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Question 1: 

Recap Exercise
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Quick revision on integer representation

● All data on a computer is represented in binary (base-2)

● Each binary digit (or bit) can either be a 0 or 1

● Computers use bytes (groups of 8 bits) as their fundamental 
units of storage
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Quick revision on integer representation

● Information = data + context
○ For example, take the following byte of data:

01001001
● In a numeric context*: this represents 73

What about a group of 4 bytes?

● Could be an integer

● Could be an array of 4 characters

* interpreting it as an unsigned or signed (2’s complement) value
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● Positive integers are represented in raw binary

○ eg 36410 = 1011011002

● + and - integers are represented in 2’s complement

○ eg -74510 = 111111111111111111111101000101112

● Floating point numbers are represented in IEEE 754

○ eg 3.1415910 = 01000000010010010000111111010000

Some more number representations
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● Text is arguably the most important data type

○ It can represent all other data types via serialization

■ E.g. JSON, XML, YAML, etc…

● Text == strings made of a sequence of characters

So how should we represent text?
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● A list of characters == a string

○ In C and MIPS

● Other languages can have more complex “wrappers”

○ But fundamentally strings are always just lists of characters

● Modern computers use something called “UNICODE” to 
represent the individual characters!

● But other things came before…

So, how should we represent characters?
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• 1828: First electronic Telegraph system (Pavel Schilling)
• 1837: Cooke and Wheatstone Telegraph
• 1844: Morse Code
• 1897: First radio transmission
many other encoding schemes that we won’t cover
• 1943: First (modern) computer (Colossus)
• 1963: ASCII
• 1970s: Extended ASCII
• 1963: EBCDIC
• 1987: Unicode

A timeline of character representations
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Note, this timeline (and lecture) is every western-centric.

There are many other encoding schemes that we won’t cover!

East Asian languages specifically have very cool encodings.

● they have a very different way of representing language 
● resulting in huge alphabet sizes
● Cool things you should look up: 

○ (1980) The Chinese Character Code for Information Interchange
○ (1980) The GB 2312 standard
○ (1984) The Big5 Encodings
○ (1990s) Windows code pages 874 (Thai), 932 (Japan), 936 (Chinese)...

(disclaimer to that timeline)
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Cooke and Wheatstone Telegraph (1830s)
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● Original: Five needles used to represent 20 chars,
○ Intersection of two deflected needles represent the selection
○ Only 20 possible characters (no C, J, Q, U, X or Z)

● Technical limitations
○ Entire system forms a single circuit
○ One needle is + voltage, other is -
○ Each needle needed its own wire

■ 5 needles 1km apart = 5km of wire!
■ Later improvements included a common ground

● Later, fewer needles were used
○ Wire is expensive and often breaks
○ Most common implementation had only 2 needles used in sequence

Cooke and Wheatstone: Good & Bad
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● Can be thought of as a 5-trit “ternary” encoding
● “Hello” would be:

● This isn’t very efficient!
● We have 35 possible values (243), but we only use 20! (8.23%)!

Example encoding using this telegraph
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Letter Needles Ternary Decimal

H +-... 120003 13510

E +.-.. 102003 9910

L …+- 000123 510

L …+- 000123 510

O ..-+. 002103 2110
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A good takeaway:

Character encodings can be done by a lookup table

Not a mathematical expression (e.g. binary 2’s complement)

Cooke and Wheatstone Telegraph
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Morse Code (1844)
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“Hello” would be:

Uh oh, both “H” and “E” have the same decimal value!

Morse code is a variable length encoding, where “0” and “0000” 
are different!

Morse code: An example
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Letter Morse Binary? Decimal?

H …. 00002 010

E . 02 010

L .-.. 01002 410

L .-.. 01002 410

O — 1112 710



COMP1521

● Has a time component
○ Unlike Cooke and Wheatstone Telegraph with a constant 5 trits
○ Morse sends dots and dashes sequentially

■ Both dots and dashes are “1” values electronically, but they are different lengths
● Complicates binary representations!

