} \approx 0.000015\)
- maximum \(2^{15} \approx 32768\)
- you met scientific notation, e.g 6.0221515 * \(10^{\wedge} 23\) in physics or other science classes
- we can represent numbers on a computer in a similar way to scientific notation
- but using binary instead of base ten, e.g 10.6875
\(=1010.1011=1.0101011 * 2^{11_{2}}=(1+43 / 128) * 2^{3}=1.3359375 * 8=10.6875\)
- allows a much bigger range of values to be represented than fixed point
- using only 8 bits for the exponent, we can represent numbers from \(10^{-38}\).. \(10^{+38}\)
- using only 11 bits for the exponent, we can represent numbers from \(10^{-308}\).. \(10^{+308}\)
- leads to numbers close to zero having higher precision (more accurate) which is good

\section*{choosing which exponentional representation}
- exponent notation allows multiple representations for a single value
- e.g \(1.0101011 * 2^{11_{2}}=10.6875\) and \(10.101011 * 2^{10_{2}}==10.6875\)
- having multiple representations would make implementing arithmetic slower on CPU
- better to have only one representation (one bit pattern) representing a value
- decision - use representation with exactly one digit in front of decimal point
- use \(1.0101011 * 2^{11_{2}}\) not \(10.101011 * 2^{10_{2}}\) or \(1010.1011 * 2^{0_{2}}\)
- this is called normalization
- weird hack: as we are using binary the first digit must be a one we don't need to store it
- as we long we have a separate representation for zero
```

float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX);
printf("double
%2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_MAX);
source code for floating_types.c
\$./floating_types

float	4 bytes	$\mathrm{min}=1.17549 \mathrm{e}-38$	$\max =3.40282 \mathrm{e}+38$
ouble	8 bytes	$\min =2.22507 e-308$	$\max =1.79769 \mathrm{e}+308$
	16 bytes	$m i n=3.3621 e-4932$	$\max =1.18973 \mathrm{e}+4$

```
- 1970s Intel building microprocessors (single-chip CPUs)
- 1976 Intel developing coprocessor (separate chip) for floating-point arithmetic
- Intel asked William Kahan, University of California to design format
- other manufacturers didn't want to be left out
- IEEE 754 standard working group formed
- Kahan and others produced well-designed robust specification
- accepted by manufacturers who begin using it for new architectures
- IEEE 754 standard released in 1985 (update to standard in 2008)
- today, almost all computers use IEEE 754
- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)
- IEEE 754 representation has 3 parts: sign, fraction and exponent
- numbers have form sign fraction \(* 2^{\text {exponent }}\), where sign is +/-
- fraction always has 1 digit before decimal point (normalized)
- exponent is stored as positive number by adding constant value (bias)


\section*{Floating Point Numbers}

Example of normalising the fraction part in binary:
- 1010.1011 is normalized as \(1.0101011 * 2^{011}\)
\(\cdot 1010.1011=10+11 / 16=10.6875\)
\(\cdot 1.0101011 * 2^{011}=(1+43 / 128) * 2^{3}=1.3359375 * 8=10.6875\)
The normalised fraction part always has 1 before the decimal point.
Example of determining the exponent in binary:
- if exponent is 8 -bits, then the bias \(=2^{8-1}-1=127\)
- valid bit patterns for exponent are 00000001 .. 11111110
- these correspond to exponent values of -126 .. 127

\section*{Floating Point Numbers}
```

Example (single-precision):
150.75 = 10010110.11
// normalise fraction, compute exponent
=1.001011011\times2 2
// sign bit = 0
// exponent = 10000110
// fraction = 001011011000000000000000
= 010000110001011011000000000000000

```

\section*{Distribution of Floating Point Numbers}
- floating point numbers not evenly distributed
- representations get further apart as values get bigger
- this works well for most calculations
- but can cause weird bugs
- double (IEEE 75464 bit) has 52-bit fractions so:
- between \(2^{n}\) and \(2^{n+1}\) there are \(2^{52}\) doubles evenly spaced - e.g. in the interval \(2^{-42}\) and \(2^{-43}\) there are \(2^{52}\) doubles
- and in the interval between 1 and 2 there are \(2^{52}\) doubles
- and in the interval between \(2^{42}\) and \(2^{43}\) there are \(2^{52}\)
- near 0.001 - doubles are about 0.0000000000000000002 apart
- near 1000 - doubles are about 0.0000000000002 apart
- near 1000000000000000 - doubles are about 0.25 apart
- above \(2^{53}\) - doubles are more than 1 apart

\section*{IEEE-754 Single Precision example: 0.15625}
```

0.15625 is represented in IEEE-754 single-precision by these bits:
00111110001000000000000000000000
sign | exponent | fraction
0 | 01111100 | 01000000000000000000000
sign bit = 0
sign = +
raw exponent = 01111100 binary
= 124 decimal
actual exponent = 124 - exponent_bias
= 124 - 127
= -3
number = +1.01000000000000000000000 binary * 2**-3
= 1.25 decimal * 2**-3
= 1.25 * 0.125
= 0.15625

