
COMP1521

2024
Angela Finlayson

Format from Hammond Pearce, material from

COMP1521
1

COMP1521 24T2 Lec09/10

Operating Systems
File Systems

COMP1521

The linux manual (man) is divided into sections.

Important sections for this course include:

1. Executable programs eg. ls, cp
2. System calls
 - we will be looking at many of these today and in the coming weeks
3. Library calls eg. strcpy, scanf

And other sections that you can find out about by using the command man man
Advice: man will be available in the exam. Get used to using it!

Aside: Linux Manual

COMP1521

This course is a great way to see different areas in computing to

- See what electives you might be interested in!!

- See what area you might want to work in!!

Question 1: What is YOUR favourite operating system?

Question 2: What kind of things do they do for us and what

would it be like using a computer without an operating system?

Operating Systems

3

COMP1521

Operating system (OS) sits between the user and the hardware

The OS effectively provides a virtual machine to each user.

- much easier for user to write code and use machine

- difficult (bug-prone) code implemented by operating system

- coordinates access to resources e.g. file systems, multiple processes

The virtual machine interface can stay the same across different hardware.

- easier for user to write portable code

Operating Systems

4

COMP1521

 Needs hardware to provide a privileged mode

 - code running in privileged mode can access all hardware and memory

Needs hardware to provide a non-privileged mode which:

 - code running in non-privileged mode can not access hardware directly

 - code running in non-privileged mode has limited access to memory

 - provides mechanism to make requests to operating system

Operating Systems: Privileged Mode

5

COMP1521

OS (kernel) code runs in privileged mode

OS runs user code in non-privileged mode

- user code can only use memory allocated to it

User code can make requests to the OS called system calls

- a system call transfers execution to OS code in privileged mode

Operating Systems: Privileged Mode

6

COMP1521

System calls allow programs to request hardware operations

System calls transfer execution to OS code in privileged mode

 - includes arguments specifying details of request being made

 - OS checks operation is valid & permitted

 - OS carries out operation

 - transfers execution back to user code in non-privileged mode

System Calls

7

COMP1521

Different operating system have different system calls

 - e.g Linux system calls are very different Windows system calls

Linux provides 400+ system calls

Examples of operations that might be provided by system call:

 - read or write bytes to a file

 - create a process (run a program) or terminate a process

 - send information over the network (there are some great networks courses at cse)

System Calls

8

COMP1521

mipsy provides a virtual machine which can execute MIPS programs

mipsy also provides a tiny operating system

mipsy system calls

 - syscall instruction

 - small number of very specific system calls

 - designed for students writing small programs with no library functions

MIPS programs running on real hardware and real OS also use syscall

Mipsy System Calls

9

COMP1521

Linux system calls also have a number

- e.g system call 1 is write bytes to a file

Linux provides 400+ system calls

Experimenting with Linux System Calls

$ cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h
...
#define __NR_read 0
#define __NR_write 1
#define __NR_open 2
#define __NR_close 3
...
#define __NR_set_mempolicy_home_node 450

COMP1521

syscall command: Not usually used in practice
 - Not portable
 - Hard to understand

Libc syscall wrapper: Useful sometimes
 - does syscall for you and helps with error checking
 - More portable than syscall but not portable

Higher level library functions like stdio.h: Useful most of the time
 - calls syscall wrapper for you
 - portable
 - does other cool stuff to make thing easier!

system calls in linux

COMP1521

Important file related system calls

System Calls to Manipulate Files

Id Name Function

0 read read some bytes from a file descriptor

1 write write some bytes to a file descriptor

2 open open a file system object, returning a file descriptor

3 close close a file descriptor

4 stat get file system metadata for a pathname

8 lseek move file descriptor to a specified offset within a file

COMP1521

On Unix-like systems a file is sequence/stream of zero or more bytes

 - file metadata doesn't record that it is e.g. ASCII, MP4, JPG, …

 - file extensions are just hints

Standard streams are treated like files in linux
- stdin, stdout, stderr

Demo: text files vs binary files
Demo: stdout vs stderr

Unix Files and standard streams

COMP1521

file descriptors are small integers
Uniquely identify a stream/file that is open within a process
Are indexes into a per process OS file descriptor table

OS stores info for each file descriptor such as:
File offset: current position in the file
File status: read-only, write-only etc
Information to locate the actual bytes related to the file/stream

File Descriptors

COMP1521

Every process starts with the 3
standard streams, 0, 1, 2.

