s slides

COMP1521 24T2 Lec01
MIPS

An Introduction
2024

Hammond Pearce

Adapted from Abiram

Hammond Pearce

MIPS

MIPS?
. but why?

Hammond Pearce

What is a computer?

e A machine that “computes”
e A machine that executes a program

e How do we make a machine that executes a program?

Hammond Pearce

What is a program? How do they execute?

In COMP1[59]11:

e We run a compiler (dcc?)
e ./hello
e profit ??

What’s going on here? What’s even in hello?

Hammond Pearce

So what is a “program”??

e A program is a set of instructions and data

For example:

Hammond Pearce

So how do we execute the program?

e The program is a set of instructions and data... somewhere
o Maybe a “hard disk”
o Long-term, non-volatile

e We load the program into “memory” - RAM!
o RAM is like a massive 1D array which we divide into sections

o It has addresses, which are like indexes into that array
o RAM is volatile

Hammond Pearce

Disks and RAM

Hammond Pearce

And then... the CPU “runs” the program!

\

Hammond Pearce

Programs and Program Memory

e A program contains information on how to set up memory
o What instructions need to be followed?

o What data do we need to load into the memory?
m Variables?
e Globals and locals

e Then, during operation, we might request more memory
o malloc
o So greedy

e \Where do we put all these things?

Hammond Pearce

A program’s memory map

text / code

data

stack

:

Hammond Pearce

00000000
readonly

Ox7FFFFFFF

10

How does the CPU know what to do?

e There are a finite number of possible instructions
o We assemble programs by combining the instructions in sequences

e E.gifwehavejust“x=a+b”-howdoweget“y=a+b+c’?
o temp=a+b
o y=temp+cC

e The CPU is built to execute all the possible instructions
e i.e.the CPU implements an “Instruction Set Architecture”

Hammond Pearce

11

Some ISAs

MIPS, ARM, x86, Itanium, x86_64, Power, AVR, PIC, RISC-V ...

v

Lots of possible implementations

v

Lots of possible uses/users

v

E.g. games consoles: — >

Hammond Pearce

Console

PS1

N64

PS2

xbox
GameCube
xbox360
PS3

Wii

PS4

xbone
Switch

PS5

xboxs
steam deck

Architecture

MIPS
MIPS
MIPS
X86
Power
Power
Power
Power
X86
X86
ARM
X86
x86
X86

Chip

R3000A

R4200

Emotion Engine
Celeron

PPC750

Xenon (3 cores)
Cell BE (9 cores)
PPC Broadway

AMD Jaguar (8 cores)

AMD Jaguar (8 cores)
NVidia TX1

AMD Zen 2 (8 cores)
AMD Zen 2 (8 cores)
AMD Zen 2 (4 cores)

34
93
300
733
486
3200
3200
730
1800
2000
1000
3500
3700
3500

What can instructions do?

e Load/store: Got data? Need to load it! Need to store it!
e Computations: eg. add, subtract, multiply, divide, bitwise

e Branch: jump to execute different instructions
o Can't have logic (eg. if statements) if our program continues linearly

e System calls: phone-a-friend

e Coprocessor: Do hard, special things needing special hardware

o E.g. floating point math

Hammond Pearce

Do we write the instructions directly?

e Not often...

o But sometimes we do!

o (Someone has to!)

e Instead, we tend to write in a higher-level compiled language

o G, C++, D, Go, Zig, Rust, Java, Swift, and many more...

e A compiler will input programs in these languages and output
the corresponding assembly instructions

Hammond Pearce

14

Assembly

Instructions are really just Os and 1s
e Would be a pain to read/write literal instructions

e Instead, we use assembly language to form a human-readable
representation of each instruction

o Each instruction we write in assembly language typically represents a
single CPU instruction

o An assembler translates this to binary CPU instructions

Hammond Pearce

So, to recap: how do we make a program?

We have a program in some language (e.g. C)

We have a processor that runs some ISA (e.g. MIPS)
We compile the program into assembly (and a binary)
The binary is stored to a file

Then...

e The program is loaded into memory
e The CPU is pointed at the memory
e And we are off!

Hammond Pearce

16

More about CPUs

T EEEEESS———

What’s in there?

e a set of data registers

e a set of control registers
e a control unit

e an arithmetic-logic unit
e a floating-point unit

e caches

e connection to Memory/RAM

Hammond Pearce

CPU

Data
Registers

Control \

Registers

r0

PC

r1

CC

r2

HI

r3

LO

r4

r31

ALU

Load

Store

RAM

0x0000

0x0004

0x0008

0x000C

0x0010

OXFFF4

OxFFF8

OxFFFC

18

A day in the life of a CPU - as C code

int program_counter = START_ADDRESS;

while (1) {
// Fetch an instruction from memory IS wove
int instruction = memory[program_counter]; €Un
// Move to the next instruction than it Sounds

I Sweav
prog ram_counter++;

// Execute the next instruction
execute(instruction, &program_counter);
// * note: some instructions may
// modify the program counter

Hammond Pearce

So... writing instructions ourselves?

