
Hammond Pearce

● Get two integers from the user A, B
● Add them to a constant 66 (to get A + B + 66)
● Print the sum
● Use only “real” MIPS instructions (no pseudo-instructions)
● Fewest total instructions “wins”

Put your answer in the lecture chat

Bonus early-to-class Golf challenge

1

Hammond Pearce

2024
Hammond Pearce

Inspired from Abiram’s Material

2

COMP1521 24T2 Lec04

MIPS: DATA (continued)

Hammond Pearce

Lecture chat
https://cgi.cse.unsw.edu.au/~cs1521/accord/

https://cgi.cse.unsw.edu.au/~cs1521/accord/

Hammond Pearce

Recap of lec03

● Arrays and memory

● We’ll pick up where we left off

Hammond Pearce

● We mentioned you can think of it like a large 1D array
● Typically memory systems let us load and store bytes (not bits)
● Each byte (usually 8 bits) has a unique address

○ So memory can be thought of as one large array of bytes
○ Address = index into the array, e.g.:

What be memory

5

Hammond Pearce

● Typically, small groups of bytes can be loaded/stored at once
● E.g. in MIPS:

○ 1-byte (a byte) loaded/stored with …………………………..lb/sb
○ 2-bytes (a half-word) loaded/stored with……………………lh/sh
○ 4-bytes (a word) loaded/stored with…………………………lw/sw

Bytes, half-words, words

6

Hammond Pearce

● Memory addresses in load/store instructions are the sum of:
○ Value in a specific register
○ And a 16-bit constant (often 0)

Memory addresses

7

Hammond Pearce

● Mipsy-web is little-endian

Code example

8

.text

main:

 li $t0, 0x12345678

 la $t1, 0x10010000

 sw $t0, 0($t1)

.data

 .word 0

Hammond Pearce

Examples

9

.text

main:

 li $t0, 0x12345678

 la $t1, my_label

 sh $t0, 0($t1)

.data

my_label:

 .word 0

Hammond Pearce

Examples

10

.text

main:

 li $t0, 0x12345678

 la $t1, my_label

 sh $t0, 0($t1)

.data

my_label:

 .word 0

Hammond Pearce

Examples

11

.text

main:

 li $t0, 0x12345678

 la $t1, my_label

 sb $t0, 0($t1)

.data

my_label:

 .word 0

Hammond Pearce

Loading Examples

12

.text

main:

 la $t1, my_label

 lw $t0, 0($t1)

.data

my_label:

 .word 0x12345678

Hammond Pearce

Loading Examples

13

.text

main:

 la $t1, my_label

 lh $t0, 0($t1)

.data

my_label:

 .word 0x12345678

Hammond Pearce

Loading Examples

14

.text

main:

 la $t1, my_label

 lb $t0, 0($t1)

.data

my_label:

 .word 0x12345678

Hammond Pearce

● We can just write constant memory address locations
● (We) don’t need to load to another register

Mipsy-web helper pseudo-instruction

15

.text

main:

 li $t0, 0x12345678

 sw $t0, my_label

.data

my_label:

 .word 0

.text

main:

 li $t0, 0x12345678

 la $t1, my_label

 sw $t0, 0($t1)

.data

my_label:

 .word 0

Hammond Pearce

Other assembler shortcuts

16

sb $t0, 0($t1) # store $t0 in byte at address in $t1

sb $t0, ($t1) # same

sb $t0, x # store $t0 in byte at address labelled x

sb $t1, x+15 # store $t1 15 bytes past address labelled x

sb $t2, x($t3) # store $t2 $t3 bytes past address labelled x

Hammond Pearce

C standard requires simple types of size N bytes to be stored only
at addresses which are divisible by N

• if int is 4 bytes, must be stored at address divisible by 4

• if ‘double is 8 bytes, must be stored at address divisible by 8

• compound types (arrays, structs) must be aligned so their
components are aligned

• MIPS requires this alignment

Alignment

17

Hammond Pearce

Alignment problems demo - sample_data.s

18

.text

.data

a: .word 16 # int a = 16

b: .space 4 # int b;

c: .space 4 # char c[4];

d: .byte 1,2,3,4 # char d[4] = {1, 2, 3, 4};

e: .byte 0:4 # int8_t e[4] = {0};

f: .asciiz "hello" # char *f = "hello";

g: .space 4 # int g;

Hammond Pearce

Padding with .space

Alignment fix with .align

Solutions?

19

Hammond Pearce

Loop through an array

How do we find each element in memory?

We have:

char some_array[5] = {‘h’, ‘e’, ‘l’, ‘l’, ‘o’}

How do we compute some_array[3] in assembly?

How do we get the address of some_array[3]?

Demo program - array.c, array_bytes.c

20

Hammond Pearce

Loop through an array of integers

How do we find each element in memory?

We have:

int some_int_array[5] = {3, 1, 4, 1, 5}

How do we compute some_int_array[3] in assembly?

How do we get the address of some_int_array[3]?

Base + (sizeof(int)*index)

Demo program 2 - array_ints.c

21

Hammond Pearce

Loop through a 2D array

struct student students[2][5] = {{....}}

How do we compute some_int_array[1][3] in assembly?

How do we get the address of some_int_array[1][3]?

Demo program - 2d.c, flag.c

22

Hammond Pearce

● Struct values are really just sets of variables at known offsets
● E.g.

Structs!

23

Hammond Pearce

Demo program - struct.c

24

Hammond Pearce

A char, int or double:

• can be stored in register if local variable and no pointer to it

• otherwise stored on stack if local variable - we’ll revisit this

• stored in data segment if global variable

This includes pointer addresses!

Stack variables vs globals?

25

Hammond Pearce

Mipsy assembler directives

26

.text # following instructions placed in text segment

.data # following objects placed in data segment

a: .space 18 # int8_t a[18];

.align 2 # align next object on 4-byte addr

i: .word 42 # int32_t i = 42;

v: .word 1,3,5 # int32_t v[3] = {1,3,5};

h: .half 2,4,6 # int16_t h[3] = {2,4,6};

b: .byte 7:5 # int8_t b[5] = {7,7,7,7,7};

f: .float 3.14 # float f = 3.14;

s: .asciiz "abc" # char s[4] {'a','b','c','\0'};

t: .ascii "abc" # char t[3] {'a','b','c'};

