Bitwise Operations

2024
Hammond Pearce
Basically reformatted Abiram’s slides
Recap Exercise

Question 1: Convert $3AF_{16}$ to binary?

Question 2: Convert 10101101_2 to hexadecimal?

Question 3: Convert 673_8 to binary?

Question 4: Convert 1000_{10} to binary?

Question 5: Convert 1111_2 to hexadecimal, decimal, and octal?

Question 6: What’s the difference in C if a constant value leads with “0x” versus “0b”? Does it change the program?
Quick revision on integer representation

- All data on a computer is represented in binary (base-2)
- Each binary digit (or bit) can either be a 0 or 1
- Computers use bytes (groups of 8 bits) as their fundamental units of storage
Quick revision on integer representation

- Information = data + context
 - For example, take the following byte of data: 01001001
 - In a numeric context*: this represents 73
 - In the context of ASCII: this represents ‘I’

What about a group of 4 bytes?
- Could be an integer
- Could be an array of 4 characters

* interpreting it as an unsigned or signed (2’s complement) value
Bitwise operations

provide us ways to manipulating the individual bits of a value.

- CPUs provide instructions which implement bitwise operations.
 - MIPS provides 13 bit manipulation instructions
- C provides 6 bitwise operators
 - & bitwise AND
 - | bitwise OR
 - ^ bitwise XOR (eXclusive OR)
 - ~ bitwise NOT
 - << left shift
 - >> right shift
Bitwise AND (&)

- takes two values (eg. a & b) and performs a logical AND between pairs of corresponding bits
 - resulting bits are set to 1 if **both** the original bits in that column are 1

Example:

```
  128  64  32  16  8  4  2  1
  0  0  1  0  0  1  1  1
 &
  1  1  1  0  0  0  1  1
  0  0  1  0  0  0  1  1
  & | 0  1
    | 0  0  0
    | 1  0  1
```

Used for eg. checking if a particular bit is set (that is, set to 1)
Checking if a number is odd

The obvious way to check if a number is odd in C:

```c
int is_odd(int n) {
    return n % 2 == 1;
}
```
Checking if a number is odd

However, an odd value must have a 1 bit in the 1s place:

We can use bitwise AND to check if the last bit is set.
Checking if a number is odd

```c
int is_odd(int n) {
    return n & 1;
}
```

If the value is **ODD** (eg 39):

<table>
<thead>
<tr>
<th>128</th>
<th>64</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>&</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If the value is **EVEN** (eg 38):

<table>
<thead>
<tr>
<th>128</th>
<th>64</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>&</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

COMP1521
Bitwise OR (|)

- Takes two values (e.g., a | b) and performs a logical OR between pairs of corresponding bits.
 - Resulting bits are set to 1 if **at least** one of the original bits are 1.

Example:

```
  0 0 1 0 0 1 1 1
  | 1 1 1 0 0 0 1 1
  |----------------|
  1 1 1 0 0 1 1 1
```

Used for eg. setting a particular bit.
Bitwise XOR (\(^\))

- takes two values (eg. \(a \, ^\wedge \, b\)) and performs an eXclusive OR between pairs of corresponding bits
 - resulting bits is set to 1 if **exactly** one of the original bits are 1

Example:

\[
\begin{array}{ccccccc}
\wedge & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
\hline
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\wedge & 0 & 1 \\
\hline
0 & 0 & 1 \\
\hline
1 & 1 & 0 \\
\end{array}
\]

Used in eg. cryptography, forcing a bit to flip
Demo: xor.c
MIPS - Bit manipulation instructions

<table>
<thead>
<tr>
<th>assembly</th>
<th>meaning</th>
<th>bit pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>and r_d, r_s, r_t</td>
<td>$r_d = r_s & r_t$</td>
<td>0000000ssssssttttttdddddddd000000100100</td>
</tr>
<tr>
<td>or r_d, r_s, r_t</td>
<td>$r_d = r_s \mid r_t$</td>
<td>0000000ssssssttttttdddddddd000000100101</td>
</tr>
<tr>
<td>xor r_d, r_s, r_t</td>
<td>$r_d = r_s ^ r_t$</td>
<td>0000000ssssssttttttdddddddd000000100110</td>
</tr>
<tr>
<td>nor r_d, r_s, r_t</td>
<td>$r_d = \sim (r_s \mid r_t)$</td>
<td>0000000ssssssttttttdddddddd000000100111</td>
</tr>
<tr>
<td>andi r_t, r_s, I</td>
<td>$r_t = r_s & I$</td>
<td>0011000sssssstttttIIIIIIIIIIIIIIIIIIII</td>
</tr>
<tr>
<td>ori r_t, r_s, I</td>
<td>$r_t = r_s \mid I$</td>
<td>0011010sssssstttttIIIIIIIIIIIIIIIIIIIIII</td>
</tr>
<tr>
<td>xori r_t, r_s, I</td>
<td>$r_t = r_s ^ I$</td>
<td>0011100sssssstttttIIIIIIIIIIIIIIIIIIIIIIII</td>
</tr>
<tr>
<td>not r_d, r_s</td>
<td>$r_d = \sim r_s$</td>
<td>pseudo-instruction</td>
</tr>
</tbody>
</table>
Demo: odd_even.s
Left shift (\(<<\))

