

UNSW S Y D N E Y

COMP1521 24T2 Lec09

Floating Point Representation

2024 Angela Finlayson Format from Hammond Pearce,

material from COMP1521

COMP1521

Assignment 1 is due Friday 6pm

Recap Exercise

For all of these assume we are working with uint8_t variables

Question 1: Assume mask = 2. What effect do the following have?

- z = z | mask
- z = z & ~mask
- z = z ^ mask

Question 2: How could I check whether the 2 most significant

bits of z are 1's?

Floating Point Representation

- Learn IEEE 754, the industry standard
- Crucial for working with numerical computations in computing
- Understand precision and accuracy limitations
 - Why using them for finance is unwise
 - Why sometimes
 - a + b == a (even if b is not 0)
 - if (a == b) is not a good idea

Floating Point Numbers

C has 3 floating point types

- **float** ... typically 32-bit quantity (lower precision, narrower range)
- **double** ... typically 64-bit quantity (higher precision, wider range)
- **long double** ... typically 128-bit quantity (but maybe only 80 bits used)

Literal floating point values by default are **double**: 3.14159, 1.0/3, 1.0e-9

Reminder: division of 2 ints gives an int e.g. 1/2

Code Demos

floating_types.c double_output.c

Fractions in different bases

The decimal fraction 0.75 means

- $7*10^{-1} + 5*10^{-2} = 0.7 + 0.05 = 0.75$
- or equivalently $75/10^2 = 75/100 = 0.75$

Similarly 0b0.11 means

- $1^{*}2^{-1} + 1^{*}2^{-2} = 0.5 + 0.25 = 0.75$
- or equivalently $3/2^2 = 3/4 = 0.75$

Similarly 0x0.C means

- $12*16^{-1} = 0.75$
- or equivalently $12/16^1 = 3/4 = 0.75$

Note: We call the . a radix point rather than a decimal point when we are dealing with other bases.

Converting fractions to other bases

The algorithm to convert a decimal fraction to another base is:

- take the fractional component and multiply by the base
 - the whole number becomes the next digit to the right of the radix point in our converted fraction.
- repeat with the remaining fraction until the fractional part becomes exhausted or we have sufficient digits (this process is not guaranteed to terminate).

Example: Converting Fractions

For example if we want to convert 0.3125 to base 2

- 0.3125 * 2 = **0**.625
- 0.625 * 2 **= 1**.25
- 0.25 * 2 **= 0**.5
- 0.5 * 2 **= 1**.0

Therefore 0.3125 = 0b0.0101

Exercise 1:

Convert the following decimal values into binary

- 12.625
- 0.1

Code Demos

double_lies.c double_imprecision.c

Floating Point Issues

Representing floating point numbers with a fixed small number of bits

- a finite number of bit patterns
- can only represent a finite subset of reals
 - almost all real values will have no exact representation
 - value of arithmetic operations may be real with no exact representation
 - we must use closest value which can be exactly represented
 - this approximation introduces an error into our calculations
 - o often, does not matter
 - sometimes ... can be disastrous
 - eg pacemakers, finance

Fixed Point Representation

Fixed-point is a simple trick to represent fractional numbers as integers

- every value is multiplied by a particular constant and stored as an integer
 - e.g. if constant is 1000 then 56125 represents 56.125
 - we could not represent 3.141592
- useful for some problems
- used on small embedded processors without silicon floating point
- major limitation is range:
 - 16 bits used for integer part and 16 bits for fraction
 - minimum $2^{-16} \approx 0.000015$
 - maximum 2¹⁵ ≈ 32768

IEEE Standard: Exponential Representation

Idea: use scientific notation

• e.g 6.0221515 * 10²³

But in binary:

- 10.6875 = 1010.1011
 - = 1.0101011 * 2³

Allows a much bigger range of values to be represented than fixed point

- 8 bits for the exponent can represent numbers from 10⁻³⁸ .. 10³⁸
- 11 bits for the exponent can represent numbers from 10⁻³⁰⁸ .. 10³⁰⁸

IEEE 754 Standard

COMP1521

IEEE 754 Standard: Sign and Fraction

sign: 0 for positive, 1 for negative

We don't want multiple representations of the same number so we normalise it

- (i.e. 1.1001×2^3 rather than 1100.1×2^0 or 11.001×2^2)
- better to have only one representation (one bit pattern) representing a value
 - multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it

- as we long we have a special representation for zero
- To represent 1.1001×2^3 we would store 100100000... for the fraction.

IEEE 754 Standard: Exponent

Exponent is represented relative to a bias value *B*

- to represent exponent of x, we would store x+B
- for floats the bias is 127

So if we were representing 1.1001×2^3 we would store (3+127) = 130 = 10000010 for a float

How bias is calculated:

- assume an 8-bit exponent, then bias $B = 2^{8-1}-1 = 127$
- valid bit patterns for exponent **00000001 .. 11111110** (1..254)
- exponent values we can represent -126 .. 127

IEEE 754 Example

150.75 = 10010110.11

// normalise fraction, compute exponent

= 1.001011011 × 2⁷

// determine sign bit,

// map fraction to 24 bits, (don't store the leading 1)

// map exponent to 8 bits after adding on the bias of 127

where red is sign bit, green is exponent, blue is fraction

Note: B=127, $e=2^7$, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

Exercise 2: Floating Point Conversions

Question 1: Convert the decimal numbers 1 to a floating point number in IEEE 754 single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point numbers to decimal.

1 01111110 1000000000000000000000000

IEEE 754 Standard: Special Cases

Value	Exponent	Fraction	Example
0 (+ve or -ve)	0	0	
inf (∞ and -∞)	all 1's	0	1.0/0
nan	all 1's	<> 0	0.0/0

IEEE 754 infinity.c

Representation of +- infinity : propagates sensibly through calculations

```
double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)</pre>
printf("%d\n", x == INFINITY); // prints 1 (true)
```

IEEE 754 nan.c

Representation for invalid results NaN (not a number)

• ensures errors propagates sensibly through calculations

```
double x = 0.0/0.0;
```

```
printf("%lf\n", x); //prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

Distribution of Floating Point Numbers

integer ... subset (range) of the mathematical integers

floating point ... subset of the mathematical real numbers

floating point numbers not evenly distributed

- representations get further apart as values get bigger
- this works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

double (IEEE 754 64 bit) has 52-bit fractions so:

- between 2ⁿ and 2ⁿ⁺¹ there are 2⁵² doubles evenly spaced
 - $\circ~$ e.g. in the interval 2⁻⁴² and 2⁻⁴³ there are 2⁵² doubles
 - \circ and in the interval between 1 and 2 there are 2^{52} doubles
 - \circ $\,$ and in the interval between 2^{42} and 2^{43} there are 2^{52} doubles
- near 0.001 doubles are about 0.00000000000000002 apart
- near 1000 doubles are about 0.000000000002 apart
- near 100000000000000000 doubles are about 0.25 apart
- above 2⁵³ doubles are more than 1 apart

Code Demos

double_catastrophe.c double_not_always.c double_disaster.c

