
COMP1521

2024
Hammond Pearce

Basically reformatted Abiram’s slides

1

COMP1521 24T2 Lec07

Bitwise Operations

COMP1521

Question 1: Convert 3AF16 to binary?

Question 2: Convert 101011012 to hexadecimal?

Question 3: Convert 6738 to binary?

Question 4: Convert 100010 to binary?

Question 5: Convert 11112 to hexadecimal, decimal, and octal?

Question 6: What’s the difference in C if a constant value leads
with “0x” versus “0b”? Does it change the program?

Recap Exercise

2

COMP1521

Quick revision on integer representation

● All data on a computer is represented in binary (base-2)

● Each binary digit (or bit) can either be a 0 or 1

● Computers use bytes (groups of 8 bits) as their fundamental
units of storage

COMP1521

Quick revision on integer representation

● Information = data + context
○ For example, take the following byte of data:

01001001
● In a numeric context*: this represents 73

● In the context of ASCII: this represents ‘I’

What about a group of 4 bytes?

● Could be an integer

● Could be an array of 4 characters

* interpreting it as an unsigned or signed (2’s complement) value

COMP1521

Bitwise operations
provide us ways to manipulating the individual bits of a value.

- CPUs provide instructions which implement bitwise operations.
- MIPS provides 13 bit manipulation instructions

- C provides 6 bitwise operators
- & bitwise AND

- | bitwise OR

- ^ bitwise XOR (eXclusive OR)

- ~ bitwise NOT

- << left shift

- >> right shift

COMP1521

Bitwise AND (&)

● takes two values (eg. a & b) and performs a logical AND
between pairs of corresponding bits

○ resulting bits are set to 1 if both the original bits in that column are 1

Example:

Used for eg. checking if a particular bit is set (that is, set to 1)

COMP1521

Checking if a number is odd

The obvious way to check if a number is odd in C:

int is_odd(int n) {
 return n % 2 == 1;
}

COMP1521

Checking if a number is odd

However, an odd value must have a 1 bit in the 1s place:

We can use bitwise AND to check if the last bit is set .

COMP1521

Checking if a number is odd

If the value is ODD (eg 39): If the value is EVEN (eg 38):

int is_odd(int n) {
 return n & 1;
}

0

COMP1521

Bitwise OR (|)

● takes two values (eg. a | b) and performs a logical OR between
pairs of corresponding bits

○ resulting bits are set to 1 if at least one of the original bits are 1

Example:

Used for eg. setting a particular bit

COMP1521

Bitwise XOR (^)

● takes two values (eg. a ^ b) and performs an eXclusive OR
between pairs of corresponding bits

○ resulting bits is set to 1 if exactly one of the original bits are 1

Example:

Used in eg. cryptography, forcing a bit to flip

0

COMP1521

Demo: xor.c

COMP1521

MIPS - Bit manipulation instructions

COMP1521

Demo: odd_even.s

COMP1521

Left shift (<<)
● takes a value and a small positive integer x (eg. a << x)

● shifts each bit x positions to the left

○ any bits that fall off the left vanish

○ new 0 bits are inserted on the right

○ result contains the same number of bits as the input

Example:

COMP1521

● We moved each bit to the left
● What does this mean mathematically?

Implications of left shift

16

COMP1521

● We moved each bit to the left
● What does this mean mathematically?
● What would happen if we “left shifted” in decimal?
● E.g. we have the value 123, let us “left shift” by “1”...

Implications of left shift

17

COMP1521

● We moved each bit to the left
● What does this mean mathematically?
● What would happen if we “left shifted” in decimal?
● E.g. we have the value 123, let us “left shift” by “1”...
● It becomes “1230” - multiplied by 10!

Implications of left shift

18

COMP1521

● We moved each bit to the left
● What does this mean mathematically?
● What would happen if we “left shifted” in decimal?
● E.g. we have the value 123, let us “left shift” by “1”...
● It becomes “1230” - multiplied by 10!