In this course we write assembly ourselves instead of compiling.
But why would anyone do that?
e To optimise code for performance

o Less instructions = faster to execute = saving picoseconds!
e To write for edge cases not supported by compilers

o eg. writing code to interact directly with a device (i.e. drivers)
e Jo learn how a compiled program executes

o Primary reason in this course

o Can be helpful when debugging
o Also handy to identify security vulnerabilities and exploit binaries

e And sometimes, someone has to!
o E.g. who’s going to make your compiler in the first place?

Hammond Pearce

So why “MIPS”?

e Once used from game consoles to supercomputers

o Still used in routers and TVs
e (Considerable learning resources available

e Inspired many other ISAs

o If you know MIPS, you can easily branch to ARM, RISC-V, and others
e All ISAs have tradeoffs

o Some focus on performance and special features

e MIPS is “simple” yet powerful - good foundation for knowledge

Hammond Pearce

21

More about MIPS

Year

MIPS
ISA

Transistor

count

Process
node

Die
size

Speed

Flagship
devices

MIPS R2000

1985

MIPS |
(32-bit)

110k

2 pm

80 mm?2

12 - 33 MHz

DECstation 2100 and
3100 workstations

Hammond Pearce

MIPS R3000

1988

MIPS |
(32-bit)

110k

1.2 ym

40 mm?

20 — 40 MHz
Sony PlayStation
game console

SGI IRIS and Indigo
workstations

NASA New Horizons
space probe

MIPS R4000

1992

MIPS Il
(64-bit)

2.3-4.6m
0.35 pm
84 — 100 mm?

50 - 250 MHz

Nintendo N64
game console

Carrera Computers and
DeskStation Technology PCs
(Windows NT)

SGI Onyx, Indigo, Indigo2, and
Indy workstations

MIPS R5000

1996

MIPS IV
(64-bit)

3.7m
0.32 ym
84 mm?
150 — 266 MHz

SGI 02 and Indy
workstations

Cobalt Qube servers

HP LJ4000 laser printers

MIPS R10000

1995

MIPS IV
(64-bit)

6.8m

0.35 ym

350 mm?

180 — 360 MHz

SGl Indigo2 and Octane
workstations

SGI Onyx and Onyx2
supercomputers

NEC Cenju-4 supercomputers

Siemens Nixdorf servers

MIPS R12000

1998

MIPS IV
(64-bit)

7.15m

0.25 ym

229 mm?

270 — 400 MHz

SGI Octane 2, Onyx 2, and Origin
workstations

22

What do MIPS instructions look like?

e 32 bits long opcobe| R1 | R2 | R3 | R4 |opcopE
() SpeC|fy 6 bits— k5 bits1 5 bits1 5 bits1 F5 bits1 6 bits—
o An operatlon opcobel R1 =5 Memory Address
m (The thing to do) Constant Value
m (The thing to do it over) Memory Address
OPCODE| R1
Constant Value
6 bits— F5 bitsd | 21 bits

e For example:

0010000100001001
addi St1, St0,

Hammond Pearce

R-type

I-type

J-type

23

“But | don’t have a MIPS CPU!”

True (probably).
We can’t run our MIPS instructions directly on x86_64/ARM.
But, we can emulate them using mipsy

recreates the behaviour of a real MIPS CPU
o written by Zac* (past course admin, now graduated/lecturing COMP6991)
o can download on your own machine: https://github.com/insou22/mipsy/
o comes with a command-line interface to run in your terminal
e mipsy_ web runs entirely in your browser
o by Shrey*, on course website: https://cqgi.cse.unsw.edu.au/~cs1521/mipsy
e vscode extension
o written by Xavier & - can download the ‘mipsy editor features’ extension

* some contributions from Josh Harcombe, Dylan Brotherston and Abiram

Hammond Pearce

24

https://github.com/insou22/mipsy/
https://cgi.cse.unsw.edu.au/~cs1521/mipsy

Can we write some MIPS?

Hammond Pearce

25

Soon™

Hammond Pearce

26

All about registers

e Most CPU architectures perform operations over registers
e They are part of the processor itself, not the memory

e Speed advantages:

o Memory is fast, but not as fast as the CPU

o Caches store some memory for faster access

m Usually not as fast as registers!

e Simplifies processor design considerably

Hammond Pearce

27

All about registers

e MIPS specifies 32 general-purpose registers

o 32-bits each, same size as a typical C integer - coincidence?

o Floating point registers (not used in COMP1521)

o Hi/Lo special registers for multiply and divide (not important in this course)

o Program counter

m Keeps track of which instruction to fetch and execute next

m Modified by branch and jump instructions

Hammond Pearce

28

Registers

Almost all of our computations happen between registers!