When a file is opened a new file
descriptor is added to the table.

When a file is closed the file
descriptor is removed

When a file is read to written
from, the offset is updated

File Descriptors
File descriptor
Table

0 (stdin)

1 (stdout)

2 (stderr)

3

4

File Table

Offset 42, read, etc

Offset 0, write, etc

COMP1521

syscall : make a system call without writing assembler code
 - not usually used by programmers
 - use to experiment and learn

System call to print a message to stdout

Source code for hello_syscalls.c

https://cgi.cse.unsw.edu.au/~cs1521/24T2/topic/files/code/hello_syscalls.c

COMP1521

Unix-like systems have C library functions corresponding to most system calls

 - e.g. open, read, write, close

 - not portable

 - some are POSIX compliant and will run on non-Unix systems

 - better to use library functions when possible

Typically return -1 on error and set the error code errno

Unix C Library Wrappers for System Calls

COMP1521

Libc wrapper to print message to stdout

Source code for hello_libc.c

https://cgi.cse.unsw.edu.au/~cs1521/24T2/topic/files/code/hello_libc.c

COMP1521

system calls provide operations to manipulate files.

libc provides a non-portable low-level API to manipulate files (wrapper functions)

stdio.h provides a portable higher-level API to manipulate files.

- part of standard C library

- available in every C implementation that can do I/O

- functions are portable, convenient & efficient

- on Unix-like systems they will call open()/read()/write() ... with buffering

Use stdio.h functions for file operations unless you have a good reason not to

- e.g .program with special I/O requirements like a database implementation

stdio.h - C Standard Library I/O Functions

COMP1521

printf will do the write system call for us!

See more ways to print using stdio.h with hello_stdio.h
Source code for hello_stdio.c

stdio library to print message to stdout

https://cgi.cse.unsw.edu.au/~cs1521/24T2/topic/files/code/hello_syscalls.c

COMP1521

syscall vs libc vs stdio.h

hello.c printing to stdout
read_char.c reading byte from stdin

Live Coding

COMP1521

int open(char *pathname, int flags);

- open file at pathname, according to flags

- flags is a bit-mask defined in <fcntl.h>

int open(char *pathname, int flags, mode_t mode);

- Use this version when potentially creating a new file

- mode is an octal number to give the file sensible user access

permissions

if successful they return file descriptor (small non-negative int)
if unsuccessful they return -1 and set errno to value indicating reason

Libc wrapper to open a file

COMP1521

flags can be combined e.g. (O_WRONLY|O_CREAT)

Libc wrapper to open a file

Flag Use

O_RDONLY open for reading

O_WRONLY open for writing

O_APPEND append on each write

O_RDWR open object for reading and writing

O_CREAT create file if doesn't exist

O_TRUNC truncate to size 0

COMP1521

C library has an interesting way of returning error information
- functions typically return -1 to indicate error
- and set errno to integer value indicating reason for error
- you can think of errno as a global integer variable

These integer values are #define-d in errno.h
- see man errno for more information
- perror() looks at errno and prints message with reason
- strerror() converts errno to string describing reason for error

To see all error codes type errno -l on command line

errno

COMP1521

int close(int fd);

 - release open file descriptor fd

 - if successful, return 0

 - if unsuccessful, return -1 and set errno

 - could be unsuccessful if fd is not an open file descriptor

- e.g. if fd has already been closed

- number of file descriptors may be limited (maybe to 1024)

 - limited number of file open at any time, so use close()