● So what happens if we left shift in binary? (demo: left_shift.c)

Implications of left shift

19

COMP1521

Right shift (>>)
● takes a value and a small positive integer x (eg. a >> x)

● shifts each bit x positions to the right

○ any bits that fall off the right vanish

○ new 0 bits are inserted on the left*

○ result contains the same number of bits as the input

Example:

* for unsigned values

COMP1521

● We moved each bit to the right
● What does this mean mathematically?
● What would happen if we “right shifted” in decimal?
● E.g. we have the value 123, let us “right shift” by “1”...

Implications of right shift

21

COMP1521

● We moved each bit to the right
● What does this mean mathematically?
● What would happen if we “right shifted” in decimal?
● E.g. we have the value 123, let us “right shift” by “1”...
● It becomes “12” - (integer) divided by 10!

● So what happens if we right shift in binary? (demo:right_shift.c)

Implications of right shift

22

COMP1521

Issues with shifting (>>)

● Shifts involving negative values may not be portable, and can
vary across different implementations

● Common source of bugs in COMP1521 (and elsewhere)

● Always use unsigned values/variables when shifting to be
safe/portable

COMP1521

Issues with shifting (>>)
// int16_t is a signed type (-32768..32767)
// below operations are undefined for a signed type
int16_t i;

i = -1;
i = i >> 1; // undefined - shift of a negative value
printf("%d\n", i);

i = -1;
i = i << 1; // undefined - shift of a negative value
printf("%d\n", i);

i = 32767;
i = i << 1; // undefined - left shift produces a negative value

uint64_t j;
j = 1 << 33; // undefined - constant 1 is an int
j = ((uint64_t)1) << 33; // ok

j = 1lu << 33; // also ok

COMP1521

MIPS - Shift instructions

● srl and srlv shift zeroes into most-significant bit

○ This matches shift in C of unsigned values

● sra and srav propagate most-significant bit

○ This ensures that shifting a negative number divides by 2

COMP1521

Demo: bitwise.c

$ gcc bitwise.c print_bits.c -o bitwise
$./bitwise
Enter a: 23032
Enter b: 12345
Enter c: 3
 a = 0101100111111000 = 0x59f8 = 23032
 b = 0011000000111001 = 0x3039 = 12345
 ~a = 1010011000000111 = 0xa607 = 42503
 a & b = 0001000000111000 = 0x1038 = 4152
 a | b = 0111100111111001 = 0x79f9 = 31225
 a ^ b = 0110100111000001 = 0x69c1 = 27073
a >> c = 0000101100111111 = 0x0b3f = 2879
a << c = 1100111111000000 = 0xcfc0 = 53184

COMP1521

Demo: shift_as_multiply.c

$ dcc shift_as_multiply.c print_bits.c -o shift_as_multiply
$./shift_as_multiply 4
2 to the power of 4 is 16

In binary it is: 00000000000000000000000000010000
$./shift_as_multiply 20
2 to the power of 20 is 1048576

In binary it is: 00000000000100000000000000000000
$./shift_as_multiply 31
2 to the power of 31 is 2147483648

In binary it is: 10000000000000000000000000000000

COMP1521

Given the following declarations:

What is the value of each of these expressions?

Exercise 1

28

// a signed 8-bit value

 uint8_t x = 0x55;

 uint8_t y = 0xAA;

 uint8_t a = x & y;

 uint8_t b = x ^ y;

 uint8_t c = x << 1;

 uint8_t d = y << 2;

 uint8_t e = x >> 1;

 uint8_t f = y >> 2;

 uint8_t g = x | y;

COMP1521

Demo: set_low_bits.c

$ dcc set_low_bits.c print_bits.c -o n_ones
$./set_low_bits 3

The bottom 3 bits of 7 are ones:
00000000000000000000000000000111
$./set_low_bits 19

