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.text

main:

        la $t1, some_addr

        li $v0, 11

some_label:

        lb $a0, ($t1)

        beq $a0, $0, some_other_label

        syscall

        addi $t1, $t1, 1

        b some_label

some_other_label:

        li $v0, 0

        jr $ra

Recap challenge
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What does this code do?

Answer in lecture chat
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A typical function call

result = func(expr1, expr2, ...);

● Expressions are evaluated and associated with each parameter

● Control flow transfers to the body of func

● Local variables are created for func

● A return value is computed

● Control flow transfers to the caller which can make use of 
result
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What really is a function??

● Functions are named pieces of code

○ Which you can (optionally) supply arguments

○ Perform computations using those arguments

○ And return a value to a caller
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● It takes an argument (x)
● It does some calculations
● It returns a value (two_x)

Here’s a function
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int timesTwo(int x) {

   int two_x = x*2;

   return two_x;

}
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● Also known as “signatures”
● These define the number and types of parameters
● And define the type of the return value

When calling a function, we must supply an appropriate number of 
values each with the correct type
(Some functions are special and can take “variable” numbers of arguments, e.g. printf - out of scope for 
COMP1521 but feel free to Google!)

Functions have “prototypes”
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//timesTwo takes an int argument and returns an int result

int timesTwo(int x);
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● Functions take arguments and return values

● But in C we can define functions that don’t take arguments or 
don’t return values

● What would these be useful for??

Pure functions vs “impure”
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Here’s a very basic program with function
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#include <stdio.h>

void f(void);

int main(void) {

   printf("calling function f\n");

   f();

   printf("back from function f\n");

   return 0;

}

void f(void) {

   printf("in function f\n");

}

Signature comes first

Function implementation
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How?

Well, functions are a bit like the labels we have been “goto”-ing

Let’s start with that, using branch instructions “b” 

Let’s write it in assembly
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How?

Well, functions are a bit like the labels we have been “goto”-ing

Let’s start with that, using branch instructions “b” 

… but what happens now if we want to call the function twice?

Let’s write it in assembly
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How do we actually call other functions?
● We use the jal instruction to call functions

● jal is a spicy version of the j (or pseudo-instruction b)

○ It also jumps to the given label

○ However, it also sets $ra (return address) to point to the next instruction 
before jumping

○ This gives us a mechanism to return to the caller function!

● However, this presents a problem…

○ Let’s try run our program!

11
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Let’s fix up the function call_return.c
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How do we pass info to a function??

● We can use the $a registers to pass in arguments

○ We have $a0 - $a3 – four registers to pass in arguments

○ Can use the stack (more soon) if we theoretically had more than 4 
arguments

■ However, you won’t have to deal with this in COMP1521
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Implement this:
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#include <stdio.h>

void f(int c);

int main(void) {

  printf("calling function f\n");

  f(22);

  printf("back from function f\n");

  return 0;

}

void f(int c) {

  printf("in function f\n");

  printf("%d", c);

  putchar('\n');

}
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How do functions return values?

● We can use the $v registers to retrieve a function’s result

○ Values occupying 32-bits or fewer should be returned using $v0

○ Don’t have to deal with $v1 in COMP1521
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Implement this:
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#include <stdio.h>

int f(int c);

int main(void) {

  printf("calling function f\n");

  int q = f(22);

  printf("back from function f\n");

  printf("%d", q);

  putchar('\n');

  return 0;

}

int f(int c) {

  printf("in function f\n");

  printf("%d", c);

  putchar('\n');

  c = c + 1;

  return c;

}
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Functions - a summary

● Functions are named pieces of code

○ Which you can call

○ Which you can (optionally) supply arguments

○ Perform computations using those arguments

○ And return a value to a caller
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Functions - a summary

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments 

○ Perform computations using those arguments

○ And return a value to a caller
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Functions - a summary

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments ($a0 - $a3)

○ Perform computations using those arguments

○ And return a value to a caller
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Functions - a summary

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments ($a0 - $a3)

○ Perform computations using those arguments

○ And return a value ($v0) to a caller
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We’ve now laid some ground rules on 
communicating with functions.
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We’ve now laid some ground rules on 
communicating with functions.

