COMP1521 24T2 Lec06 part A

MIPS: Recap

2024
Hammond Pearce
Adapted from Nothing
Recap: MIPS Function skeleton

func:
 # [header comment]
func__prologue:
 begin
 push $ra
 push $s0
 push $s1

func__body:
 # do stuff
 li $a0, 42
 jal foo # foo(42)

 # foo return val in $v0

func__epilogue:
 pop $s1
 pop $s0
 pop $ra
 end

jr $ra
Recap: A translation exercise

```c
#include <stdio.h>

struct pizza_t {
    char size[10];
    int price_cents;
};

struct pizza_t pizza_options[3] = {
    {"small", 300},
    {"medium", 550},
    {"large", 800}
};

void print_pizza_t(struct pizza_t *pizza) {
    printf("Size: %s, ", pizza->size);
    printf("price: %d cents\n", pizza->price_cents);
}

void increase_price(struct pizza_t *pizza, int increase_cents) {
    pizza->price_cents += increase_cents;
}

int main() {
    printf("The available pizza options are: \n");
    for (int i = 0; i < 3; i++) {
        increase_price(&pizza_options[i], 100);
        print_pizza_t(&pizza_options[i]);
    }
    return 0;
}
```

This should use everything from the prior lectures!
COMP1521 24T2 Lec06 part B

Integers

2024
Hammond Pearce
Adapted from Andrew’s Material
There are 10 types of students
There are 10 types of students

Those that understand binary,
There are 10 types of students

Those that understand binary,

And those that don’t
There are 10 types of students

Those that understand binary,

And those that don’t

-Andrew Taylor
What’s a number?

4750
What’s a number?

4750 - this is a number
What’s a number?

4750 - this is a number

It is equivalent to:

4000 + 700 + 50 + 0
What’s a number?

4750 - this is a number

It is equivalent to:

4000 + 700 + 50 + 0

If we assume it is base 10!
What’s a number?

4750 - this is a number

It is equivalent to:

4000 + 700 + 50 + 0

We can also write this as,

4*10^3 + 7*10^2 + 5*10^1 + 0*10^0
What’s a number?

4750 - this is a number

It is equivalent to:

4000 + 700 + 50 + 0

We can also write this as,

$4 \times 10^3 + 7 \times 10^2 + 5 \times 10^1 + 0 \times 10^0 = 4750_{10}$
Base 10 is an arbitrary choice

- Base 10 is also called “Decimal” (Deci = 10)
Base 10 is an arbitrary choice

- Base 10 is also called “Decimal” (Deci = 10)
- Possibly exists because we have 10 digits (fingers)
- Ancient Egyptians, Brahmi Numerals, Greek Numerals, Hebrew Numerals, Roman Numerals and Chinese Numerals:
 - All base 10!
(Aside)

- It was quite hard to do math in a lot of the base 10 notations
 - XVI times IIIV plus L ?????
- The Hindu–Arabic numeral system simplified things greatly
- Popularized by Al-Khwarizmi
 - This guy wrote some neat books, including one called Al-Jabr, in the 800s
 - You might know some of his work!
What about some other bases?
What about some other bases?

- Let’s make a new number system which is base 7
- Here, $1216_7 = ?_{10}$
What about some other bases?

- Let’s make a new number system which is base 7
- Here, $1216_7 = ?_{10}$

$$1 \times 7^3 + 2 \times 7^2 + 1 \times 7^1 + 6 \times 7^0 = ?$$
What about some other bases?

