
COMP1521

2024
Hammond Pearce

Mostly from Andrew’s slides

1

COMP1521 24T2 Lec11?

Text Encoding & Unicode

COMP1521

Question 1:

Recap Exercise

2

COMP1521

Quick revision on integer representation

● All data on a computer is represented in binary (base-2)

● Each binary digit (or bit) can either be a 0 or 1

● Computers use bytes (groups of 8 bits) as their fundamental
units of storage

COMP1521

Quick revision on integer representation

● Information = data + context
○ For example, take the following byte of data:

01001001
● In a numeric context*: this represents 73

What about a group of 4 bytes?

● Could be an integer

● Could be an array of 4 characters

* interpreting it as an unsigned or signed (2’s complement) value

COMP1521

● Positive integers are represented in raw binary

○ eg 36410 = 1011011002

● + and - integers are represented in 2’s complement

○ eg -74510 = 111111111111111111111101000101112

● Floating point numbers are represented in IEEE 754

○ eg 3.1415910 = 01000000010010010000111111010000

Some more number representations

5

COMP1521

● Text is arguably the most important data type

○ It can represent all other data types via serialization

■ E.g. JSON, XML, YAML, etc…

● Text == strings made of a sequence of characters

So how should we represent text?

6

COMP1521

● A list of characters == a string

○ In C and MIPS

● Other languages can have more complex “wrappers”

○ But fundamentally strings are always just lists of characters

● Modern computers use something called “UNICODE” to
represent the individual characters!

● But other things came before…

So, how should we represent characters?

7

COMP1521

• 1828: First electronic Telegraph system (Pavel Schilling)
• 1837: Cooke and Wheatstone Telegraph
• 1844: Morse Code
• 1897: First radio transmission
many other encoding schemes that we won’t cover
• 1943: First (modern) computer (Colossus)
• 1963: ASCII
• 1970s: Extended ASCII
• 1963: EBCDIC
• 1987: Unicode

A timeline of character representations

8

COMP1521

Note, this timeline (and lecture) is every western-centric.

There are many other encoding schemes that we won’t cover!

East Asian languages specifically have very cool encodings.

● they have a very different way of representing language
● resulting in huge alphabet sizes
● Cool things you should look up:

○ (1980) The Chinese Character Code for Information Interchange
○ (1980) The GB 2312 standard
○ (1984) The Big5 Encodings
○ (1990s) Windows code pages 874 (Thai), 932 (Japan), 936 (Chinese)...

(disclaimer to that timeline)

9

COMP1521

Cooke and Wheatstone Telegraph (1830s)

10

COMP1521

● Original: Five needles used to represent 20 chars,
○ Intersection of two deflected needles represent the selection
○ Only 20 possible characters (no C, J, Q, U, X or Z)

● Technical limitations
○ Entire system forms a single circuit
○ One needle is + voltage, other is -
○ Each needle needed its own wire

■ 5 needles 1km apart = 5km of wire!
■ Later improvements included a common ground

● Later, fewer needles were used
○ Wire is expensive and often breaks
○ Most common implementation had only 2 needles used in sequence

Cooke and Wheatstone: Good & Bad

11

COMP1521

● Can be thought of as a 5-trit “ternary” encoding
● “Hello” would be:

● This isn’t very efficient!
● We have 35 possible values (243), but we only use 20! (8.23%)!

Example encoding using this telegraph

12

Letter Needles Ternary Decimal

H +-... 120003 13510

E +.-.. 102003 9910

L …+- 000123 510

L …+- 000123 510

O ..-+. 002103 2110

COMP1521

A good takeaway:

Character encodings can be done by a lookup table

Not a mathematical expression (e.g. binary 2’s complement)

Cooke and Wheatstone Telegraph

13

COMP1521

Morse Code (1844)

14

COMP1521

“Hello” would be:

Uh oh, both “H” and “E” have the same decimal value!

Morse code is a variable length encoding, where “0” and “0000”
are different!

Morse code: An example

15

Letter Morse Binary? Decimal?

H …. 00002 010

E . 02 010

L .-.. 01002 410

L .-.. 01002 410

O — 1112 710

COMP1521

● Has a time component
○ Unlike Cooke and Wheatstone Telegraph with a constant 5 trits
○ Morse sends dots and dashes sequentially

■ Both dots and dashes are “1” values electronically, but they are different lengths
● Complicates binary representations!

