Floating Point Numbers

- C has three floating point types
 - `float` ... typically 32-bit (lower precision, narrower range)
 - `double` ... typically 64-bit (higher precision, wider range)
 - `long double` ... typically 128-bits (but maybe only 80 bits used)

- Floating point constants, e.g.: `3.14159 1.0e-9` are `double`

- Reminder: division of 2 ints in C yields an int.
 - but division of double and int in C yields a double.
Fractions in different Bases

The decimal fraction 0.75 means

- \(7 \times 10^{-1} + 5 \times 10^{-2} = 0.7 + 0.05 = 0.75 \)
- or equivalently \(\frac{75}{102} = \frac{75}{100} = 0.75 \)

Similarly 0b0.11 means

- \(1 \times 2^{-1} + 1 \times 2^{-2} = 0.5 + 0.25 = 0.75 \)
- or equivalently \(\frac{3}{2^2} = \frac{3}{4} = 0.75 \)

Similarly 0x0.C means

- \(12 \times 16^{-1} = 0.75 \)
- or equivalently \(\frac{12}{16} = \frac{3}{4} = 0.75 \)

Note: We call the \(. \) a radix point rather than a decimal point when we are dealing with other bases.

The algorithm to convert a decimal fraction to another base is:

- take the fractional component and multiply by the base
- the whole number becomes the next digit to the right of the radix point in our fraction.
- repeat this process until the fractional part becomes exhausted or we have sufficient digits
- this process is not guaranteed to terminate.

Converting Decimal Fractions to Binary

For example if we want to convert 0.3125 to base 2

- \(0.3125 \times 2 = 0.625 \)
- \(0.625 \times 2 = 1.25 \)
- \(0.25 \times 2 = 0.5 \)
- \(0.5 \times 2 = 1.0 \)

Therefore 0.3125 = 0b0.0101
Exercise 2: Fractions: Decimal → Binary

Convert the following decimal values into binary

• 12.625
• 0.1

Floating Point Numbers

• can have fractional numbers in other bases, e.g. \(110.101_2 = 6.625_{10}\)
• if we represent floating point numbers with a fixed small number of bits
 • there are only a finite number of bit patterns
 • can only represent a finite subset of reals
• almost all real values will have no exact representation
• value of arithmetic operations may be real with no exact representation
• we must use closest value which can be exactly represented
• this approximation introduces an error into our calculations
• often, does not matter
• sometimes ... can be disastrous

Fixed-Point Representation

• fixed-point is a simple trick to represent fractional numbers as integers
 • every value is multiplied by a particular constant, e.g. 1000 and stored as integer
 • so if constant is 1000, could represent 56.125 as an integer (56125)
 • but not 3.141592
• usable for some problems, but not ideal
• used on small embedded processors without silicon floating point
• major limitation is only small range of values can be represented
 • for example with 32 bits, and using 65536 (\(2^{16}\)) as constant
 • 16 bits used for integer part
 • 16 bits used for the fraction
 • minimum \(2^{-16} \approx 0.000015\)
 • maximum \(2^{15} \approx 32768\)
you met scientific notation, e.g. 6.0221515×10^{23} in physics or other science classes

we can represent numbers on a computer in a similar way to scientific notation

but using binary instead of base ten, e.g. 10.6875

$$1010.1011 = 1.0101011 \times 2^{11} = (1 + 43/128) \times 2^{3} = 1.3359375 \times 8 = 10.6875$$

allows a much bigger range of values to be represented than fixed point

using only 8 bits for the exponent, we can represent numbers from 10^{-38} to 10^{+38}

using only 11 bits for the exponent, we can represent numbers from 10^{-308} to 10^{+308}

leads to numbers close to zero having higher precision (more accurate) which is good

• exponent notation allows multiple representations for a single value
 • e.g. 1.0101011×2^{11} vs 10.101011×2^{10} vs 1010.1011×2^{0}

• having multiple representations would make implementing arithmetic slower on CPU

• better to have only one representation (one bit pattern) representing a value

• decision - use representation with exactly one digit in front of decimal point
 • use 1.0101011×2^{11} not 10.101011×2^{10} or 1010.1011×2^{0}
 • this is called normalization

• weird hack: as we are using binary the first digit must be a one we don’t need to store it
 • as we long we have a separate representation for zero