But it ge
ts bette

r!
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The MIPS calling conventions

● lay out rules on how we should be using registers when 
interfacing between different functions

● forms the MIPS ABI (application binary interface), which lays 
out how different code should interact with each other
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The MIPS calling conventions

● Theoretically could break these rules

○ However, makes it hard to have code that works interoperably with code 
from other sources

● Important to follow these rules to make sure that functions 
work nicely with each other
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The MIPS calling conventions

● Theoretically could break these rules

○ However, makes it hard to have code that works interoperably with code 
from other sources

● Important to follow these rules to make sure that functions 
work nicely with each other

“The pirates’ code of MIPS” - Zac Kologlu, former COMP1521 admin, COMP6991 lecturer

“You know the rules, and so do I” - Richard Paul Astley, won’t give you up
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The MIPS calling conventions - $t registers 

● $t registers are free real estate for a function

○ Functions can completely obliterate any existing values in a $t register

● However, this has implications for the function’s caller

○ The caller function must assume that the callee function completely 
obliterated any values in $t registers
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Hey, but my function doesn’t actually 
obliterate values in $t0 …

● Too bad - we MUST treat other functions like black boxes

● In fact, ‘strict’ autotesting for assignment 1 will intentionally 
destroy the existing values in your $t registers.

● The term for ‘obliterating’ an existing value inside a register 
without eventually restoring it is clobbering
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So we can’t preserve values between 
function calls in MIPS??
● could theoretically use global variables to preserve values

○ However, what if we call a function recursively?

■ Global variables need to be pre-allocated, 

■ We don’t know how many instances of a recursive function might exist at a given time

● Instead, we use $s registers to save values between function 
calls
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The MIPS calling convention - $s registers 

● Functions cannot permanently change the value of a $s register

● This means that we can rely on our callee functions not 
clobbering any values we keep in $s registers)

● Problem solved?? Store input in a $s register
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Uh oh!

● Our main function violates the pirates’ code by modifying $s0

○ The main function is not special, and must also abide by these rules

● Recursive functions also have this issue - they “change” $ra!

● Solution: functions can temporarily make changes to $s/$ra 
registers, as long as they restore them afterwards
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Uh oh!

● How do we do this?

○ Save the $s/$ra register’s original value to RAM at start of the function

○ Restore the $s/$ra register’s original value from RAM once complete

● As far as the caller is concerned - $s/$ra register is still good

“Does it almost feel like nothing’s changed at all?” - Dan Smith, lead vocalist, Bastille
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Saving to the stack
The stack

● is a region of memory which we can 
grow and expand

● uses the $sp (stack pointer) register to 
keep track of the top of the stack

● We can modify the stack pointer to 
allocate more room on the stack for us 
to store values
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The stack: growing and shrinking

This is how the stack changes as functions are called and return:

34
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The MIPS calling conventions - $sp

● Functions are free to use the stack as they need - as long as 
they restore $sp to its original value once done

○ That is, a function must restore the stack to its original size

● Failure to do so may lead to disastrous consequences
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The MIPS calling conventions - $sp
● For example,

○ If I subtract a total of 8 from $sp at the start of my function,

addi $sp, $sp, -4
sw   $s0, ($sp)
addi $sp, $sp, -4
sw   $s1, ($sp)

○ I must add 8 to $sp before my function returns,

lw   $s1, ($sp)
addi $sp, $sp, 4
lw   $s0, ($sp)
addi $sp, $sp, 4

36
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push and pop: the stack on easy mode
● For convenience, we provide you with two pseudo-instructions 

to interact with the stack: push and pop

● push Rt
○ ‘allocates’ 4 bytes on the stack ($sp = $sp - 4)