- Let’s make a new number system which is base 7
- Here, $1216_7 = ?_{10}$

$1 \times 7^3 + 2 \times 7^2 + 1 \times 7^1 + 6 \times 7^0 = ?$

<table>
<thead>
<tr>
<th>7^3</th>
<th>7^2</th>
<th>7^1</th>
<th>7^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>343_{10}</td>
<td>49_{10}</td>
<td>7_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>
Let’s make a new number system which is base 7

Here, \(1216_7 = ?_{10}\)

\[
1 \cdot 7^3 + 2 \cdot 7^2 + 1 \cdot 7^1 + 6 \cdot 7^0 = ?
\]

<table>
<thead>
<tr>
<th></th>
<th>7^3</th>
<th>7^2</th>
<th>7^1</th>
<th>7^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>343_{10}</td>
<td>49_{10}</td>
<td>7_{10}</td>
<td>1_{10}</td>
<td></td>
</tr>
</tbody>
</table>

\[
1 \cdot 343 + 2 \cdot 47 + 2 \cdot 7 + 6 \cdot 1 = ?
\]
What about some other bases?

- Let’s make a new number system which is base 7
- Here, $1216_7 = ?_{10}$

$$1 \times 7^3 + 2 \times 7^2 + 1 \times 7^1 + 6 \times 7^0 = ?$$

<table>
<thead>
<tr>
<th>7^3</th>
<th>7^2</th>
<th>7^1</th>
<th>7^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>343_{10}</td>
<td>49_{10}</td>
<td>7_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>

$$1 \times 343 + 2 \times 47 + 2 \times 7 + 6 \times 1 = 454_{10}$$
Computers like binary

- Binary is decimal using base 2 notation
 - Digits 0 and 1
 - Easy to represent using “electricity”

<table>
<thead>
<tr>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8_{10}</td>
<td>4_{10}</td>
<td>2_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>
Computers like binary

- Binary is decimal using base 2 notation
 - Digits 0 and 1
 - Easy to represent using “electricity”

<table>
<thead>
<tr>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8_{10}</td>
<td>4_{10}</td>
<td>2_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>

Question: What is 1011_2 in base 10?
Computers like binary

● Binary is decimal using base 2 notation
 ○ Digits 0 and 1
 ○ Easy to represent using “electricity”

<table>
<thead>
<tr>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8<sub>10</sub></td>
<td>4<sub>10</sub></td>
<td>2<sub>10</sub></td>
<td>1<sub>10</sub></td>
</tr>
</tbody>
</table>

Question: What is 1011_2 in base 10?

Answer: $1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 = 11$
More examples

Question: Convert 1101_2 to decimal?
More examples

Question: Convert 1101_2 to decimal?
Answer: 13
More examples

Question: Convert 1101_2 to decimal?
Answer: 13

Question: Convert 29_{10} to binary?
More examples

Question: Convert 1101_2 to decimal?
Answer: 13

Question: Convert 29_{10} to binary?
Answer: 11101
Binary numbers are hard to read!

- They get very long, very fast
- E.g. $12345678_{10} = 101111000110000101001110_2$
Binary numbers are hard to read!

- They get very long, very fast
- E.g. $12345678_{10} = 101111000110000101001110_2$
- Solution: Write numbers in hexadecimal!
- The base or radix is “16”, digits 0 1 2 3 4 5 6 7 8 9 A B C D E F
Binary numbers are hard to read!

- They get very long, very fast
- E.g. $12345678_{10} = 101111000110000101001110_2$
- Solution: Write numbers in hexadecimal!
- The base or radix is “16”, digits 0 1 2 3 4 5 6 7 8 9 A B C D E F

<table>
<thead>
<tr>
<th>16^3</th>
<th>16^2</th>
<th>16^1</th>
<th>16^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096_{10}</td>
<td>256_{10}</td>
<td>16_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>
Binary numbers are hard to read!