● Morse Code has many versions
○ International Morse Code was standardized in 1848
○ Hasn’t changed since then!
○ Standard = memorizable = easy to learn, fast to use
○ But, hard to change and/or improve

Morse Code: Good & Bad

16

COMP1521

● The variable length encoding gives other benefits!
● Length of each character is based on frequency of letter
● E is most common letter in English, so it has shortest encoding

○ dot

● Q is the least common letter, so it has longest encoding
○ dash dash dot dash

Morse Code: Good & Bad

17

COMP1521

Other Morse encodings…

18

COMP1521

● Standardization is good
○ It allows for communication between different people in different places

● Variable length encodings are efficient
○ Both in terms of data needed to represent each character

■ And the amount of time needed to send the data!
■ In Morse, it allows for experts to send messages at very high speeds

○ But they are more complex

Morse Code lessons

19

COMP1521

ASCII: 1963

20

COMP1521

● American Standard Code for Information Interchange

○ created by the American Standards Association (ASA)

○ later became the American National Standards Institute (ANSI)

■ (who were the first organization to standardize the C programming language)

● 7-bit (fixed-size) encoding

○ 128 possible values

● all of the values are used

● One of the most common encodings in computing

○ One of the most influential encodings in computing

ASCII

21

COMP1521

ASCII is split into “sticks” which were blocks of 16 characters

● the first 2 sticks are control characters

● the space character is the first character in the 3rd stick

○ as it is both a control character and a printable character

○ plus this made sorting stings by ASCII value much more intuitive

● for similar reasons, the next several characters are commonly

used as “word separators”

● the 2-5 sticks are a usable alphabet by themselves

ASCII: Layout

22

COMP1521

● The digits per placed in such a way that their value is 0b011

followed by the digits binary value

○ This allows for fast conversion between ASCII and binary numbers

● Uppercase and Lowercase letters are placed such that:

○ the only difference between them is the 6th bit

○ This allows for very fast case conversion and case insensitive string

comparison

ASCII: Layout (cont.)

23

COMP1521

ASCII_case_insensitive.c

ASCII Demo

24

COMP1521

< and > 60 and 62, so < + 2 = >

[and] 91 and 93, so [+ 2 =]

{ and } 123 and 125, so { + 2 = }

(and) 40 and 41, so (+ 2 = *

WHY!?!

ASCII: Layout (whoops)

25

COMP1521

● When ASCII was created, computers didn’t use monitors.

● Instead, computers had teletypes, a typewriter like device

● This could be controlled by a human (for input) or a computer

(for output)

● Because they were physical devices, they had to be physically

controlled…

● thus the control characters.

ASCII: Control Characters

26

COMP1521

ASCII: TTY

27

COMP1521

ASCII: DEL?

28

COMP1521

● Punch cards were used to store data (some time ago)

● The problem was that storing data on punch cards made a

physical change to the card

● So deleting data from a punch card was not possible!

ASCII: DEL (cont.)

29

COMP1521

● Solution: a special character called DEL

● DEL is encoded as 0b0111111 (127) (all bits set)

● So on a punch card… DEL would be represented as a hole in

all 7 columns - i.e., punch out every bit!

● This makes what was previously stored on the card

unrecognizable

ASCII: DEL (cont.)

30

COMP1521

● On a modern computer, ^C is used to send a SIGINT signal to
the current process

● This effectively stops the current process (if it is well behaved)
● But why is it ^C?
● On a teletype machine, ^C is how you would input the 4th

control character
○ ^@, ^A, ^B, ^C (this makes sense - the keys are in alphabetical order)

● What is the 4th control character?
○ ETX (End of Text)
○ This tells the teletype machine to stop receiving data
○ Thus ending the current process

ASCII: ^C

31

COMP1521

● ASCII works well for English (American English)

● And is fairly decent for British English.

○ Unless you use the pound sign (£)

● But it doesn’t work well for other european languages

○ and doesn’t work at all for other languages (like Asian languages).

● The solution (for other European languages at least) was to use

the 8th bit to extend the encoding.

Extended ASCII (Code Pages)

32

COMP1521

EASCII is not standardized! So there are many different encodings

● All legitimate “Extended ASCII”
● KOI-8: Russian encoding
● ISO 8859-1 (aka Latin-1): Western European encoding
● Code page 899: DOS mathematical
● symbols etc…

(wikipedia lists 100s of different Code Pages)

Extended ASCII

33

COMP1521

When a byte string is decoded from the wrong encoding, or when
two byte strings encoded to different encodings are concatenated,
a program will display mojibake.

Examples:

Mojibake

34

COMP1521

Mojibake (cont.)

35

COMP1521

Mojibake IRL

36

COMP1521

EBCDIC

37

An IBM specific encoding

Many different codepages
(figure shows invariant subset)

Quite incompatible with ASCII!