● Morse Code has many versions
○ International Morse Code was standardized in 1848
○ Hasn’t changed since then!
○ Standard = memorizable = easy to learn, fast to use
○ But, hard to change and/or improve

Morse Code: Good & Bad
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● The variable length encoding gives other benefits!
● Length of each character is based on frequency of letter
● E is most common letter in English, so it has shortest encoding

○ dot

● Q is the least common letter, so it has longest encoding
○ dash dash dot dash

Morse Code: Good & Bad
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Other Morse encodings…
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● Standardization is good
○ It allows for communication between different people in different places

● Variable length encodings are efficient
○ Both in terms of data needed to represent each character

■ And the amount of time needed to send the data!
■ In Morse, it allows for experts to send messages at very high speeds

○ But they are more complex

Morse Code lessons
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ASCII: 1963
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● American Standard Code for Information Interchange

○ created by the American Standards Association (ASA)

○ later became the American National Standards Institute (ANSI)

■ (who were the first organization to standardize the C programming language)

● 7-bit (fixed-size) encoding

○ 128 possible values

● all of the values are used

● One of the most common encodings in computing

○ One of the most influential encodings in computing

ASCII
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ASCII is split into “sticks” which were blocks of 16 characters

● the first 2 sticks are control characters

● the space character is the first character in the 3rd stick

○ as it is both a control character and a printable character

○ plus this made sorting stings by ASCII value much more intuitive

● for similar reasons, the next several characters are commonly 

used as “word separators”

● the 2-5 sticks are a usable alphabet by themselves

ASCII: Layout
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● The digits per placed in such a way that their value is 0b011 

followed by the digits binary value

○ This allows for fast conversion between ASCII and binary numbers

● Uppercase and Lowercase letters are placed such that:

○ the only difference between them is the 6th bit

○ This allows for very fast case conversion and case insensitive string 

comparison

ASCII: Layout (cont.)
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ASCII_case_insensitive.c

ASCII Demo
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< and > 60 and 62, so < + 2 = >

[ and ] 91 and 93, so [ + 2 = ]

{ and } 123 and 125, so { + 2 = }

( and ) 40 and 41, so ( + 2 = *

WHY!?!

ASCII: Layout (whoops)
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● When ASCII was created, computers didn’t use monitors.

● Instead, computers had teletypes, a typewriter like device

● This could be controlled by a human (for input) or a computer 

(for output)

● Because they were physical devices, they had to be physically 

controlled…

● thus the control characters.

ASCII: Control Characters

26



COMP1521

ASCII: TTY
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ASCII: DEL?
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● Punch cards were used to store data (some time ago)

● The problem was that storing data on punch cards made a 

physical change to the card

● So deleting data from a punch card was not possible!

ASCII: DEL (cont.)
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● Solution: a special character called DEL

● DEL is encoded as 0b0111111 (127) (all bits set)

● So on a punch card… DEL would be represented as a hole in 

all 7 columns - i.e., punch out every bit!

● This makes what was previously stored on the card 

unrecognizable

ASCII: DEL (cont.)
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● On a modern computer, ^C is used to send a SIGINT signal to 
the current process

● This effectively stops the current process (if it is well behaved)
● But why is it ^C?
● On a teletype machine, ^C is how you would input the 4th 

control character
○ ^@, ^A, ^B, ^C (this makes sense - the keys are in alphabetical order)

● What is the 4th control character?
○ ETX (End of Text)
○ This tells the teletype machine to stop receiving data
○ Thus ending the current process

ASCII: ^C
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● ASCII works well for English (American English)

● And is fairly decent for British English.

○ Unless you use the pound sign (£)

● But it doesn’t work well for other european languages

○ and doesn’t work at all for other languages (like Asian languages).

● The solution (for other European languages at least) was to use 

the 8th bit to extend the encoding.

Extended ASCII (Code Pages)
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EASCII is not standardized! So there are many different encodings

● All legitimate “Extended ASCII”
● KOI-8: Russian encoding 
● ISO 8859-1 (aka Latin-1): Western European encoding
● Code page 899: DOS mathematical
● symbols etc…

(wikipedia lists 100s of different Code Pages)

Extended ASCII
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When a byte string is decoded from the wrong encoding, or when 
two byte strings encoded to different encodings are concatenated, 
a program will display mojibake.

Examples:

Mojibake
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Mojibake (cont.)

35



COMP1521

Mojibake IRL
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EBCDIC
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An IBM specific encoding

Many different codepages 
(figure shows invariant subset)

Quite incompatible with ASCII!
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UNICODE is maintained by the Unicode Consortium

The goal of UNICODE is to create a single encoding that can 
represent all of the characters in all of the languages in the world.