○ stores the value of Rt to the stack 

● pop Rt
○ restores the value on the top of the stack into Rt 

○ ‘deallocates’ 4 bytes on the stack ($sp = $sp + 4)

37
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push and pop: the stack on easy mode

● These are pseudo-instructions provided by mipsy - won’t work 
on other MIPS emulators

● This means that you can get through this course without ever 
directly interacting with $sp 
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Prologues and epilogues
● Prologues are the start of a function’s story

○ We use the begin instruction (more on this soon)
○ We need to push $ra onto the stack
○ We push the values of any $s registers we want to use

● Epilogues are the end of a function’s story
○ You may sometimes set the return value ($v0) here
○ We restore (pop) any $s registers we saved to the stack, in reverse order
○ We pop $ra
○ We use the end instruction (more on this soon)
○ We then return to the caller with jr $ra

● You should not do anything else in the prologue/epilogue
● You should not need to push/pop outside prologue/epilogue in this course

○ Caller-preservation of $t registers is theoretically possible but out of scope and discouraged
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Leaf functions
● Are functions that don’t call any other functions (eg. every main 

function you saw before this lecture)
● Leaf functions don’t need to preserve $ra

○ They don’t use jal, so they never actually modify $ra
● Leaf functions shouldn’t need to even use $s registers

○ We only use $s registers when we want to preserve a value across a 
function call

○ But leaf functions don’t have any function calls within them (by 
definition), so they can use $t registers

● Since there is no need to preserve values for a leaf function, 
they do not need a prologue and epilogue
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The MIPS pirates’ code: a summary
● $t registers are free real estate

○ But they’re free real estate for other functions too, so we must assume that 
other functions destroy them

● A function must restore the original values of $sp, $fp, $s0..$s7
○ But as a result, we can assume that any function we call leaves these 

registers unchanged
● Functions need to preserve $ra if they overwrite it

○ Otherwise, our function will lose track of where to return to
● $a0..$a3 contain arguments - these are also not preserved by 

callees (like $t)
● $v0 contains the return value
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Out of scope for COMP1521

● Floating point registers exist to pass/return floats/doubles

○ These have similar conventions

● Stack used to pass more than 4 arguments

● Stack used to pass/return values too large for registers

○ eg. we can pass structs to functions in C, but structs can be much larger 
than 4 bytes
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The frame pointer
● $fp is another register that points to the stack

○ It points to the bottom of a given function’s stack frame
○ In other words, it points to the same value as $sp before a function does any 

pushes/pops
● Used by debuggers to analyse the stack

○ The frame pointer, combined with saving older values of $fp to the stack essentially 
forms a linked list of stack frames

● Using a frame pointer is optional (both in COMP1521 and generally)
○ Compilers omit the use of a frame pointer when fast execution/smaller code is a priority

● Since the frame pointer tracks the original value of the stack pointer (at 
the start of the function), it gives us a mechanism to prevent chaos if a 
function pushes/pops too much
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The frame pointer - easy mode

● We don’t expect you to fully understand the frame pointer in COMP1521
● Instead, we provide you with two pseudo-instructions in mipsy

○ begin
■ saves the old $fp to the stack (keep track of the previous stack frame)
■ sets $fp to the current $sp
■ should be the first thing in the prologue

○ end
■ restore $sp to point to the top of the previous stack frame
■ restore the $fp to point to the previous value of $fp (bottom of the previous stack frame)
■ should be right before jr $ra

● This makes situations where you push/pop too much easier to debug
● Not necessary but makes debugging much much easier - strongly 

advised
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Function skeleton
func:
        # [header comment]
func__prologue:
        begin
        push    $ra
        push    $s0
        push    $s1

func__body:
        # do stuff

        li      $a0, 42
        jal     foo         # foo(42)

        # foo return val in $v0

func__epilogue:
        pop     $s1
        pop     $s0
        pop     $ra
        end

        jr      $ra
45


