
Hammond Pearce

2024
Hammond Pearce

Adapted from Abiram’s Material

1

COMP1521 24T2 Lec05

MIPS: FUNctions

Hammond Pearce

.text

main:

 la $t1, some_addr

 li $v0, 11

some_label:

 lb $a0, ($t1)

 beq $a0, $0, some_other_label

 syscall

 addi $t1, $t1, 1

 b some_label

some_other_label:

 li $v0, 0

 jr $ra

Recap challenge

2

What does this code do?

Answer in lecture chat

Hammond Pearce

A typical function call

result = func(expr1, expr2, ...);

● Expressions are evaluated and associated with each parameter

● Control flow transfers to the body of func

● Local variables are created for func

● A return value is computed

● Control flow transfers to the caller which can make use of
result

Hammond Pearce

What really is a function??

● Functions are named pieces of code

○ Which you can (optionally) supply arguments

○ Perform computations using those arguments

○ And return a value to a caller

Hammond Pearce

● It takes an argument (x)
● It does some calculations
● It returns a value (two_x)

Here’s a function

5

int timesTwo(int x) {

 int two_x = x*2;

 return two_x;

}

Hammond Pearce

● Also known as “signatures”
● These define the number and types of parameters
● And define the type of the return value

When calling a function, we must supply an appropriate number of
values each with the correct type
(Some functions are special and can take “variable” numbers of arguments, e.g. printf - out of scope for
COMP1521 but feel free to Google!)

Functions have “prototypes”

6

//timesTwo takes an int argument and returns an int result

int timesTwo(int x);

Hammond Pearce

● Functions take arguments and return values

● But in C we can define functions that don’t take arguments or
don’t return values

● What would these be useful for??

Pure functions vs “impure”

7

Hammond Pearce

Here’s a very basic program with function

8

#include <stdio.h>

void f(void);

int main(void) {

 printf("calling function f\n");

 f();

 printf("back from function f\n");

 return 0;

}

void f(void) {

 printf("in function f\n");

}

Signature comes first

Function implementation

Hammond Pearce

How?

Well, functions are a bit like the labels we have been “goto”-ing

Let’s start with that, using branch instructions “b”

Let’s write it in assembly

9

Hammond Pearce

How?

Well, functions are a bit like the labels we have been “goto”-ing

Let’s start with that, using branch instructions “b”

… but what happens now if we want to call the function twice?

Let’s write it in assembly

10

Hammond Pearce

How do we actually call other functions?
● We use the jal instruction to call functions

● jal is a spicy version of the j (or pseudo-instruction b)

○ It also jumps to the given label

○ However, it also sets $ra (return address) to point to the next instruction
before jumping

○ This gives us a mechanism to return to the caller function!

● However, this presents a problem…

○ Let’s try run our program!

11

Hammond Pearce

Let’s fix up the function call_return.c

12

Hammond Pearce

How do we pass info to a function??

● We can use the $a registers to pass in arguments

○ We have $a0 - $a3 – four registers to pass in arguments

○ Can use the stack (more soon) if we theoretically had more than 4
arguments

■ However, you won’t have to deal with this in COMP1521

Hammond Pearce

Implement this:

14

#include <stdio.h>

void f(int c);

int main(void) {

 printf("calling function f\n");

 f(22);

 printf("back from function f\n");

 return 0;

}

void f(int c) {

 printf("in function f\n");

 printf("%d", c);

 putchar('\n');

}

Hammond Pearce

How do functions return values?

● We can use the $v registers to retrieve a function’s result

○ Values occupying 32-bits or fewer should be returned using $v0

○ Don’t have to deal with $v1 in COMP1521

Hammond Pearce

Implement this:

16

#include <stdio.h>

int f(int c);

int main(void) {

 printf("calling function f\n");

 int q = f(22);

 printf("back from function f\n");

 printf("%d", q);

 putchar('\n');

 return 0;

}

int f(int c) {

 printf("in function f\n");

 printf("%d", c);

 putchar('\n');

 c = c + 1;

 return c;

}

Hammond Pearce

Functions - a summary

● Functions are named pieces of code

○ Which you can call

○ Which you can (optionally) supply arguments

○ Perform computations using those arguments

○ And return a value to a caller

Hammond Pearce

Functions - a summary

● Functions are named pieces of code (labels)