There are currently 149,878 characters in UNICODE.

https://en.wikipedia.org/wiki/List_of_Unicode_characters

UNICODE
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Because UNICODE is so large, it has a very structured layout to try 
and make it more intuitive

The Unicode Standard defines a codespace, (ie “The encoding”)

● The Unicode codespace ranges from 0x0000 to 0x10FFFF

Where each hex value represents a code point (ie a character)

● giving a total of 1,114,112 code points, (293,168 are currently 
assigned) - approximately 25%.

UNICODE: Layout
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These 1.1 million code points are split into 17 planes

● Plane 0 - 0x0000 - 0xFFFF
○ the Basic Multilingual Plane (BMP)
○ contains the vast majority of characters for almost all modern languages

● Plane 1 -  0x10000 - 0x1FFFF
○ the Supplementary Multilingual Plane (SMP)

● Plane 2 - 0x20000 - 0x2FFFF
○ the Supplementary Ideographic Plane (SIP)

● Plane 3 -  0x30000 - 0x3FFFF 
○ the Tertiary Ideographic Plane (TIP)

UNICODE: Layout (cont.)
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These 1.1 million code points are split into 17 planes

● Planes 4-13 - 0x40000 - 0xDFFFF 
○ Unassigned Planes

● Plane 14 -  0xE0000 - 0xEFFFF 
○ the Supplementary Special-purpose Plane (SSP)

● Planes 15-16 0xF0000 - 0x10FFFF 
○ the Private Use Planes (SPUA-A/B)
○ private use == they are assigned but not to any specific character

UNICODE: Layout (cont.)
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Within each plane, the code points are split into blocks

Blocks are not a standard size, but are always multiples of 16 and 
usually multiples of 128

Blocks are used to roughly group characters by their purpose

UNICODE: Layout (cont.) (cont.)
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Plane 0 contains the following blocks:
• Basic Latin (0x0000 - 0x007F)
• Latin-1 Supplement (0x0080 - 0x00FF)
• Latin Extended-A (0x0100 - 0x017F)
• Latin Extended-B (0x0180 - 0x024F)
…

• Greek and Coptic (0x0370 - 0x03FF)
…

• Mongolian (0x1800 - 0x18AF)
…

• Symbols and Punctuation (0x2000 - 0x206F)

UNICODE: Layout (cont.) (cont.)
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Plane 1 mostly contains historical characters and notation symbols

• Hieroglyphs e.g. 𓀃     𓀃     𓀃     𓀃

• musical symbols e.g. 𝄠     𝄡     𝄢     𝄣
• Emoji e.g. 😀 😇 😨 😴
Plane 2 is almost entirely used by the CJK characters

Plane 3 is mostly unused but contains additional CJK characters

Plane 15 contains a few misc characters

UNICODE: Layout (cont.) (cont.) (cont.)
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Every UNICODE character also has a major and minor category

The major category is one of the following:

• Letter
• Mark
• Number
• Punctuation
• Symbol
• Separator
• Other
And the minor category depending on the major category.

UNICODE: Layout (cont.) (cont.) (cont.) (cont.)
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The largest category is Letter - other which contains 131,612 out 
of 149,251 characters

● almost 90%!!
● This is because essentially all of the CJK characters are in this 

category
○ and there are just so many of them compared to any other category!

UNICODE: Layout (cont.) (cont.) (cont.) (cont.)
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● How do we store UNICODE characters?
● The easiest way is to use the smallest power of 2 that can 

represent all of the code points in UNICODE.
● As the code points range from 0x0000 to 0x10FFFF
● we need at least 21 bits to represent them.
● So we can use 32 bits to represent a single character.
● UTF-32 is a fixed width encoding that uses 32 bits to represent 

each character.
● Simply take the UNICODE code point and store it in 32 bits.

UTF-32
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How do we store UNICODE characters?

The easiest = use the smallest power of 2 that can represent all of 
the code points in UNICODE.

● The code points range from 0x0000 to 0x10FFFF…
○ we need at least 21 bits to represent them.

So we can use 32 bits to represent a single character.

UTF-32 is a fixed width encoding that uses 32 bits for each char.

● Simply take the UNICODE code point and store it in 32 bits.