```

\section*{IEEE-754 Single Precision example: -0.125}
```

\$./explain_float_representation -0.125
-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000
sign | exponent | fraction
1 | 01111100 | 00000000000000000000000
sign bit = 1
sign = -
raw exponent = 01111100 binary
= 124 decimal
actual exponent = 124 - exponent_bias
= 124 - 127
= -3
number = -1.00000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125

```

\section*{IEEE-754 Single Precision example: 150.75}
```

\$./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000
sign | exponent | fraction
0 | 10000110 | 00101101100000000000000
sign bit = 0
sign = +
raw exponent = 10000110 binary
= 134 decimal
actual exponent = 134 - exponent_bias
= 134 - 127
= 7
number = +1.00101101100000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= 150.75

```

\section*{IEEE-754 Single Precision example: -96.125}
```

\$./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
11000010110000000100000000000000
sign | exponent | fraction
1 | 10000101 | 10000000100000000000000
sign bit = 1
sign = -
raw exponent = 10000101 binary
= 133 decimal
actual exponent = 133 - exponent_bias
= 133-127
= 6
number = -1.10000000100000000000000 binary * 2**6
= -1.50195 decimal * 2**6
= -1.50195 * 64
= -96.125

```
```

\$./explain_float_representation 00111101110011001100110011001101
sign bit = 0
sign = +
raw exponent = 01111011 binary
= 123 decimal
actual exponent = 123 - exponent_bias
= 123-127
= -4
number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1

```

\section*{infinity.c: exploring infinity}
- IEEE 754 has a representation for +/- infinity
- propagates sensibly through calculations
double \(x=1.0 / 0.0\);
printf("\%lf\n", x); //prints inf
printf("\%lf\n", -x); //prints -inf
printf("\%lf\n", x - 1); // prints inf
printf("\%lf\n", 2 * atan(x)); // prints 3.141593
printf("\%d\n", \(42<x)\); // prints 1 (true)
printf("\%d\n", x == INFINITY); // prints 1 (true)

\section*{nan.c: handling errors robustly}
- C (IEEE-754) has a representation for invalid results:
- NaN (not a number)
- ensures errors propagates sensibly through calculations
```

double x = 0.0/0.0;

```
printf("\%lf\n", x); //prints nan
printf("\%lf\n", x - 1); // prints nan
printf("\%d\n", x == x); // prints 0 (false)
printf("\%d\n", isnan(x)); // prints 1 (true)
source code for nan.c
inf is represented in IEEE-754 single-precision by these bits:
01111111100000000000000000000000
sign | exponent | fraction
    \(0|11111111| 00000000000000000000000\)
sign bit \(=0\)
sign = +
raw exponent \(=11111111\) binary
    = 255 decimal
number \(=+i n f\)
```

\$./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
= 255 decimal
number = NaN
source code for explain_float_representation.c

```

\section*{Consequences of most reals not having exact representations}
```

double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) { // better would be fabs(b) > 0.000001
printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16

```
source code for double_imprecision.c
- do not use == and != with floating point values
- instead check if values are close

\section*{Consequences of most reals not having exact representations}
```

double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.11022e-16
printf("%g\n", x * x); // prints 1.21e-16

```

\section*{Another reason not to use == with floating point values}
```

if (d == d) {
printf("d == d is true\n");
} else {
// will be executed if d is a NaN
printf("d == d is not true\n");
}
if (d == d + 1) {
// may be executed if d is large
// because closest possible representation for d + 1
// is also closest possible representation for d
printf("d == d + 1 is true\n");
} else {
printf("d == d + 1 is false\n");
}

Another reason not to use == with floating point values

\$ dcc double_not_always.c -o double_not_always
\$./double_not_always 42.3
$\mathrm{d}=42.3$
$\mathrm{d}=\mathrm{d}$ is true
$d==d+1$ is false
\$./double_not_always 4200000000000000000
$\mathrm{d}=4.2 \mathrm{e}+18$
$\mathrm{d}==\mathrm{d}$ is true
$d==d+1$ is true
\$./double_not_always NaN
d = nan
$\mathrm{d}==\mathrm{d}$ is not true
$d==d+1$ is false
because closest possible representation for $\mathrm{d}+1$ is also closest possible representation for d source code for double_not_always.c

Consequences of most reals not having exact representations

```
// loop looks to print }10\mathrm{ numbers but actually never terminates
double d = 9007199254740990;
while (d < 9007199254741000) {
    printf("%lf\n", d); // always prints 9007199254740992.000000
    // 9007199254740993 can not be represented as a double
    // closest double is 9007199254740992.0
    // so 9007199254740992.0 + 1 = 9007199254740992.0
    d = d + 1;
}
```

- 9007199254740993 is $2^{53}+1$
it is smallest integer which can not be represented exactly as a double
- The closest double to 9007199254740993 is 9007199254740992.0
- aside: 9007199254740993 can not be represented by a int32_t
it can be represented by int64_t

Exercise: Floating point \rightarrow Decimal

Convert the following floating point numbers to decimal.
Assume that they are in IEEE 754 single-precision format.
01000000011000000000000000000000

1011111010000000000000000000000

