

Floating Point Representation

2024
Angela Finlayson

Format from Hammond Pearce,
material from COMP1521

Assignment 1 is due Friday 6pm

Recap Exercise

For all of these assume we are working with uint8_t variables
Question 1: Assume mask $=2$. What effect do the following have?

- $z=z \mid$ mask
- $\mathrm{z}=\mathrm{z}$ \& \sim mask
- $z=z^{\wedge}$ mask

Question 2: How could I check whether the 2 most significant
bits of z are 1 's?

Floating Point Representation

- Learn IEEE 754, the industry standard
- Crucial for working with numerical computations in computing
- Understand precision and accuracy limitations
- Why using them for finance is unwise
- Why sometimes
- $a+b==a \quad$ (even if b is not 0)
- if $(a==b)$ is not a good idea

Floating Point Numbers

C has 3 floating point types

- float ... typically 32-bit quantity (lower precision, narrower range)
- double ... typically 64-bit quantity (higher precision, wider range)
- long double ... typically 128-bit quantity (but maybe only 80 bits used)

Literal floating point values by default are double: $3.14159,1.0 / 3,1.0 \mathrm{e}-9$

Reminder: division of 2 ints gives an int e.g. 1/2

Code Demos

floating_types.c

double_output.c

Fractions in different bases

The decimal fraction 0.75 means

- $7^{*} 10^{-1}+5^{*} 10^{-2}=0.7+0.05=0.75$
- or equivalently $75 / 10^{2}=75 / 100=0.75$

Note: We call the . a radix point rather than a decimal point when we are dealing with other bases.

Similarly Ob0.11 means

- $1^{*} 2^{-1}+1^{*} 2^{-2}=0.5+0.25=0.75$
- or equivalently $3 / 2^{2}=3 / 4=0.75$

Similarly 0x0.C means

- $12^{*} 16^{-1}=0.75$
- or equivalently $12 / 16^{1}=3 / 4=0.75$

Converting fractions to other bases

The algorithm to convert a decimal fraction to another base is:

- take the fractional component and multiply by the base
- the whole number becomes the next digit to the right of the radix point in our converted fraction.
- repeat with the remaining fraction until the fractional part becomes exhausted or we have sufficient digits (this process is not guaranteed to terminate).

Example: Converting Fractions

For example if we want to convert 0.3125 to base 2

- 0.3125 * $2=0.625$
- $0.625 * 2=1.25$
- 0.25 * $2=0.5$
- $0.5 * 2=1.0$

Therefore $0.3125=0 b 0.0101$

Exercise 1:

Convert the following decimal values into binary

- 12.625
- 0.1

Code Demos

double_lies.c
double_imprecision.c

Floating Point Issues

Representing floating point numbers with a fixed small number of bits

- a finite number of bit patterns
- can only represent a finite subset of reals
- almost all real values will have no exact representation
- value of arithmetic operations may be real with no exact representation
- we must use closest value which can be exactly represented
- this approximation introduces an error into our calculations
- often, does not matter
- sometimes ... can be disastrous
- eg pacemakers, finance

Fixed Point Representation

Fixed-point is a simple trick to represent fractional numbers as integers

- every value is multiplied by a particular constant and stored as an integer
- e.g. if constant is 1000 then 56125 represents 56.125
- we could not represent 3.141592
- useful for some problems
- used on small embedded processors without silicon floating point
- major limitation is range:
- 16 bits used for integer part and 16 bits for fraction

■ minimum $2^{-16} \approx 0.000015$

- maximum $2^{15} \approx 32768$

IEEE Standard: Exponential Representation

Idea: use scientific notation

- e.g6.0221515 * 10^{23}

But in binary:

$$
\text { - } \begin{aligned}
10.6875 & =1010.1011 \\
& =1.0101011 * 2^{3}
\end{aligned}
$$

Allows a much bigger range of values to be represented than fixed point

- 8 bits for the exponent can represent numbers from 10^{-38}.. 10^{38}
- 11 bits for the exponent can represent numbers from 10^{-308}.. 10^{308}

IEEE 754 Standard

double precision

Note: the fraction part is often called the mantissa

IEEE 754 Standard: Sign and Fraction

sign: 0 for positive, 1 for negative

We don't want multiple representations of the same number so we normalise it

- (i.e. 1.1001×2^{3} rather than 1100.1×2^{0} or 11.001×2^{2})
- better to have only one representation (one bit pattern) representing a value
- multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it

- as we long we have a special representation for zero
- To represent 1.1001×2^{3} we would store $1001000000 .$. for the fraction.

IEEE 754 Standard: Exponent

Exponent is represented relative to a bias value B

- to represent exponent of x, we would store $x+B$
- for floats the bias is 127

So if we were representing 1.1001×2^{3} we would store $(3+127)=130=10000010$ for a float

How bias is calculated:

- assume an 8-bit exponent, then bias $B=2^{8-1}-1=127$
- valid bit patterns for exponent 00000001 .. 11111110 (1..254)
- exponent values we can represent -126 .. 127

IEEE 754 Example

```
150.75=10010110.11
    // normalise fraction, compute exponent
    = 1.001011011 * 2
    // determine sign bit,
    // map fraction to 24 bits, (don't store the leading 1)
    // map exponent to 8 bits after adding on the bias of 127
= 01000011000101101100000000000000
```

where red is sign bit, green is exponent, blue is fraction
Note: $B=127, e=2^{7}$, so exponent $=127+7=134=10000110$

Check using explain_float_representation.c or Floating Point Calculator

Exercise 2: Floating Point Conversions

Question 1: Convert the decimal numbers 1 to a floating point number in IEEE 754 single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point numbers to decimal.

01000000011000000000000000000000
10111111010000000000000000000000

IEEE 754 Standard: Special Cases

Value	Exponent	Fraction	Example
$\mathbf{0}(+\mathrm{ve}$ or -ve$)$	0	0	
inf $(\infty$ and $-\infty)$	all 1's	0	$1.0 / 0$
nan	all 1's	$<>0$	$0.0 / 0$

IEEE 754 infinity.c

Representation of +- infinity : propagates sensibly through calculations

```
double x = 1.0/0.0;
printf("%lf\n", x); //prints inf
printf("%lf\n", -x); //prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
```


IEEE 754 nan.c

Representation for invalid results NaN (not a number)

- ensures errors propagates sensibly through calculations

```
double x = 0.0/0.0;
printf("%lf\n", x); //prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```


Distribution of Floating Point Numbers

integer ... subset (range) of the mathematical integers
floating point ... subset of the mathematical real numbers
floating point numbers not evenly distributed

- representations get further apart as values get bigger
- this works well for most calculations but can cause weird bugs

Distribution of Floating Point Numbers

double (IEEE 75464 bit) has 52-bit fractions so:

- between 2^{n} and 2^{n+1} there are 2^{52} doubles evenly spaced
- e.g. in the interval 2^{-42} and 2^{-43} there are 2^{52} doubles
- and in the interval between 1 and 2 there are 2^{52} doubles
- and in the interval between 2^{42} and 2^{43} there are 2^{52} doubles
- near 0.001 - doubles are about 0.0000000000000000002 apart
- near 1000 - doubles are about 0.0000000000002 apart
- near 1000000000000000 - doubles are about 0.25 apart
- above 2^{53} - doubles are more than 1 apart

Code Demos

double_catastrophe.c double_not_always.c double_disaster.c