- exponentional representation - a better approach

choosing which exponentional representation

floating_types.c - print characteristics of floating point types

```c
float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_MAX);
```

source code for floating_types.c

```bash
$ ./floating_types
float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
```

https://www.cse.unsw.edu.au/~cs1521/24T2/ COMP1521 24T2 — Floating-Point Numbers 11 / 33
IEEE 754 - history

- 1970s Intel building microprocessors (single-chip CPUs)
- 1976 Intel developing coprocessor (separate chip) for floating-point arithmetic
- Intel asked William Kahan, University of California to design format
- other manufacturers didn’t want to be left out
- IEEE 754 standard working group formed
- Kahan and others produced well-designed robust specification
- accepted by manufacturers who begin using it for new architectures
- IEEE 754 standard released in 1985 (update to standard in 2008)
- today, almost all computers use IEEE 754

IEEE 754 standard

- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)
- IEEE 754 representation has 3 parts: sign, fraction and exponent
- numbers have form \(sign \) \(fraction \) \(\times 2^{exponent} \), where \(sign \) is +/-
- \(fraction \) always has 1 digit before decimal point (normalized)
- \(exponent \) is stored as positive number by adding constant value (bias)

Internal structure of floating point values

![Floating Point Value Structure](image)
Example of normalising the fraction part in binary:

- \(1010.1011\) is normalized as \(1.0101011 \times 2^{0.11}\)
- \(1010.1011 = 10 + 11/16 = 10.6875\)
- \(1.0101011 \times 2^{0.11} = (1 + 43/128) \times 2^{3} = 1.3359375 \times 8 = 10.6875\)

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

- if exponent is 8-bits, then the bias = \(2^{8-1} - 1 = 127\)
- valid bit patterns for exponent are 00000001 .. 11111110
- these correspond to exponent values of -126 .. 127

Example (single-precision):

150.75 = 10010110.11

// normalise fraction, compute exponent
= 1.001011011 \times 2^{7}

// sign bit = 0
// exponent = 10000110
// fraction = 001011011000000000000000
= 01000011000101101100000000000000

Distribution of Floating Point Numbers

- floating point numbers not evenly distributed
- representations get further apart as values get bigger
 - this works well for most calculations
 - but can cause weird bugs
- double (IEEE 754 64 bit) has 52-bit fractions so:
 - between \(2^n\) and \(2^{n+1}\) there are \(2^{52}\) doubles evenly spaced
 - e.g. in the interval \(2^{-52}\) and \(2^{-41}\) there are \(2^{52}\) doubles
 - and in the interval between 1 and 2 there are \(2^{52}\) doubles
 - and in the interval between \(2^n\) and \(2^1\) there are \(2^{52}\)
 - near 0.001 - doubles are about 0.0000000000000002 apart
 - near 1000 - doubles are about 0.0000000000002 apart
 - near 1000000000000000 - doubles are about 0.25 apart
 - above \(2^{53}\) - doubles are more than 1 apart
IEEE-754 Single Precision example: 0.15625

0.15625 is represented in IEEE-754 single-precision by these bits:

```plaintext
01111100001000000000000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01111100</td>
<td>010000000000000000000000</td>
</tr>
</tbody>
</table>

- **sign bit** = 0
- **raw exponent** = 01111100 binary = 124 decimal
- **actual exponent** = 124 - exponent_bias = 124 - 127 = -3

- **number** = +1.01000000000000000000000 binary * 2**-3
 - 1.25 decimal * 2**-3
 - 1.25 * 0.125
 - 0.15625

IEEE-754 Single Precision example: -0.125

$./explain_float_representation -0.125

-0.125 is represented as a float (IEEE-754 single-precision) by these bits:

```plaintext
10111110000000000000000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01111100</td>
<td>000000000000000000000000</td>
</tr>
</tbody>
</table>

- **sign bit** = 1
- **raw exponent** = 01111100 binary = 124 decimal
- **actual exponent** = 124 - exponent_bias = 124 - 127 = -3

- **number** = -1.00000000000000000000000 binary * 2**-3
 - -1 decimal * 2**-3
 - -1 * 0.125
 - -0.125

