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For all of these assume we are working with uint8_t variables

Question 1: Assume mask = 2. What effect do the following have?

● z  = z | mask

● z = z & ~mask

● z = z ^ mask

Question 2: How could I check whether the 2 most significant 

bits of z are 1’s?   

                             

Question 5: Convert 11112 to hexadecimal, decimal, and octal?

Question 6: What’s the difference in C if a constant value leads 
with “0x” versus “0b”? Does it change the program?

Recap Exercise
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Floating Point Representation

● Learn IEEE 754, the industry standard
● Crucial for working with numerical computations in computing
● Understand precision and accuracy limitations

○ Why using them for finance is unwise
○ Why sometimes 

■ a + b == a      (even if b is not 0)
■ if (a == b) is not a good idea
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C has 3 floating point types

● float ... typically 32-bit quantity (lower precision, narrower range)
● double ... typically 64-bit quantity (higher precision, wider range)
● long double … typically 128-bit quantity (but maybe only 80 bits used)

Literal floating point values by default are double:  3.14159,  1.0/3,  1.0e-9

Reminder: division of 2 ints gives an int e.g. 1/2
 

Floating Point Numbers
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floating_types.c
double_output.c

Code Demos
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The decimal fraction 0.75 means

● 7*10-1 + 5*10-2 = 0.7 + 0.05 = 0.75
● or equivalently 75/102 = 75/100 = 0.75

Similarly 0b0.11 means

● 1*2-1 + 1*2-2 = 0.5 + 0.25 = 0.75
● or equivalently 3/22 = 3/4 = 0.75

Similarly 0x0.C means

● 12*16-1 = 0.75
● or equivalently 12/161 = 3/4 = 0.75

Fractions in different bases
Note: We call the . a radix 
point rather than a decimal 
point when we are dealing 
with other bases.
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The algorithm to convert a decimal fraction to another base is:

● take the fractional component and multiply by the base
○ the whole number becomes the next digit to the right of the radix point in 

our converted fraction.
● repeat with the remaining fraction until the fractional part becomes exhausted 

or we have sufficient digits (this process is not guaranteed to terminate).

Converting fractions to other bases
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For example if we want to convert 0.3125 to base 2

● 0.3125 * 2 = 0.625
● 0.625 * 2 = 1.25
● 0.25 * 2 = 0.5
● 0.5 * 2 = 1.0

Therefore 0.3125 = 0b0.0101

Example: Converting Fractions
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Convert the following decimal values into binary

● 12.625
● 0.1

Exercise 1:
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double_lies.c
double_imprecision.c

Code Demos
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Representing floating point numbers with a fixed small number of bits
● a finite number of bit patterns
● can only represent a finite subset of reals

○ almost all real values will have no exact representation
○ value of arithmetic operations may be real with no exact representation
○ we must use closest value which can be exactly represented
○ this approximation introduces an error into our calculations
○ often, does not matter
○ sometimes ... can be disastrous

■ eg pacemakers, finance

Floating Point Issues
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Fixed-point is a simple trick to represent fractional numbers as integers
● every value is multiplied by a particular constant and stored as an integer

○ e.g. if constant is 1000 then 56125  represents 56.125
○ we could not represent 3.141592

● useful for some problems
● used on small embedded processors without silicon floating point
● major limitation is range:

○ 16 bits used for integer part and 16 bits for fraction   

■ minimum  2-16 ≈ 0.000015

■ maximum  215 ≈ 32768

Fixed Point Representation
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Idea: use scientific notation
● e.g 6.0221515 * 1023 

But in binary: 
● 10.6875 = 1010.1011 

                    = 1.0101011 * 23 

Allows a much bigger range of values to be represented than fixed point
● 8 bits for the exponent can represent numbers from 10-38 .. 1038 
● 11 bits for the exponent can represent numbers from 10-308 .. 10308

IEEE Standard: Exponential Representation
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IEEE 754 Standard

Note: the fraction part is often called the mantissa
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sign: 0 for positive, 1 for negative

We don’t want multiple representations of the same number so we normalise it
● (i.e. 1.1001×23 rather than 1100.1×20 or 11.001×22)
● better to have only one representation (one bit pattern) representing a value

○ multiple representations would make arithmetic slower on CPU

Weird hack: the first bit must be a one we don't need to store it
● as we long we have a special representation for zero
● To represent 1.1001×23 we would store 1001000000… for the fraction.

IEEE 754 Standard: Sign and Fraction
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Exponent is represented relative to a bias value B
● to represent exponent of x, we would store x+B
● for floats the bias is 127

So if we were representing 1.1001×23 we would store 
(3+127) = 130 = 10000010 for a float

How bias is calculated:
● assume an 8-bit exponent, then bias B = 28-1-1 = 127
● valid bit patterns for exponent  00000001 .. 11111110  (1..254)
● exponent values we can represent   -126 .. 127

IEEE 754 Standard: Exponent 
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 150.75 = 10010110.11
         // normalise fraction, compute exponent
       = 1.001011011 × 27

         // determine sign bit,
         // map fraction to 24 bits, (don’t store the leading 1)
         // map exponent to 8 bits after adding on the bias of 127
       = 01000011000101101100000000000000

where red is sign bit, green is exponent, blue is fraction

Note: B=127, e=27, so exponent = 127+7 = 134 = 10000110

Check using explain_float_representation.c or Floating Point Calculator

IEEE 754 Example

https://www.h-schmidt.net/FloatConverter/IEEE754.html
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Question 1: Convert the decimal numbers 1 to a floating point number in IEEE 
754 single-precision format.

Question 2: Convert the following IEEE 754 single-precision floating point 
numbers to decimal.

0 10000000 11000000000000000000000

1  01111110 10000000000000000000000

Exercise 2: Floating Point Conversions
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IEEE 754 Standard: Special Cases

Value Exponent Fraction Example

0 (+ve or -ve) 0 0

inf (∞ and -∞) all 1’s 0 1.0/0

nan all 1’s <> 0 0.0/0
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Representation of +- infinity : propagates sensibly through calculations

IEEE 754 infinity.c
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Representation for invalid results NaN (not a number)
● ensures errors propagates sensibly through calculations

IEEE 754 nan.c
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integer ... subset (range) of the mathematical integers

floating point ... subset of the mathematical real numbers

floating point numbers not evenly distributed

● representations get further apart as values get bigger 

● this works well for most calculations but can cause weird bugs

 

Distribution of Floating Point Numbers 
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double (IEEE 754 64 bit) has 52-bit fractions so:
● between 2n and  2n+1 there are 252 doubles evenly spaced 

○ e.g. in the interval 2-42 and 2-43 there are 252 doubles
○ and in the interval between 1 and 2 there are 252 doubles
○ and in the interval between 242 and 243 there are 252 doubles

● near 0.001 - doubles are about 0.0000000000000000002 apart
● near 1000 - doubles are about 0.0000000000002 apart
● near 1000000000000000 - doubles are about 0.25 apart
● above 253 - doubles are more than 1 apart 

 

Distribution of Floating Point Numbers 
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double_catastrophe.c
double_not_always.c  
double_disaster.c      

Code Demos