The bottom 19 bits of 524287 are ones:
00000000000001111111111111111111
$./set_low_bits 29

The bottom 29 bits of 536870911 are ones:
00011111111111111111111111111111

COMP1521

Demo: set_bit_range.c

$ dcc set_bit_range.c print_bits.c -o set_bit_range
$./set_bit_range 0 7

Bits 0 to 7 of 255 are ones:
00000000000000000000000011111111
$./set_bit_range 8 15

Bits 8 to 15 of 65280 are ones:
00000000000000001111111100000000
$./set_bit_range 8 23

Bits 8 to 23 of 16776960 are ones:
00000000111111111111111100000000
$./set_bit_range 1 30

Bits 1 to 30 of 2147483646 are ones:
01111111111111111111111111111110

COMP1521

Demo: extract_bit_range.c

$ dcc extract_bit_range.c print_bits.c -o extract_bit_range
$./extract_bit_range 4 7 42

Value 42 in binary is:
00000000000000000000000000101010

Bits 4 to 7 of 42 are:
0010
$./extract_bit_range 10 20 123456789

Value 123456789 in binary is:
00000111010110111100110100010101

Bits 10 to 20 of 123456789 are:
11011110011

COMP1521

Given the following declarations:

What is the value of each of these expressions?

Exercise 2

32

// a signed 8-bit value

 uint8_t x = 0x55;

 uint8_t y = 0xAA;

 uint8_t h = x && y;

 uint8_t i = ~(x | y);

 uint8_t j = !(x | y);

 uint8_t k = x | (1 << 3);

 uint8_t l = x | ~(1 << 3);

COMP1521

Demo: pokemon.c

#define FIRE_TYPE 0x0001
#define FIGHTING_TYPE 0x0002
#define WATER_TYPE 0x0004
#define FLYING_TYPE 0x0008
#define POISON_TYPE 0x0010
#define ELECTRIC_TYPE 0x0020
#define GROUND_TYPE 0x0040
#define PSYCHIC_TYPE 0x0080
#define ROCK_TYPE 0x0100
#define ICE_TYPE 0x0200
#define BUG_TYPE 0x0400
#define DRAGON_TYPE 0x0800
#define GHOST_TYPE 0x1000
#define DARK_TYPE 0x2000
#define STEEL_TYPE 0x4000
#define FAIRY_TYPE 0x8000

COMP1521

Demo: pokemon.c

$ dcc pokemon.c print_bits.c -o pokemon
$./pokemon
0000010000000000 BUG_TYPE
0000000000010000 POISON_TYPE
1000000000000000 FAIRY_TYPE
1000010000010000 our_pokemon type (1)

Poisonous
1001010000000000 our_pokemon type (2)

Scary

COMP1521

Demo: bitset.c

$ dcc bitset.c print_bits.c -o bitset
$./bitset

Set members can be 0-63, negative number to finish

Enter set a: 1 2 4 8 16 32 -1

Enter set b: 5 4 3 33 -1
a = 0000000000000000000000000000000100000000000000010000000100010110 = 0x100010116 =
4295033110
b = 0000000000000000000000000000001000000000000000000000000000111000 = 0x200000038 =
8589934648
a = {1,2,4,8,16,32}
b = {3,4,5,33}
a union b = {1,2,3,4,5,8,16,32,33}
a intersection b = {4}
cardinality(a) = 6
is_member(42, a) = 0

COMP1521

Write the following in 8 bits of binary for each of the following:

● 25, 65, ~0, ~~1, 0xFF, ~0xFF
● (01010101 & 10101010), (01010101 | 10101010)
● (x & ~x), (x | ~x)

How do we do the following in C?

● Given an 8-bit input X, ensure the 3rd bit from the RHS is 1?
● Given an 8-bit input Y, ensure the 3rd bit from the RHS is 0?
● Given an 8-bit input Z, test if the 3rd bit from the RHS is 1?

Exercise 3

36