- They get very long, very fast
- E.g. $12345678_{10} = 101111000110000101001110_2$
- Solution: Write numbers in hexadecimal!
- The base or radix is “16”, digits 0 1 2 3 4 5 6 7 8 9 A B C D E F

<table>
<thead>
<tr>
<th>16^3</th>
<th>16^2</th>
<th>16^1</th>
<th>16^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096_{10}</td>
<td>256_{10}</td>
<td>16_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>

Example: $3AF1_{16} = ?_{10}$
Hexadecimal

- The base or radix is “16”, digits 0 1 2 3 4 5 6 7 8 9 A B C D E F

<table>
<thead>
<tr>
<th>16^3</th>
<th>16^2</th>
<th>16^1</th>
<th>16^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096_{10}</td>
<td>256_{10}</td>
<td>16_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>

Example: \(3AF1_{16} = ?_{10}\)

\[3 \times 16^3 + 10 \times 16^2 + 15 \times 16^1 + 1 \times 16^0 = ?\]
Hexadecimal

- The base or radix is “16”, digits 0 1 2 3 4 5 6 7 8 9 A B C D E F

<table>
<thead>
<tr>
<th>16^3</th>
<th>16^2</th>
<th>16^1</th>
<th>16^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096_{10}</td>
<td>256_{10}</td>
<td>16_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>

Example: $3AF1_{16} = ?_{10}$

$3 \times 16^3 + 10 \times 16^2 + 15 \times 16^1 + 1 \times 16^0 = 15089_{10}$
More hexadecimal examples

Question: Convert $1FF_{16}$ to decimal?
More hexadecimal examples

Question: Convert $1FF_{16}$ to decimal?
Answer: 511_{10}
More hexadecimal examples

Question: Convert $1FF_{16}$ to decimal?
Answer: 511_{10}

Question: Convert 11101_2 to hexadecimal?
Answer: $1D_{16}$
Binary -> Hexadecimal

- Binary is long e.g. $12345678_{10} = 101111000110000101001110_2$
- Solution: Write numbers in hexadecimal!

<table>
<thead>
<tr>
<th>16^3</th>
<th>16^2</th>
<th>16^1</th>
<th>16^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096_{10}</td>
<td>256_{10}</td>
<td>16_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>

How do we do this?
Binary -> Hexadecimal

- Binary is long e.g. $12345678_{10} = 101111000110000101001110_2$
- Solution: Write numbers in hexadecimal!

<table>
<thead>
<tr>
<th>16^3</th>
<th>16^2</th>
<th>16^1</th>
<th>16^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096_{10}</td>
<td>256_{10}</td>
<td>16_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>

“16” is a power of “2” – 4^2
Binary -> Hexadecimal

- Binary is long e.g. $12345678_{10} = 101111000110000101001110_2$
- Solution: Write numbers in hexadecimal!

<table>
<thead>
<tr>
<th>16^3</th>
<th>16^2</th>
<th>16^1</th>
<th>16^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096_{10}</td>
<td>256_{10}</td>
<td>16_{10}</td>
<td>1_{10}</td>
</tr>
</tbody>
</table>

“16” is a power of “2” – 4^2

Separate the bits into groups of 4…
Binary -> Hexadecimal

- \(\text{12345678}_{10} = 101111000110000101001110_2 \)
- \(= 1011\ 1100\ 0110\ 0001\ 0100\ 1110_2 \)
Binary -> Hexadecimal

- $12345678_{10} = 101111000110000101001110_2$
- $= 1011 1100 0110 0001 0100 1110_2$
- Each 4 bit group now exactly fits one hexadecimal numeral!
Binary -> Hexadecimal

- \(12345678_{10} = 101111000110000101001110_2\)
- \(= 1011 1100 0110 0001 0100 1110_2\)
- Each 4 bit group now exactly fits **one** hexadecimal numeral!
Binary -> Hexadecimal

- $12345678_{10} = 101111000110000101001110_2$
- $= \quad 1011 \ 1100 \ 0110 \ 0001 \ 0100 \ 1110_2$
- Each 4 bit group now exactly fits **one** hexadecimal numeral!

<table>
<thead>
<tr>
<th>Base 10</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 16</td>
<td>F</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Base 2</td>
<td>1111</td>
<td>1110</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>1000</td>
<td>0111</td>
<td>0110</td>
<td>0101</td>
<td>0100</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
<td>0000</td>
</tr>
</tbody>
</table>
Binary -> Hexadecimal

1. $12345678_{10} = 101111000110000101001110_{2}$
2. $= 101111000110000101001110_{2}$
3. Each 4 bit group now exactly fits **one** hexadecimal numeral!

