MIIFPS

MIPS® Architecture For Programmers
Volume II-A: The MIPS32® Instruction
Set

Document Number: M D00086
Revision 5.04
December 11, 2013

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

alt{t NOKIiSOidIS C20 ti2I-Y Y Siig +26tY'S Ln 1Y ¢KS alt{ont LyaiitOiizy {5 wSaiai2y pinn

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Contents

Chapter 1: About ThiS BOOK .o,
1.1: TypOgraphiCal CONVENTIONSuuuiiiiiiiieeeee ittt e e e e e e e ettt e et e e e e e e e s e e e nbbbbe e e e eeaaeeeeeaaannnbssaeeeeaaaaaaaaan
N R | =1 o I ST U TP PPPPRRPRR
g = o] o B =) ST PP TR PPPPPRPRT
G O 0o U 1T g I 4 AT PP TR PPPPRRPRR
1.2: UNPREDICTABLE and UNDEFINEDc.uutiiiiiiiiiieiiee ettt ettt et sbe e e e neeeanes
1.2.1: UNPREDICTABLE ...ttt ettt etttk e et e e ab e e e be e e et e e ekt e e e bt e e e ebbe e e enees
1.2.2: UNDEFRINED ...ttt ettt h ettt ettt o4kt e ek b e e ek bt e e ekt e e ekt e e e embe e e bt e e e enbneeanteas
L.2.3: UNSTABLE ..tttk bttt e e a bt e ekt e e ke e e 4k bt e e ebb e e ek bt e e amb e e e anbe e e enbneeanteas
1.3: Special Symbols in PSeudoCode NOLATIONuuiiiiiiiiieae ettt e e e e e e e e e e eeaeaaeas
S o |V (o (=N [a1 (o] g =11 o] o BT P TP PPPRUTTTR

Chapter 2: Guide to the INSITUCHION Stcoveiiiiiii e e
2.1: Understanding the INStrUCHON FIEIASo.uviiiiiiiii et
2. 1.0 INSEIUCHION FIEIAS ...ttt e bt e e et e e e et e e e e nbeeas
2.1.2: Instruction Descriptive Name and MNEMONIC.uuuiiiaiiiiiiie it
2,130 FOIMAL FIEI ...ttt ettt e e et e e st e e e ettt s s

2. 1.4 PUIPOSE FIEIA ..ottt et e e ekt e e e et e e et e e as
2.1.5: DESCHIPLION FIEIA ...ttt e et e e et e e e et e e e nneeas
2.1.6: RESIICHONS FIEIO......eeiiiiieeie ettt e e et e e e e e e e e nbeeas
P S O o 1= =i o] N = (o TP RPN
2.1.8: EXCEPLIONS FIEI ...ttt e et e e et e e e et e e e nbaeas
2.1.9: Programming Notes and Implementation NOtes Fields. ...
2.2: Operation Section Notation and FUNCHONSuuiiiiiiiii ettt e s ee e
2.2.1: INSruction EXECULION OFOEING . .eetieiiiiieie ittt ettt ettt e ettt e e sttt e e s ettt e e s anbb e e e s annne s
2.2.2: PSEUAOCOUE FUNCHIONS.eiiieiiitiee ettt ettt e ettt e e e sttt e e ettt e e s et e e e s annnne s
2.3: Op and Function SUDfIEld NOTATION.........oiituiiiieiiii et e et e e s s e ea e
A e e O [Y F ot 1o £ RO RPPOUPPRPOTPPPR

Chapter 3: The MIPS32® INSIIUCTION STuuiiiiiiiiiiiiiiiii e e e e
3.1: Compliance and SUDSEIING........coc it e et e e e e e e e e e e s s s st reeeaaeaeesaananrrarraaeaes
3.2: Alphabetical List Of INSIIUCTIONSuviiiiiiiiiie et e e s e e e e e e e e s s s s eeaeeeeeeesasnnnnrenaeeeeees
Y = 1S 11 1 PSPPSR