Libc wrapper to close a file

COMP1521

ssize_t read(int fd, void *buf, size_t count);
 - read (up to) count bytes from fd into buf
 - buf should point to array of at least count bytes
 - read cannot check buf points to enough space

 - if successful, number of bytes actually read is returned
 - if no more bytes to read, 0 returned
 - if error, -1 is returned and errno set
 - file descriptor current position in file is updated

Libc library wrapper for read system call

COMP1521

ssize_t write(int fd, const void *buf, size_t count);
 - attempt to write count bytes from buf into stream identified by fd

 - if successful, number of bytes actually written is returned
 - if unsuccessful, -1 returned and errno is set
 - file descriptor current position in file is updated

Libc library wrapper for read system call

COMP1521

open_read.c
open_write.c
open_issue.c

Code Demo

COMP1521

FILE *fopen(const char *pathname, const char *mode);

- mode is string of 1 or more characters including:
 - r open file for reading.
 - w open file for writing
 truncated to 0 zero length if it exists
 created if does not exist
 - a open file for writing
 writes append to it if it exists
 created if does not exist

stdio.h - fopen()

COMP1521

fopen returns a FILE pointer

- FILE is an opaque struct - we can not access fields

- FILE stores file descriptor

- FILE may also for efficiency store buffered data

Demo: Modify open_read.c and open_write.c to use stdio.h

FILE *

COMP1521

int fclose(FILE *stream);
 - calls close
 - number of streams open at any time is limited (to maybe 1024)
 - writes unwritten buffered data to the stream

stdio.h fclose()

COMP1521

int fgetc(FILE *stream) ; // read a byte
int fputc(int c, FILE *stream); // write a byte

// read/write array of bytes (fgetc/fputc + loop often better)
size_t fread(void *ptr, size_t size, size_t nmemb,
 FILE *stream);

size_t fwrite(const void *ptr, size_t size, size_t nmemb,
 FILE *stream);

stdio.h reading and writing

COMP1521

char *fputs(char *s, FILE *stream); // write a string

char *fgets(char *s, int size, FILE *stream); // read a line

//formatted input/output

int fscanf(FILE *stream, const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);

These functions can not be used for binary data as they may contain zero bytes
- can use to read text (ASCII/Unicode)

 - can not use to read a *jpg* for example

stdio.h reading and writing text only

COMP1521

To read/write to stdin/stdout
int getchar(void); // fgetc(stdin)
int putchar(int c); // fputc(c, stdout)
int puts(char *s); // fputs(s, stdout)
int scanf(char *format, ...); // fscanf(stdin, format, ...)
int printf(char *format, ...); // fprintf(stdout, format, ...)

These should never be used: security vulnerability, buffer overflow

char *gets(char *s);
scanf("%s", array); // Ok in general.
 // Don’t use with %s

stdio.h convenience functions

COMP1521

stdio.h provides useful functions which operate on strings

// like scanf, but input comes from char array str
int sscanf(const char *str, const char *format, ...);

// like printf, but output goes to char array str
// handy for creating strings passed to other functions
// size contains size of str
// Do not use similar function sprintf as it is a security vulnerability
int snprintf(char *str, size_t size, const char *format, ...);

stdio.h - IO to strings

COMP1521

Implement cp command
1. byte at a time libc.c
2. byte at a time stdio.h
3. using fgets - what is the problem with this approach?

Exercise

COMP1521

Implement cp command
1. byte at a time stdio.h
2. using fgets - what is the problem with this approach?

We also have implementations using syscall, libc.

Which is the best approach?

Exercise

COMP1521

Lets compare our implementations of cp!
$ clang -O3 cp_x.c -o cp_x
$ dd bs=1M count=10 </dev/urandom >random_file
10485760 bytes (10 MB, 10 MiB) copied, 0.183075 s, 57.3 MB/s
$ time ./cp_x random_file random_file_copy

Can we get any insights from strace?
$strace ./cp_x random_file random_file_copy

IO Performance & Buffering libc vs stdio

