Floating Point Representation

2024
Angela Finlayson
Format from Hammond Pearce,
material from COMP1521
Assignment 1 is due Friday 6pm
Recap Exercise

For all of these assume we are working with uint8_t variables

Question 1: Assume mask = 2. What effect do the following have?

● $z = z | \text{mask}$
● $z = z \& \sim\text{mask}$
● $z = z ^ \text{mask}$

Question 2: How could I check whether the 2 most significant bits of z are 1’s?
Floating Point Representation

- Learn IEEE 754, the industry standard
- Crucial for working with numerical computations in computing
- Understand precision and accuracy limitations
 - Why using them for finance is unwise
 - Why sometimes
 - $a + b == a$ (even if b is not 0)
 - if ($a == b$) is not a good idea
Floating Point Numbers

C has 3 floating point types

- `float` ... typically 32-bit quantity (lower precision, narrower range)
- `double` ... typically 64-bit quantity (higher precision, wider range)
- `long double` ... typically 128-bit quantity (but maybe only 80 bits used)

Literal floating point values by default are `double`: 3.14159, 1.0/3, 1.0e-9

Reminder: division of 2 ints gives an int e.g. 1/2
Code Demos

floating_types.c
double_output.c
Fractions in different bases

The decimal fraction 0.75 means

- \[7 \times 10^{-1} + 5 \times 10^{-2} = 0.7 + 0.05 = 0.75 \]
- or equivalently \(75/10^2 = 75/100 = 0.75 \)

Similarly, \(0b0.11 \) means

- \[1 \times 2^{-1} + 1 \times 2^{-2} = 0.5 + 0.25 = 0.75 \]
- or equivalently \(3/2^2 = 3/4 = 0.75 \)

Similarly, \(0x0.C \) means

- \(12 \times 16^{-1} = 0.75 \)
- or equivalently \(12/16^1 = 3/4 = 0.75 \)

Note: We call the \(. \) a radix point rather than a decimal point when we are dealing with other bases.
Converting fractions to other bases

The algorithm to convert a decimal fraction to another base is:

- take the fractional component and multiply by the base
 - the whole number becomes the next digit to the right of the radix point in our converted fraction.
- repeat with the remaining fraction until the fractional part becomes exhausted or we have sufficient digits (this process is not guaranteed to terminate).
Example: Converting Fractions

For example if we want to convert 0.3125 to base 2

- $0.3125 \times 2 = 0.625$
- $0.625 \times 2 = 1.25$
- $0.25 \times 2 = 0.5$
- $0.5 \times 2 = 1.0$

Therefore $0.3125 = 0b0.0101$
Exercise 1:

Convert the following decimal values into binary

- 12.625
- 0.1
Code Demos

double_lies.c
double_imprecision.c
Floating Point Issues

Representing floating point numbers with a fixed small number of bits
- a finite number of bit patterns
- can only represent a finite subset of reals
 - almost all real values will have no exact representation
 - value of arithmetic operations may be real with no exact representation
 - we must use closest value which can be exactly represented
 - this approximation introduces an error into our calculations
 - often, does not matter
 - sometimes ... can be disastrous
 - eg pacemakers, finance
Fixed-point is a simple trick to represent fractional numbers as integers
 ● every value is multiplied by a particular constant and stored as an integer
 ○ e.g. if constant is 1000 then 56125 represents 56.125
 ○ we could not represent 3.141592
 ● useful for some problems
 ● used on small embedded processors without silicon floating point
 ● major limitation is range:
 ○ 16 bits used for integer part and 16 bits for fraction
 ■ minimum $2^{-16} \approx 0.000015$
 ■ maximum $2^{15} \approx 32768$
IEEE Standard: Exponential Representation

Idea: use scientific notation

- e.g 6.0221515×10^{23}

But in binary:

- $10.6875 = 1010.1011$
 - $= 1.0101011 \times 2^3$

Allows a much bigger range of values to be represented than fixed point

- 8 bits for the exponent can represent numbers from $10^{-38} \ldots 10^{38}$
- 11 bits for the exponent can represent numbers from $10^{-308} \ldots 10^{308}$
IEEE 754 Standard

Note: the fraction part is often called the mantissa
IEEE 754 Standard: Sign and Fraction

sign: 0 for positive, 1 for negative

We don’t want multiple representations of the same number so we normalise it
- (i.e. 1.1001×2^3 rather than 1100.1×2^0 or 11.001×2^2)
- better to have only one representation (one bit pattern) representing a value
 - multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it
- as we long we have a special representation for zero
- To represent 1.1001×2^3 we would store $1001000000\ldots$ for the fraction.
Exponent is represented relative to a bias value B

- to represent exponent of x, we would store $x+B$
- for floats the bias is 127

So if we were representing 1.1001×2^3 we would store

$$(3+127) = 130 = 10000010$$

for a float

How bias is calculated:

- assume an 8-bit exponent, then bias $B = 2^{8-1}-1 = 127$
- valid bit patterns for exponent $00000001 \ldots 11111110$ (1..254)
- exponent values we can represent -126 .. 127
IEEE 754 Example

150.75 = 10010110.11
 // normalise fraction, compute exponent
= 1.001011011 × 2^7
 // determine sign bit,
 // map fraction to 24 bits, (don’t store the leading 1)
 // map exponent to 8 bits after adding on the bias of 127
= 01000011000101101100000000000000

where red is sign bit, green is exponent, blue is fraction

Note: $B=127$, $e=2^7$, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator
Exercise 2: Floating Point Conversions

Question 1: Convert the decimal numbers 1 to a floating point number in IEEE 754 single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point numbers to decimal.

0 10000000 11000000000000000000000000000000
1 01111110 10000000000000000000000000000000
IEEE 754 Standard: Special Cases

<table>
<thead>
<tr>
<th>Value</th>
<th>Exponent</th>
<th>Fraction</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (+ve or -ve)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>inf (∞ and -∞)</td>
<td>all 1’s</td>
<td>0</td>
<td>1.0/0</td>
</tr>
<tr>
<td>nan</td>
<td>all 1’s</td>
<td><> 0</td>
<td>0.0/0</td>
</tr>
</tbody>
</table>
IEEE 754 infinity.c

Representation of +- infinity : propagates sensibly through calculations

```c
double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
```
IEEE 754 nan.c

Representation for invalid results NaN (not a number)
- ensures errors propagates sensibly through calculations

```c
double x = 0.0/0.0;

printf("%lf\n", x); // prints nan

printf("%lf\n", x - 1); // prints nan

printf("%d\n", x == x); // prints 0 (false)

printf("%d\n", isnan(x)); // prints 1 (true)
```
integer ... subset (range) of the mathematical integers
floating point ... subset of the mathematical real numbers
floating point numbers not evenly distributed
 ● representations get further apart as values get bigger
 ● this works well for most calculations but can cause weird bugs
double (IEEE 754 64 bit) has 52-bit fractions so:

- between 2^n and 2^{n+1} there are 2^{52} doubles evenly spaced
 - e.g. in the interval 2^{-42} and 2^{-43} there are 2^{52} doubles
 - and in the interval between 1 and 2 there are 2^{52} doubles
 - and in the interval between 2^{42} and 2^{43} there are 2^{52} doubles

- near 0.001 - doubles are about 0.0000000000000000002 apart
- near 1000 - doubles are about 0.000000000000000002 apart
- near 1000000000000000 - doubles are about 0.25 apart
- above 2^{53} - doubles are more than 1 apart
Code Demos

double_catastrophe.c
double_not_always.c
double_disaster.c