<table>
<thead>
<tr>
<th>Base 10</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 16</td>
<td>F</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Base 2</td>
<td>1111</td>
<td>1110</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>1000</td>
<td>0111</td>
<td>0110</td>
<td>0101</td>
<td>0100</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
<td>0000</td>
</tr>
</tbody>
</table>

Simply “look up” the value!
Binary -> Hexadecimal

- $12345678_{10} = 101111000110000101001110_2$
- $= 1011 1100 0110 0001 0100 1110_2$
- Each 4 bit group now exactly fits one hexadecimal numeral!

<table>
<thead>
<tr>
<th>Base 10</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 16</td>
<td>F</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Base 2</td>
<td>1111</td>
<td>1110</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>1000</td>
<td>0111</td>
<td>0110</td>
<td>0101</td>
<td>0100</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
<td>0000</td>
</tr>
</tbody>
</table>

- $= 1011 1100 0110 0001 0100 1110_2$
- $= B\ C\ 6\ 1\ 4\ E_{16}$
More examples

Binary 01101111

=

Hexadecimal 6F
More examples

Binary 01101111
 =
Hexadecimal 6F

Hexadecimal A5
 =
Decimal 10100101
Your turn

Question: Convert $1FF_{16}$ to binary?

Question: Convert 001111101_2 to hexadecimal?
Your turn

Question: Convert 1FF₁₆ to binary?
Answer: 0001 1111 1111₂

Question: Convert 001111101₂ to hexadecimal?
Answer: 3D₁₆
Are there other powers of 2?

- Yes, octal (Base 3)
 - Used to be popular for binary numbers
 - Similar advantages to hexadecimal

- Group bits into 3:

<table>
<thead>
<tr>
<th>Base 10</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Base 2</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
<td>011</td>
<td>010</td>
<td>001</td>
<td>000</td>
</tr>
</tbody>
</table>

- Example: $72_8 = 111\ 010_2$
Are there other powers of 2?

- Yes, octal (Base 3)
 - Used to be popular for binary numbers
 - Similar advantages to hexadecimal

- Group bits into 3:

<table>
<thead>
<tr>
<th>Base 10</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Base 2</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
<td>011</td>
<td>010</td>
<td>001</td>
<td>000</td>
</tr>
</tbody>
</table>

- Example: \(72_8 = 111 \ 010_2 = 3A_{16} = 58_{10}\)
A handy way to remember:

- In binary, each digit is 1 bit:
 - 01001000111110101011110010010111_2
Remember:

- In binary, each digit represents 1 bit:
 - 01001000111110101011110010010111₂

- In hexadecimal, each digit represents 4 bits:
 - 0100 1000 1111 1010 1011 1100 1001 0111₂
 - 4 8 F A B C 9 7₁₆

- In octal, each digit represents 3 bits
 - 01 001 000 111 110 101 011 110 010 010 111₂
 - 1 1 0 7 6 5 3 6 2 2 7₈
Constants in C and MIPS assembly

- A number beginning with 0x is hexadecimal
- A number beginning with 0 is octal
- A number beginning with 0b is binary
- Otherwise, it is decimal

```c
printf("%d", 0x2A);  // prints 42
printf("%d", 052);  // prints 42
printf("%d", 0b101010);  // prints 42
printf("%d", 42);  // prints 42
```
How big can numbers get?

- In MIPSY integers are “words”, which are 4 bytes == 32 bits
 - means we can store values from the range 0 .. \(2^{32}-1\)
What about negative numbers?

- We call these “signed” numbers.
- E.g. -6 has a “negative” sign, +6 has a “positive” sign.
Range of negative values

- The maximum number of values stays the same
- But the range of values shift to $-2^{31} .. 2^{31}-1$
What do signed binary numbers look like?