COMP1521 38

COMP1521

UNICODE is maintained by the Unicode Consortium

The goal of UNICODE is to create a single encoding that can
represent all of the characters in all of the languages in the world.

There are currently 149,878 characters in UNICODE.

https://en.wikipedia.org/wiki/List_of_Unicode_characters

UNICODE

39

https://en.wikipedia.org/wiki/List_of_Unicode_characters

COMP1521

Because UNICODE is so large, it has a very structured layout to try
and make it more intuitive

The Unicode Standard defines a codespace, (ie “The encoding”)

● The Unicode codespace ranges from 0x0000 to 0x10FFFF

Where each hex value represents a code point (ie a character)

● giving a total of 1,114,112 code points, (293,168 are currently
assigned) - approximately 25%.

UNICODE: Layout

40

COMP1521

These 1.1 million code points are split into 17 planes

● Plane 0 - 0x0000 - 0xFFFF
○ the Basic Multilingual Plane (BMP)
○ contains the vast majority of characters for almost all modern languages

● Plane 1 - 0x10000 - 0x1FFFF
○ the Supplementary Multilingual Plane (SMP)

● Plane 2 - 0x20000 - 0x2FFFF
○ the Supplementary Ideographic Plane (SIP)

● Plane 3 - 0x30000 - 0x3FFFF
○ the Tertiary Ideographic Plane (TIP)

UNICODE: Layout (cont.)

41

COMP1521

These 1.1 million code points are split into 17 planes

● Planes 4-13 - 0x40000 - 0xDFFFF
○ Unassigned Planes

● Plane 14 - 0xE0000 - 0xEFFFF
○ the Supplementary Special-purpose Plane (SSP)

● Planes 15-16 0xF0000 - 0x10FFFF
○ the Private Use Planes (SPUA-A/B)
○ private use == they are assigned but not to any specific character

UNICODE: Layout (cont.)

42

COMP1521

Within each plane, the code points are split into blocks

Blocks are not a standard size, but are always multiples of 16 and
usually multiples of 128

Blocks are used to roughly group characters by their purpose

UNICODE: Layout (cont.) (cont.)

43

COMP1521

Plane 0 contains the following blocks:
• Basic Latin (0x0000 - 0x007F)
• Latin-1 Supplement (0x0080 - 0x00FF)
• Latin Extended-A (0x0100 - 0x017F)
• Latin Extended-B (0x0180 - 0x024F)
…

• Greek and Coptic (0x0370 - 0x03FF)
…

• Mongolian (0x1800 - 0x18AF)
…

• Symbols and Punctuation (0x2000 - 0x206F)

UNICODE: Layout (cont.) (cont.)

44

COMP1521

Plane 1 mostly contains historical characters and notation symbols

• Hieroglyphs e.g. 𓀃 𓀃 𓀃 𓀃

• musical symbols e.g. 𝄠 𝄡 𝄢 𝄣
• Emoji e.g. 😀 😇 😨 😴
Plane 2 is almost entirely used by the CJK characters

Plane 3 is mostly unused but contains additional CJK characters

Plane 15 contains a few misc characters

UNICODE: Layout (cont.) (cont.) (cont.)

45

COMP1521

Every UNICODE character also has a major and minor category

The major category is one of the following:

• Letter
• Mark
• Number
• Punctuation
• Symbol
• Separator
• Other
And the minor category depending on the major category.

UNICODE: Layout (cont.) (cont.) (cont.) (cont.)

46

COMP1521

The largest category is Letter - other which contains 131,612 out
of 149,251 characters

● almost 90%!!
● This is because essentially all of the CJK characters are in this

category
○ and there are just so many of them compared to any other category!

UNICODE: Layout (cont.) (cont.) (cont.) (cont.)

47

COMP1521

● How do we store UNICODE characters?
● The easiest way is to use the smallest power of 2 that can

represent all of the code points in UNICODE.
● As the code points range from 0x0000 to 0x10FFFF
● we need at least 21 bits to represent them.
● So we can use 32 bits to represent a single character.
● UTF-32 is a fixed width encoding that uses 32 bits to represent

each character.
● Simply take the UNICODE code point and store it in 32 bits.

UTF-32

48

COMP1521

How do we store UNICODE characters?

The easiest = use the smallest power of 2 that can represent all of
the code points in UNICODE.

● The code points range from 0x0000 to 0x10FFFF…
○ we need at least 21 bits to represent them.

So we can use 32 bits to represent a single character.