UTF-32: Example

49



COMP1521

A → U+0041 → 0b00000000000000000000000001000001

€ → U+20AC → 0b00000000000000000010000010101100

字 → U+5B57 → 0b00000000000000000101101101010111

😀 → U+1F600 → 0b00000000000000011111011000000000

Tag Digit Two → U+E0032 → 0b00000000000011100000000000110010

U+XXXX is the representation of a raw UNICODE code point

● code points are always at least 4 hex digits.
● The 5th digit is the plane number
● or the 0th plane (BMP) if there is no 5th digit

UTF-32: Example
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Even if we are representing the character U+10FFFF (the largest 
code point) there would still be 11 wasted bits

● And the vast majority of characters used are in plane 0 (BMP)
○ only using 16 bits to represent them, giving 16 wasted bits per character
○ The vast majority of characters used in the BMP are in block 1 (ASCII)

■ using only 7 bits to represent them giving 25 wasted bits per character!!

UTF-32: is very very inefficient
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“Hello 思语”  ==
0x00000068
0x00000065
0x0000006c
0x0000006c
0x0000006f
0x00000020
0x0000601D
0x00008BED

Look at all those leading zeros!!

UTF-32: is very very inefficient
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Take lesson from morse code → use variable width encoding

More common characters should use less bits

● Unicode already has common characters at the beginning
● The goal of UTF-8 is to store the fewest number of leading 0s

UTF-8
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● A single UTF-8 character can be anywhere from 1 to 4 bytes long

● All ASCII characters can be stored in 1 byte with zero wasted bits

● The entire BMP fits in 3 bytes, 8 bits more efficient than UTF-32

● The entire UNICODE character fits in 4 bytes, using exactly the 
same number of bits as UTF-32 in the worst case

UTF-8 Layout
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#bytes #bits Byte 1 Byte 2 Byte 3 Byte 4

1 7 0xxxxxxx - - -
2 11 110xxxxx 10xxxxxx - -

3 16 1110xxxx 10xxxxxx 10xxxxxx -
4 21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
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€ (U+20AC)

● Convert to UTF-32 (raw 32 bit representation of the code point)
● 0x000020AC
● 0b0000000000000000010000010101100

○ Look at all those leading zeros!
● remove leading 0s from the UTF-32 encoding
● 0b10000010101100
● Split into 6 bit chunks from right to left

Conversion to UTF-8 (1/2)
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€ (U+20AC)

● 0b 10 000010 101100
● Match with appropriate multi-byte encoding (in this case, 3 chunks)
● 0b 1110xxxx 10xxxxxx 10xxxxxx
● 0b       10   000010   101100
● Replace the x values with the appropriate bits (0 if none)
● 0b 11100010 10000010 10101100
● Translate to hex
● 0b 1110 0010 1000 0010 1010 1100
● 0x    E    2    8    2    A    C
● We saved a byte of storage! 😀

Conversion to UTF-8 (2/2)
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A → U+0041 → 0b01000001 → 0x41

€ → U+20AC → 0b10 000010 101100 
→ 0b11100010 10000010 10101100 
→ 0xE282AC

字 → U+5B57 → 0b101 101101 010111 
→ 0b11100101 10101101 10010111 
→ 0xE5AD97

😀 → U+1F600 → 0b 11111 011000 000000 
→ 0b11110000 10011111 10011000 10000000 
→ 0xF09F9880

UTF-8: More Examples
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“Hello 思语”  ==
0x68
0x65
0x6c
0x6c
0x6f
0x20
0xE6809D
0xE8AFAD

No more leading zeros!

UTF-8 - much more efficient
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● UTF-16 is a variable width encoding that uses 16 bits to 
represent each character.

● It’s a strange hybrid of UTF-8 and UTF-32
● Part of the BMP is reserved for “Surrogates”
● Surrogates are used by UTF-16 to represent characters outside 

of the BMP
● UTF-16 is mainly used by Windows and Java and Javascript
● UTF-16 also requires a “BOM” (Byte Order Mark) to determine 

the endianness

UTF-16
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● UTF-1
● UTF-7
● UTF-EBCDIC

Lesser used encodings
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Demo

hello_unicode.c

unicode_strings.c, unicode_strings.py

utf8_encode.c

utf8_strlen.c

Writing C that uses Unicode
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