- takes a value and a small positive integer \(x\) (eg. \(a \ll x\))
- shifts each bit \(x\) positions to the left
 - any bits that fall off the left vanish
 - new 0 bits are inserted on the right
 - result contains the same number of bits as the input

Example:

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
\end{array} \ll 2
\]

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array}
\]
Implications of left shift

- We moved each bit to the left
- What does this mean mathematically?
Implications of left shift

- We moved each bit to the left
- What does this mean mathematically?
- What would happen if we “left shifted” in decimal?
- E.g. we have the value 123, let us “left shift” by “1”...
Implications of left shift

- We moved each bit to the left
- What does this mean mathematically?
- What would happen if we “left shifted” in decimal?
- E.g. we have the value 123, let us “left shift” by “1”...
- It becomes “1230” - multiplied by 10!
Implications of left shift

- We moved each bit to the left
- What does this mean mathematically?
- What would happen if we “left shifted” in decimal?
- E.g. we have the value 123, let us “left shift” by “1”...
- It becomes “1230” - multiplied by 10!

- So what happens if we left shift in binary? (demo: left_shift.c)
Right shift (\(\gg\))

- takes a value and a small positive integer \(x\) (eg. \(a \gg x\))
- shifts each bit \(x\) positions to the right
 - any bits that fall off the right vanish
 - new 0 bits are inserted on the left*
 - result contains the same number of bits as the input

Example:

\[
\begin{array}{cccc}
1 & 1 & 1 & 0 \\
\end{array}
\begin{array}{cccc}
0 & 0 & 0 & 1 \\
\end{array}
\begin{array}{cccc}
1 & 1 & 0 & 0 \\
\end{array}
\begin{array}{cccc}
1 & 1 & 0 & 0 \\
\end{array}
\begin{array}{cccc}
1 & 1 & 0 & 0 \\
\end{array}
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\end{array}
\]

* for unsigned values
Implications of right shift

- We moved each bit to the right
- What does this mean mathematically?
- What would happen if we “right shifted” in decimal?
- E.g. we have the value 123, let us “right shift” by “1”...
Implications of right shift

- We moved each bit to the right
- What does this mean mathematically?
- What would happen if we “right shifted” in decimal?
 - E.g. we have the value 123, let us “right shift” by “1”...
 - It becomes “12” - (integer) divided by 10!

- So what happens if we right shift in binary? (demo:right_shift.c)
Issues with shifting (\(\gg\))

- Shifts involving negative values may not be portable, and can vary across different implementations
- Common source of bugs in COMP1521 (and elsewhere)
- Always use unsigned values/variables when shifting to be safe/portable
Issues with shifting (\texttt{\textgreater\textless\textgreater})

// int16_t is a signed type (-32768..32767)
// below operations are undefined for a signed type
int16_t i;

i = -1;
i = i \textgreater\textless 1; // undefined - shift of a negative value
printf("%d\n", i);

i = -1;
i = i \textless\textless 1; // undefined - shift of a negative value
printf("%d\n", i);

i = 32767;
i = i \textless\textless 1; // undefined - left shift produces a negative value

uint64_t j;
j = 1 \textless\textless 33; // undefined - constant 1 is an int
j = ((uint64_t)1) \textless\textless 33; // ok
j = 1lu \textless\textless 33; // also ok
MIPS - Shift instructions

<table>
<thead>
<tr>
<th>assembly</th>
<th>meaning</th>
<th>bit pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>sllv r_d, r_t, r_s</td>
<td>$r_d = r_t \ll r_s$</td>
<td>000000ssssstttttdddd00000000100</td>
</tr>
<tr>
<td>srlv r_d, r_t, r_s</td>
<td>$r_d = r_t \gg r_s$</td>
<td>000000ssssstttttdddd0000000110</td>
</tr>
<tr>
<td>sra r_d, r_t, I</td>
<td>$r_d = r_t \gg I$</td>
<td>000000000000ttttttddddIII00000</td>
</tr>
<tr>
<td>srl r_d, r_t, I</td>
<td>$r_d = r_t \gg I$</td>
<td>000000000000ttttttddddIII000010</td>
</tr>
<tr>
<td>srav r_d, r_t, I</td>
<td>$r_d = r_t \gg I$</td>
<td>000000000000ttttttddddIII000011</td>
</tr>
</tbody>
</table>

- **srl** and **srlv** shift zeroes into most-significant bit
 - This matches shift in C of unsigned values
- **sra** and **srav** propagate most-significant bit
 - This ensures that shifting a negative number divides by 2
Demo: bitwise.c

$ gcc bitwise.c print_bits.c -o bitwise
$./bitwise
Enter a: 23032
Enter b: 12345
Enter c: 3
a = 0101100111111000 = 0x59f8 = 23032
b = 0011000000111001 = 0x3039 = 12345
~a = 1010011000000111 = 0xa607 = 42503
a & b = 0001000000111000 = 0x1038 = 4152
a | b = 0111100111111001 = 0x79f9 = 31225
a ^ b = 0110100111000001 = 0x69c1 = 27073
a >> c = 0000101100111111 = 0x0b3f = 2879
a << c = 1100111111000000 = 0xcfc0 = 53184
Demo: shift_as_multiply.c