IEEE-754 Single Precision example: 150.75

$./explain_float_representation 150.75

150.75 is represented in IEEE-754 single-precision by these bits:

```plaintext
01000011000101101100000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000110</td>
<td>001011011000000000000000</td>
</tr>
</tbody>
</table>

- **sign bit** = 0
- **raw exponent** = 10000110 binary = 134 decimal
- **actual exponent** = 134 - exponent_bias = 134 - 127 = 7

- **number** = +1.00101101100000000000000000000000 binary * 2**7
 - 1.17773 decimal * 2**7
 - 1.17773 * 128
 - 150.75
$./explain_float_representation -96.125

-96.125 is represented in IEEE-754 single-precision by these bits:
11000010110000000100000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000101</td>
<td>10000000100000000000000</td>
</tr>
</tbody>
</table>

sign = 1

raw exponent = 10000101 binary
= 133 decimal

actual exponent = 133 - exponent_bias
= 133 - 127
= 6

number = -1.10000000100000000000000 binary * 2**6
= -1.50195 decimal * 2**6
= -1.50195 * 64
= -96.125

$./explain_float_representation 00111101110011001100110011001101

sign bit = 0

sign = +

raw exponent = 0111011 binary
= 123 decimal

actual exponent = 123 - exponent_bias
= 123 - 127
= -4

number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1

infinity.c: exploring infinity

- IEEE 754 has a representation for +/- infinity
- propagates sensibly through calculations

double x = 1.0/0.0;
printf("%lf\n", x); // prints inf
printf("%lf\n", -x); // prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
nan.c: handling errors robustly

• C (IEEE-754) has a representation for invalid results:
 • NaN (not a number)
 • ensures errors propagates sensibly through calculations

```c
double x = 0.0/0.0;
printf("%lf\n", x); // prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

source code for nan.c

https://www.cse.unsw.edu.au/~cs1521/24T2/ COMP1521 24T2 — Floating-Point Numbers 25 / 33

IEEE-754 Single Precision example: inf

```c
$ ./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111100000000000000000000000
  sign | exponent | fraction
    0 | 11111111 | 000000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
  = 255 decimal
number = +inf
```

source code for explain_float_representation.c

https://www.cse.unsw.edu.au/~cs1521/24T2/ COMP1521 24T2 — Floating-Point Numbers 26 / 33

IEEE-754 Single Precision exploring bit patterns #2

```c
$ ./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
  = 255 decimal
number = NaN
```

source code for explain_float_representation.c

https://www.cse.unsw.edu.au/~cs1521/24T2/ COMP1521 24T2 — Floating-Point Numbers 27 / 33
Consequences of most reals not having exact representations

double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) {
 // better would be fabs(b) > 0.000001
 printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g \n", b); // prints 1.11022e-16

Consequences of most reals not having exact representations

double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.11022e-16
printf("%g\n", x * x); // prints 1.21e-16

Another reason not to use == with floating point values

if (d == d) {
 printf("d == d is true\n");
} else {
 // will be executed if d is a NaN
 printf("d == d is not true\n");
}
if (d == d + 1) {
 // may be executed if d is large
 // because closest possible representation for d + 1
 // is also closest possible representation for d
 printf("d == d + 1 is true\n");
} else {
 printf("d == d + 1 is false\n");
}
Another reason not to use == with floating point values

```c
$ dcc double_not_always.c -o double_not_always
$ ./double_not_always 42.3
d = 42.3
d == d is true
d == d + 1 is false
$ ./double_not_always 4200000000000000000
d = 4.2e+18
d == d is true
d == d + 1 is true
$ ./double_not_always NaN
d = nan
d == d is not true
d == d + 1 is false
```

because closest possible representation for d + 1 is also closest possible representation for d

source code for double_not_always.c

Consequences of most reals not having exact representations

```c
// loop looks to print 10 numbers but actually never terminates
double d = 9007199254740990;
while (d < 9007199254741000) {
    printf("%lf\n", d); // always prints 9007199254740992.000000
    // 9007199254740993 cannot be represented as a double
    // closest double is 9007199254740992.0
    // so 9007199254740992.0 + 1 = 9007199254740992.0
    d = d + 1;
}
```

source code for double_disasters.c

- 9007199254740993 is $2^{53} + 1$
 - it is smallest integer which cannot be represented exactly as a double
- The closest double to 9007199254740993 is 9007199254740992.0
- aside: 9007199254740993 cannot be represented by a int32_t
 - it can be represented by int64_t

Exercise: Floating point → Decimal

Convert the following floating point numbers to decimal.

Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000