○ Which you can call

○ Which you can (optionally) supply arguments

○ Perform computations using those arguments

○ And return a value to a caller

Hammond Pearce

Functions - a summary

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments

○ Perform computations using those arguments

○ And return a value to a caller

Hammond Pearce

Functions - a summary

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments ($a0 - $a3)

○ Perform computations using those arguments

○ And return a value to a caller

Hammond Pearce

Functions - a summary

● Functions are named pieces of code (labels)

○ Which you can call (jal)

○ Which you can (optionally) supply arguments ($a0 - $a3)

○ Perform computations using those arguments

○ And return a value ($v0) to a caller

Hammond Pearce

We’ve now laid some ground rules on
communicating with functions.

Hammond Pearce

We’ve now laid some ground rules on
communicating with functions.

But it ge
ts bette

r!

Hammond Pearce

The MIPS calling conventions

● lay out rules on how we should be using registers when
interfacing between different functions

● forms the MIPS ABI (application binary interface), which lays
out how different code should interact with each other

Hammond Pearce

The MIPS calling conventions

● Theoretically could break these rules

○ However, makes it hard to have code that works interoperably with code
from other sources

● Important to follow these rules to make sure that functions
work nicely with each other

Hammond Pearce

The MIPS calling conventions

● Theoretically could break these rules

○ However, makes it hard to have code that works interoperably with code
from other sources

● Important to follow these rules to make sure that functions
work nicely with each other

“The pirates’ code of MIPS” - Zac Kologlu, former COMP1521 admin, COMP6991 lecturer

“You know the rules, and so do I” - Richard Paul Astley, won’t give you up

Hammond Pearce

The MIPS calling conventions - $t registers

● $t registers are free real estate for a function

○ Functions can completely obliterate any existing values in a $t register

● However, this has implications for the function’s caller

○ The caller function must assume that the callee function completely
obliterated any values in $t registers

Hammond Pearce

Hey, but my function doesn’t actually
obliterate values in $t0 …

● Too bad - we MUST treat other functions like black boxes

● In fact, ‘strict’ autotesting for assignment 1 will intentionally
destroy the existing values in your $t registers.

● The term for ‘obliterating’ an existing value inside a register
without eventually restoring it is clobbering

Hammond Pearce

So we can’t preserve values between
function calls in MIPS??
● could theoretically use global variables to preserve values

○ However, what if we call a function recursively?

■ Global variables need to be pre-allocated,

■ We don’t know how many instances of a recursive function might exist at a given time

● Instead, we use $s registers to save values between function
calls

Hammond Pearce

The MIPS calling convention - $s registers

● Functions cannot permanently change the value of a $s register

● This means that we can rely on our callee functions not
clobbering any values we keep in $s registers)

● Problem solved?? Store input in a $s register

Hammond Pearce

Uh oh!

● Our main function violates the pirates’ code by modifying $s0

○ The main function is not special, and must also abide by these rules

● Recursive functions also have this issue - they “change” $ra!

● Solution: functions can temporarily make changes to $s/$ra
registers, as long as they restore them afterwards

Hammond Pearce

Uh oh!

● How do we do this?

○ Save the $s/$ra register’s original value to RAM at start of the function

○ Restore the $s/$ra register’s original value from RAM once complete

● As far as the caller is concerned - $s/$ra register is still good

“Does it almost feel like nothing’s changed at all?” - Dan Smith, lead vocalist, Bastille

Hammond Pearce

Saving to the stack
The stack

● is a region of memory which we can
grow and expand

● uses the $sp (stack pointer) register to
keep track of the top of the stack

● We can modify the stack pointer to
allocate more room on the stack for us
to store values

Hammond Pearce

The stack: growing and shrinking

This is how the stack changes as functions are called and return:

34

Hammond Pearce

The MIPS calling conventions - $sp

● Functions are free to use the stack as they need - as long as
they restore $sp to its original value once done

○ That is, a function must restore the stack to its original size

● Failure to do so may lead to disastrous consequences

35

Hammond Pearce

The MIPS calling conventions - $sp
● For example,

○ If I subtract a total of 8 from $sp at the start of my function,

addi $sp, $sp, -4
sw $s0, ($sp)
addi $sp, $sp, -4
sw $s1, ($sp)