UTF-32 is a fixed width encoding that uses 32 bits for each char.

● Simply take the UNICODE code point and store it in 32 bits.

UTF-32: Example

49

COMP1521

A → U+0041 → 0b00000000000000000000000001000001

€ → U+20AC → 0b00000000000000000010000010101100

字 → U+5B57 → 0b00000000000000000101101101010111

😀 → U+1F600 → 0b00000000000000011111011000000000

Tag Digit Two → U+E0032 → 0b00000000000011100000000000110010

U+XXXX is the representation of a raw UNICODE code point

● code points are always at least 4 hex digits.
● The 5th digit is the plane number
● or the 0th plane (BMP) if there is no 5th digit

UTF-32: Example

50

COMP1521

Even if we are representing the character U+10FFFF (the largest
code point) there would still be 11 wasted bits

● And the vast majority of characters used are in plane 0 (BMP)
○ only using 16 bits to represent them, giving 16 wasted bits per character
○ The vast majority of characters used in the BMP are in block 1 (ASCII)

■ using only 7 bits to represent them giving 25 wasted bits per character!!

UTF-32: is very very inefficient

51

COMP1521

“Hello 思语” ==
0x00000068
0x00000065
0x0000006c
0x0000006c
0x0000006f
0x00000020
0x0000601D
0x00008BED

Look at all those leading zeros!!

UTF-32: is very very inefficient

52

COMP1521

Take lesson from morse code → use variable width encoding

More common characters should use less bits

● Unicode already has common characters at the beginning
● The goal of UTF-8 is to store the fewest number of leading 0s

UTF-8

53

COMP1521

● A single UTF-8 character can be anywhere from 1 to 4 bytes long

● All ASCII characters can be stored in 1 byte with zero wasted bits

● The entire BMP fits in 3 bytes, 8 bits more efficient than UTF-32

● The entire UNICODE character fits in 4 bytes, using exactly the
same number of bits as UTF-32 in the worst case

UTF-8 Layout

54

#bytes #bits Byte 1 Byte 2 Byte 3 Byte 4

1 7 0xxxxxxx - - -
2 11 110xxxxx 10xxxxxx - -

3 16 1110xxxx 10xxxxxx 10xxxxxx -
4 21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

COMP1521

€ (U+20AC)

● Convert to UTF-32 (raw 32 bit representation of the code point)
● 0x000020AC
● 0b0000000000000000010000010101100

○ Look at all those leading zeros!
● remove leading 0s from the UTF-32 encoding
● 0b10000010101100
● Split into 6 bit chunks from right to left

Conversion to UTF-8 (1/2)

55

COMP1521

€ (U+20AC)

● 0b 10 000010 101100
● Match with appropriate multi-byte encoding (in this case, 3 chunks)
● 0b 1110xxxx 10xxxxxx 10xxxxxx
● 0b 10 000010 101100
● Replace the x values with the appropriate bits (0 if none)
● 0b 11100010 10000010 10101100
● Translate to hex
● 0b 1110 0010 1000 0010 1010 1100
● 0x E 2 8 2 A C
● We saved a byte of storage! 😀

Conversion to UTF-8 (2/2)

56

COMP1521

A → U+0041 → 0b01000001 → 0x41

€ → U+20AC → 0b10 000010 101100
→ 0b11100010 10000010 10101100
→ 0xE282AC

字 → U+5B57 → 0b101 101101 010111
→ 0b11100101 10101101 10010111
→ 0xE5AD97

😀 → U+1F600 → 0b 11111 011000 000000
→ 0b11110000 10011111 10011000 10000000
→ 0xF09F9880

UTF-8: More Examples

57

COMP1521

“Hello 思语” ==
0x68
0x65
0x6c
0x6c
0x6f
0x20
0xE6809D
0xE8AFAD

No more leading zeros!

UTF-8 - much more efficient

58

COMP1521

● UTF-16 is a variable width encoding that uses 16 bits to
represent each character.

● It’s a strange hybrid of UTF-8 and UTF-32
● Part of the BMP is reserved for “Surrogates”
● Surrogates are used by UTF-16 to represent characters outside

of the BMP
● UTF-16 is mainly used by Windows and Java and Javascript
● UTF-16 also requires a “BOM” (Byte Order Mark) to determine

the endianness

UTF-16

59

COMP1521

● UTF-1
● UTF-7
● UTF-EBCDIC

Lesser used encodings

60

COMP1521

Demo

hello_unicode.c

unicode_strings.c, unicode_strings.py

utf8_encode.c

utf8_strlen.c

Writing C that uses Unicode

61