Want to multiply 2 and 3 and store the result
Load 2 and 3 into registers:

1i Sto,
1i St1,

And store the result:
mul St2, StO,

Hammond Pearce

More about registers

Registers are denoted by a $ and can be referred to using a
number ($0...$31) or by symbolic names ($zero...$ra)

$zero ($0) is special!

e Always has the value 0 -> attempts to change it have no effect
$ra ($31) is also special!

e Directly affected by two instructions we use in Week 3

a0

More about registers

Can use the other 30 registers however we want, technically, but:
There are conventions to prevent utter chaos and madness

(Discussed more in next week’s tutorials and Week 3 lectures)

Number Names Conventional Usage

0 zero Constant 0

1 at Reserved for assembler

2.3 vO,v1 Expression evaluation and results of a function
4.7 a0..a3 Arguments 1-4

8.16 10..t7 Temporary (not preserved across function calls)
16..23 s0..s7 Saved temporary (preserved across function calls)
24,25 18,19 Temporary (not preserved across function calls)
26,27 ko,k1 Reserved for Kernel use

28 gp Global Pointer

29 sp Stack Pointer

30 fp Frame Pointer

31 ra Return Address (used by function call instructions)

Hammond Pearce

More about registers

Convention says $t0 to $t9 can be

used however you want ———|-

Will also need Sv@, Sa@, Sra for
certain things at the moment

Should not need to use any other
registers (yet)

We will cover the other registers when we
talk about functions in Week 3

Hammond Pearce

32

Now let’s make something

Hammond Pearce

33

Your turn

Hammond Pearce

34

Our programs are useless

Hammond Pearce

35

System calls

e \We mentioned these earlier

What can instructions do?
e System call ==

e Load/store: Got data? Need to load it! Need to store it!

Computations: eg. add, subtract, multiply, divide, bitwise

o Hisystem friend

Branch: jump to execute different instructions

O Can you do th'S thlng for me o Can't have logic (eg. if statements) if our program continues linearly

System calls: phone-a-friend

@) Than kS e Coprocessor: Do hard, special things needing special hardware
o E.g.floating point math
e What sort of things?

Hammond Pearce

36

System calls

e None of the instructions we have access to can interact with
the outside world (eg. printing, scanning)

e Instead, we request the operating system to perform these
tasks for us - this process is called a system call

e The operating system can access privileged instructions on the
CPU (eg. communicating to other devices)

e mipsy simulates a very basic operating system

e Will explore real system calls in the second half of the course

Hammond Pearce

37

Common mipsy syscalls

Service S$vo Arguments Returns
printf("%d") 1 intin $a0

fputs 4 string in $a0

scanf ("%d") 5 none intin $vO
fgets 8 line in $a0, length in $al

exit(0) 10 none

printEf("%ec") 11 charin $a0

scanf ("%c") 12 none charin $vO

We don’t use syscalls 8 and 12 much in COMP1521

Most input will be integers

Hammond Pearce

More

advanced

syscalls

Service $vo Arguments Returns
printf("%f") 2 floatin $f12
printf("%Lf") 3 double in $f12
scanf ("%f") 6 none floatin $T0O
scanf ("%L1f") 7 none double in $f0O
sbrk(nbytes) 9 nbytes in $a0® address in $v0O
open(filename, flags, mode) 13 filename in $a0, flags in $a1, mode fd in $vO
Sa2
read(fd, buffer, length) 14 fd in $a0, buffer in $a1, length in $a2 number of bytes read in
$vo
write(fd, buffer, length) 15 fd in $a0, buffer in $a1, length in $a2 number of written in $v0
close(fd) 16 fd in $ao
exit(status) 17 status in $a0

Probably only used for challenge exercises in COMP1521

Hammond Pearce

39

The system call workflow

e We specify which system call we want in Sv@

o eg.print_int issyscall 1:

1i Svo,
e We specify arguments (if any)

1i Sao,

e We transfer execution to the operating system

o The OS will fulfil our request if it looks sane
syscall
e Some syscalls may return a value - check syscall table

Hammond Pearce

MIPS and mipsy documentation

Literally your best friend (it'll even be there for you in the exam &9)

COMP1521 - 23T2 Outline Timetable Forum

MIPS Instruction Set

An overview of the instruction set of the MIPS32 architecture as implemented by the mipsy and SPIM emulators. Adapted
from reference documents from the University of Stuttgart and Drexel University, from material in the appendix of
Patterson and Hennessey's Computer Organization and Design, and from the MIPS32 (r5.04) Instruction Set reference.

e Registers
e Memory
e Syntax
e Instructions
o CPU Arithmetic Instructions
CPU Logical Instructions
CPU Shift Instructions
CPU Load, Store, and Memory Control Instructions
CPU Move Instructions

o O O O ©o

CPU Branch and Jump Instructions

Hammond Pearce

Now we can say hello world

Hammond Pearce

42

