
COMP1521

2024
Angela Finlayson

Format from Hammond Pearce,

material from COMP1521
1

COMP1521 24T2 Lec09

Floating Point
Representation

COMP1521

Assignment 1 is due Friday 6pm

2

COMP1521

For all of these assume we are working with uint8_t variables

Question 1: Assume mask = 2. What effect do the following have?

● z = z | mask

● z = z & ~mask

● z = z ^ mask

Question 2: How could I check whether the 2 most significant

bits of z are 1’s?

Question 5: Convert 11112 to hexadecimal, decimal, and octal?

Question 6: What’s the difference in C if a constant value leads
with “0x” versus “0b”? Does it change the program?

Recap Exercise

3

COMP1521

Floating Point Representation

● Learn IEEE 754, the industry standard
● Crucial for working with numerical computations in computing
● Understand precision and accuracy limitations

○ Why using them for finance is unwise
○ Why sometimes

■ a + b == a (even if b is not 0)
■ if (a == b) is not a good idea

COMP1521

C has 3 floating point types

● float ... typically 32-bit quantity (lower precision, narrower range)
● double ... typically 64-bit quantity (higher precision, wider range)
● long double … typically 128-bit quantity (but maybe only 80 bits used)

Literal floating point values by default are double: 3.14159, 1.0/3, 1.0e-9

Reminder: division of 2 ints gives an int e.g. 1/2

Floating Point Numbers

COMP1521

floating_types.c
double_output.c

Code Demos

COMP1521

The decimal fraction 0.75 means

● 7*10-1 + 5*10-2 = 0.7 + 0.05 = 0.75
● or equivalently 75/102 = 75/100 = 0.75

Similarly 0b0.11 means

● 1*2-1 + 1*2-2 = 0.5 + 0.25 = 0.75
● or equivalently 3/22 = 3/4 = 0.75

Similarly 0x0.C means

● 12*16-1 = 0.75
● or equivalently 12/161 = 3/4 = 0.75

Fractions in different bases
Note: We call the . a radix
point rather than a decimal
point when we are dealing
with other bases.

COMP1521

The algorithm to convert a decimal fraction to another base is:

● take the fractional component and multiply by the base
○ the whole number becomes the next digit to the right of the radix point in

our converted fraction.
● repeat with the remaining fraction until the fractional part becomes exhausted

or we have sufficient digits (this process is not guaranteed to terminate).

Converting fractions to other bases

COMP1521

For example if we want to convert 0.3125 to base 2

● 0.3125 * 2 = 0.625
● 0.625 * 2 = 1.25
● 0.25 * 2 = 0.5
● 0.5 * 2 = 1.0

Therefore 0.3125 = 0b0.0101

Example: Converting Fractions

COMP1521

Convert the following decimal values into binary

● 12.625
● 0.1

Exercise 1:

COMP1521

double_lies.c
double_imprecision.c

Code Demos

COMP1521

Representing floating point numbers with a fixed small number of bits
● a finite number of bit patterns
● can only represent a finite subset of reals

○ almost all real values will have no exact representation
○ value of arithmetic operations may be real with no exact representation
○ we must use closest value which can be exactly represented
○ this approximation introduces an error into our calculations
○ often, does not matter
○ sometimes ... can be disastrous

■ eg pacemakers, finance

Floating Point Issues

COMP1521

Fixed-point is a simple trick to represent fractional numbers as integers
● every value is multiplied by a particular constant and stored as an integer

○ e.g. if constant is 1000 then 56125 represents 56.125
○ we could not represent 3.141592

● useful for some problems
● used on small embedded processors without silicon floating point
● major limitation is range:

○ 16 bits used for integer part and 16 bits for fraction

■ minimum 2-16 ≈ 0.000015

■ maximum 215 ≈ 32768

Fixed Point Representation

COMP1521

Idea: use scientific notation
● e.g 6.0221515 * 1023

But in binary:
● 10.6875 = 1010.1011

 = 1.0101011 * 23

Allows a much bigger range of values to be represented than fixed point
● 8 bits for the exponent can represent numbers from 10-38 .. 1038
● 11 bits for the exponent can represent numbers from 10-308 .. 10308

IEEE Standard: Exponential Representation

COMP1521

IEEE 754 Standard

Note: the fraction part is often called the mantissa

COMP1521

sign: 0 for positive, 1 for negative

We don’t want multiple representations of the same number so we normalise it
● (i.e. 1.1001×23 rather than 1100.1×20 or 11.001×22)
● better to have only one representation (one bit pattern) representing a value

○ multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it
● as we long we have a special representation for zero
● To represent 1.1001×23 we would store 1001000000… for the fraction.

IEEE 754 Standard: Sign and Fraction

COMP1521

Exponent is represented relative to a bias value B
● to represent exponent of x, we would store x+B
● for floats the bias is 127

So if we were representing 1.1001×23 we would store
(3+127) = 130 = 10000010 for a float

How bias is calculated:
● assume an 8-bit exponent, then bias B = 28-1-1 = 127
● valid bit patterns for exponent 00000001 .. 11111110 (1..254)
● exponent values we can represent -126 .. 127

IEEE 754 Standard: Exponent

COMP1521

 150.75 = 10010110.11
 // normalise fraction, compute exponent
 = 1.001011011 × 27

 // determine sign bit,
 // map fraction to 24 bits, (don’t store the leading 1)
 // map exponent to 8 bits after adding on the bias of 127
 = 01000011000101101100000000000000

where red is sign bit, green is exponent, blue is fraction

Note: B=127, e=27, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

IEEE 754 Example

https://www.h-schmidt.net/FloatConverter/IEEE754.html

COMP1521

Question 1: Convert the decimal numbers 1 to a floating point number in IEEE
754 single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point
numbers to decimal.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000

Exercise 2: Floating Point Conversions

COMP1521

IEEE 754 Standard: Special Cases

Value Exponent Fraction Example

0 (+ve or -ve) 0 0

inf (∞ and -∞) all 1’s 0 1.0/0

nan all 1’s <> 0 0.0/0

COMP1521

Representation of +- infinity : propagates sensibly through calculations

IEEE 754 infinity.c

COMP1521

Representation for invalid results NaN (not a number)
● ensures errors propagates sensibly through calculations

IEEE 754 nan.c

COMP1521

integer ... subset (range) of the mathematical integers

floating point ... subset of the mathematical real numbers

floating point numbers not evenly distributed

● representations get further apart as values get bigger

● this works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

COMP1521

double (IEEE 754 64 bit) has 52-bit fractions so:
● between 2n and 2n+1 there are 252 doubles evenly spaced

○ e.g. in the interval 2-42 and 2-43 there are 252 doubles
○ and in the interval between 1 and 2 there are 252 doubles
○ and in the interval between 242 and 243 there are 252 doubles

● near 0.001 - doubles are about 0.0000000000000000002 apart
● near 1000 - doubles are about 0.0000000000002 apart
● near 1000000000000000 - doubles are about 0.25 apart
● above 253 - doubles are more than 1 apart

Distribution of Floating Point Numbers

COMP1521

double_catastrophe.c
double_not_always.c
double_disaster.c

Code Demos