○ I must add 8 to $sp before my function returns,

lw $s1, ($sp)
addi $sp, $sp, 4
lw $s0, ($sp)
addi $sp, $sp, 4

36

Hammond Pearce

push and pop: the stack on easy mode
● For convenience, we provide you with two pseudo-instructions

to interact with the stack: push and pop

● push Rt
○ ‘allocates’ 4 bytes on the stack ($sp = $sp - 4)

○ stores the value of Rt to the stack

● pop Rt
○ restores the value on the top of the stack into Rt

○ ‘deallocates’ 4 bytes on the stack ($sp = $sp + 4)

37

Hammond Pearce

push and pop: the stack on easy mode

● These are pseudo-instructions provided by mipsy - won’t work
on other MIPS emulators

● This means that you can get through this course without ever
directly interacting with $sp

38

Hammond Pearce

Prologues and epilogues
● Prologues are the start of a function’s story

○ We use the begin instruction (more on this soon)
○ We need to push $ra onto the stack
○ We push the values of any $s registers we want to use

● Epilogues are the end of a function’s story
○ You may sometimes set the return value ($v0) here
○ We restore (pop) any $s registers we saved to the stack, in reverse order
○ We pop $ra
○ We use the end instruction (more on this soon)
○ We then return to the caller with jr $ra

● You should not do anything else in the prologue/epilogue
● You should not need to push/pop outside prologue/epilogue in this course

○ Caller-preservation of $t registers is theoretically possible but out of scope and discouraged

39

Hammond Pearce

Leaf functions
● Are functions that don’t call any other functions (eg. every main

function you saw before this lecture)
● Leaf functions don’t need to preserve $ra

○ They don’t use jal, so they never actually modify $ra
● Leaf functions shouldn’t need to even use $s registers

○ We only use $s registers when we want to preserve a value across a
function call

○ But leaf functions don’t have any function calls within them (by
definition), so they can use $t registers

● Since there is no need to preserve values for a leaf function,
they do not need a prologue and epilogue

40

Hammond Pearce

The MIPS pirates’ code: a summary
● $t registers are free real estate

○ But they’re free real estate for other functions too, so we must assume that
other functions destroy them

● A function must restore the original values of $sp, $fp, $s0..$s7
○ But as a result, we can assume that any function we call leaves these

registers unchanged
● Functions need to preserve $ra if they overwrite it

○ Otherwise, our function will lose track of where to return to
● $a0..$a3 contain arguments - these are also not preserved by

callees (like $t)
● $v0 contains the return value

41

Hammond Pearce

Out of scope for COMP1521

● Floating point registers exist to pass/return floats/doubles

○ These have similar conventions

● Stack used to pass more than 4 arguments

● Stack used to pass/return values too large for registers

○ eg. we can pass structs to functions in C, but structs can be much larger
than 4 bytes

42

Hammond Pearce

The frame pointer
● $fp is another register that points to the stack

○ It points to the bottom of a given function’s stack frame
○ In other words, it points to the same value as $sp before a function does any

pushes/pops
● Used by debuggers to analyse the stack

○ The frame pointer, combined with saving older values of $fp to the stack essentially
forms a linked list of stack frames

● Using a frame pointer is optional (both in COMP1521 and generally)
○ Compilers omit the use of a frame pointer when fast execution/smaller code is a priority

● Since the frame pointer tracks the original value of the stack pointer (at
the start of the function), it gives us a mechanism to prevent chaos if a
function pushes/pops too much

43

Hammond Pearce

The frame pointer - easy mode

● We don’t expect you to fully understand the frame pointer in COMP1521
● Instead, we provide you with two pseudo-instructions in mipsy

○ begin
■ saves the old $fp to the stack (keep track of the previous stack frame)
■ sets $fp to the current $sp
■ should be the first thing in the prologue

○ end
■ restore $sp to point to the top of the previous stack frame
■ restore the $fp to point to the previous value of $fp (bottom of the previous stack frame)
■ should be right before jr $ra

● This makes situations where you push/pop too much easier to debug
● Not necessary but makes debugging much much easier - strongly

advised

44

Hammond Pearce

Function skeleton
func:
 # [header comment]
func__prologue:
 begin
 push $ra
 push $s0
 push $s1

func__body:
 # do stuff

 li $a0, 42
 jal foo # foo(42)

 # foo return val in $v0

func__epilogue:
 pop $s1
 pop $s0
 pop $ra
 end

 jr $ra
45