$ dcc shift_as_multiply.c print_bits.c -o shift_as_multiply
$./shift_as_multiply 4
2 to the power of 4 is 16

In binary it is: 00000000000000000000000000010000

$./shift_as_multiply 20
2 to the power of 20 is 1048576

In binary it is: 0000000000000000100000000000000000000000

$./shift_as_multiply 31
2 to the power of 31 is 2147483648

In binary it is: 100
Exercise 1

Given the following declarations:

```c
// a signed 8-bit value
uint8_t x = 0x55;
uint8_t y = 0xAA;
```

What is the value of each of these expressions?

```c
uint8_t a = x & y;
uint8_t b = x ^ y;
uint8_t c = x << 1;
uint8_t d = y << 2;
uint8_t e = x >> 1;
uint8_t f = y >> 2;
uint8_t g = x | y;
```
Demo: set_low_bits.c

$ dcc set_low_bits.c print_bits.c -o n_ones
$./set_low_bits 3

The bottom 3 bits of 7 are ones:
00000000000000000000000000000111
$./set_low_bits 19

The bottom 19 bits of 524287 are ones:
00000000000001111111111111111111
$./set_low_bits 29

The bottom 29 bits of 536870911 are ones:
00011111111111111111111111111111
Demo: set_bit_range.c

$ dcc set_bit_range.c print_bits.c -o set_bit_range
$./set_bit_range 0 7

Bits 0 to 7 of 255 are ones:
00000000000000000000000011111111

$./set_bit_range 8 15

Bits 8 to 15 of 65280 are ones:
00000000000000001111111110000000

$./set_bit_range 8 23

Bits 8 to 23 of 16776960 are ones:
00000000111111111111111110000000

$./set_bit_range 1 30

Bits 1 to 30 of 2147483646 are ones:
01111111111111111111111111111110
Demo: extract_bit_range.c

$ dcc extract_bit_range.c print_bits.c -o extract_bit_range
$./extract_bit_range 4 7 42

Value 42 in binary is:
00000000000000000000000000101010

Bits 4 to 7 of 42 are:
0010
$./extract_bit_range 10 20 123456789

Value 123456789 in binary is:
00000111010110111100110100010101

Bits 10 to 20 of 123456789 are:
11011110011
Exercise 2

Given the following declarations:

```c
// a signed 8-bit value
uint8_t x = 0x55;
uint8_t y = 0xAA;
```

What is the value of each of these expressions?

```c
uint8_t h = x && y;
uint8_t i = ~(x | y);
uint8_t j = !(x | y);
uint8_t k = x | (1 << 3);
uint8_t l = x | ~(1 << 3);
```
#define FIRE_TYPE 0x0001
#define FIGHTING_TYPE 0x0002
#define WATER_TYPE 0x0004
#define FLYING_TYPE 0x0008
#define POISON_TYPE 0x0010
#define ELECTRIC_TYPE 0x0020
#define GROUND_TYPE 0x0040
#define PSYCHIC_TYPE 0x0080
#define ROCK_TYPE 0x0100
#define ICE_TYPE 0x0200
#define BUG_TYPE 0x0400
#define DRAGON_TYPE 0x0800
#define GHOST_TYPE 0x1000
#define DARK_TYPE 0x2000
#define STEEL_TYPE 0x4000
#define FAIRY_TYPE 0x8000
Demo: pokemon.c

$ dcc pokemon.c print_bits.c -o pokemon
$./pokemon
0000010000000000 BUG_TYPE
0000000000010000 POISON_TYPE
1000000000000000 FAIRY_TYPE
1000010000010000 our_pokemon type (1)

Poisonous
1001010000000000 our_pokemon type (2)

Scary
$ dcc bitset.c print_bits.c -o bitset
$./bitset

Set members can be 0-63, negative number to finish

Enter set a: 1 2 4 8 16 32 -1

Enter set b: 5 4 3 33 -1

a = 0000000000000000000000000000000100000000000000010000000100010110 = 0x10010116 = 4295033110
b = 0000000000000000000000000000001000000000000000000000000000111000 = 0x200000038 = 8589934648
a = {1,2,4,8,16,32}
b = {3,4,5,33}
a union b = {1,2,3,4,5,8,16,32,33}
a intersection b = {4}
cardinality(a) = 6
is_member(42, a) = 0
Exercise 3

Write the following in 8 bits of binary for each of the following:

- 25, 65, 0, ~0, ~0x0123, ~0xFF, ~0x0123
- (01010101 & 10101010), (01010101 | 10101010)
- (x & ~x), (x | ~x)

How do we do the following in C?

- Given an 8-bit input X, ensure the 3rd bit from the RHS is 1?
- Given an 8-bit input Y, ensure the 3rd bit from the RHS is 0?
- Given an 8-bit input Z, test if the 3rd bit from the RHS is 1?