- Modern computers use “two’s complement” for integers
- Positive integers and zero represented as normal,
- Negative integers represented in a way to make math ✨ easy ✨
 - For an \(n \)-bit binary number, the number \(-b\) is \(2^n - b\)
 - E.g. 8-bit number “-5” is represented as \(2^8 - 5 = 1111\ 1011_2\)
Example

- Some simple code to examine 8-bit 2’s complement numbers:

```c
for (int i = -128; i < 128; i++) {
    printf("%4d ", i);
    print_bits(i, 8);
    printf("\n");
}
```

- gcc 8_bit_twos_complement.c print_bits.c -o 8_bit_twos_complement
Example: Printing all 8-bit 2’s complement

```
$ ./8_bit_twos_complement
-128 10000000
-127 10000001
-126 10000010
...
-3 11111101
-2 11111110
-1 11111111
0 00000000
1 00000001
2 00000010
3 00000011
...
125 01111101
126 01111110
127 01111111
```
Example: print_bits_of_int.c

$./print_bits_of_int
Enter an int: 0
00000000000000000000000000000000
$./print_bits_of_int
Enter an int: 1
00000000000000000000000000000001
$./print_bits_of_int
Enter an int: -1
11111111111111111111111111111111
$./print_bits_of_int
Enter an int: 2147483647
01111111111111111111111111111111
$./print_bits_of_int
Enter an int: -2147483648
10000000000000000000000000000000
$
HW usually based on bytes, 1 byte = 8 bits

- C’s sizeof gives you number of bytes used for variable or type
 - sizeof variable - returns number of bytes to store variable
 - sizeof (type) - returns number of bytes to store type

- On CSE servers, C types have these sizes
 - char = 1 byte = 8 bits, 42 is 00101010
 - short = 2 bytes = 16 bits, 42 is 0000000000101010
 - int = 4 bytes = 32 bits, 42 is 00000000000000000000000000101010
 - double = 8 bytes = 64 bits, 42 = ?

- above are common sizes but not universal
- sizeof (int) might be 2 (bytes), or 4 (bytes)
integer_types.c - exploring integer types

<table>
<thead>
<tr>
<th>Type</th>
<th>Bytes</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>signed char</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>unsigned char</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>unsigned short</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>unsigned long</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>unsigned long long</td>
<td>8</td>
<td>64</td>
</tr>
</tbody>
</table>
Exploring integer types

<table>
<thead>
<tr>
<th>Type</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>signed char</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>unsigned char</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>short</td>
<td>-32768</td>
<td>32767</td>
</tr>
<tr>
<td>unsigned short</td>
<td>0</td>
<td>65535</td>
</tr>
<tr>
<td>int</td>
<td>-2147483648</td>
<td>2147483647</td>
</tr>
<tr>
<td>unsigned int</td>
<td>0</td>
<td>4294967295</td>
</tr>
<tr>
<td>long</td>
<td>-92233720368547757808</td>
<td>92233720368547757807</td>
</tr>
<tr>
<td>unsigned long</td>
<td>0</td>
<td>18446744073709551615</td>
</tr>
<tr>
<td>long long</td>
<td>-92233720368547757808</td>
<td>92233720368547757807</td>
</tr>
<tr>
<td>unsigned long long</td>
<td>0</td>
<td>18446744073709551615</td>
</tr>
</tbody>
</table>
include <stdint.h> to get below int types (and more) with known sizes

We use these a lot in COMP1521!

```c
// range of values for type
// minimum maximum
int8_t i1; // -128 127
uint8_t i2; // 0 255
int16_t i3; // -32768 32767
uint16_t i4; // 0 65535
int32_t i5; // -2147483648 2147483647
uint32_t i6; // 0 4294967295
int64_t i7; // -9223372036854775808 9223372036854775807
uint64_t i8; // 0 18446744073709551615
```