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

[2 I 67
[T 22 68
[T 22 I T 69
121 = PR TSOPRPPP 70
121 =@ PRSPPI 71
[T] 72
S]] 73
[T Y I O 74
[T] 4 U 76
[17 77
[174 78
[I AT 79
[I 4 U 80
[I 1 81
[I 14 O 82
[I 174 T 83
[I 174 U 85
BINE .ottt ettt et et eeeeeeeeeeeeeeeeetetee—te—————————————— e eaeaeaeeeeeeeaeaetttttrat 86
[T 1= T 87
ST AN ST 88
(O o701 [0 14 11 ASTUE PR PUUORRRRPPRIN 89
(07 N O | 94
(07 AN | = T 100
L8 I {1 1| U 107
(8 = 1YV 10| T 108
(O = O3 RSO 109
2 e e e e e e e e e e e e eeeeetee e e et ——————————————— 111
[1 LU 112
Gz et e ieaeeeeeeeeeeeeteteaet e ———————————————— 113
(010 =T 114
[131 PO 115
O 102 T 117
(ORI 10| U 118
(A I IR 11 U 119
(ORI S T ST 120
(ORI TR 11| PO 121
(ORI = ST 122
(A I = U U 123
(A I VLR 11| ST 124
[0 = = OO 125
Dl ettt — e eeeeeeeeeeeeeeeeetetettttt———————————————ieieaeaeeeeeaeaeaetetetetrtt——— i ————————————_ 126
[0] OO 127
[L8 {01 OO 129
[0] A OO 130
Lt 1= JP OO 131
Bl ettt eeeeeeeeeeeeeeeeeeeeeeete—————————————— e ieieaeaeeeeeeeaeaetetettar—— i ————————————_ 132
o = TP 133
E RETINC . ttttttteie ittt ettt oottt e e e e e e e e e e e e e e e et e ettt et ettt —— b — e eeaeaeaeaeeeaeeeaeaetettt— i ————————————_ 134
E X T ettt ettt ettt oot e e eeeeeeeeeeeeeeeeeeeteeet—————————————————— i ieaeaeaeeeeeaeteteteetttrt——————————————————————— 136
[IO 0] = I 1 0| ST 138
[@O =YV o | U 139
LN S TP RUPRPRURRPPRRPNt 140

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 5.04

JA L e e e e e et e e e e e e et it e n e e e e e e e 143
JA L R e et e e et e e e e e e e s 144
JALRLHB . e a e et a e e e e 146
N PP PP TP TPPPPPPPPPPTTTP 150
| PP PP TP PTPPPPPPPPPPPTTP 151
TR H B e e et a e e e e e 153
LB e et e e e e e e e et r e et e e e e e s e e e 155
B e e e e e e e e e e e e e e e a e 156
B e et e e e e e e et e et e e e e e a e 157
LB e e e e et e et e e e e e eae s 158
5 Lt PP TP PPPTTPTPPTI 159
LD e e e e e e et e e e e e e e 160
L5) 3 PP OO PPPTTPTPPTI 161
] PP PP PPTTPTPPTI 162
L E e e e e e e e e et e e e e e e 164
U e e e e e e e e et e e e e e e e 165
LU E e oo et e e e e e e et e e e e e e e 166
PP PPPTTPTPPTPI 167
] PP OO PPPTTOTPTTI 168
O PP PP TP PPPTTOTPPTTI 170
LU G ittt E e e e e e e e et e et e e e e e s e e 171
PP PO PPTTRPPPPPI 172
LWV C L. e e e e e e e et e e e e a e 173
LWV C 2 e e e e e a e e e e e e 174
L E e e e e e e e e et e et e e e e e ae s 176
Y PP OO PR PPTTRTPPTI 177
LV L e e e e e et e e e e a e 180
L R et e e e e e e e et e e e e ae s 182
LWV RE e e e e et e e e e 184
LWVXCL et e e e e e e e e a e e e e e ae s 186
IVIADID ..ot e e e e et r e et e e e e ae s 187
IVIADID . TIME ettt oot oo et e oot e oot e oo R e oo e R et e e e Rt e e e e e e e e e e e e 188
IMADDU ..o r e e e r e e e e e e e e eae s 190
IMIFC0 e e oo e e e e e e e e e e e e e e e e ae s 191
L O PP TP TP PPTTSPPPTI 192
M e oo e e e e e e e e e e 193
IMIFHCO et e e e e ettt e e e e e e e s e e r e e e e e e e a e 195
IMIFHGCL et e e oo ettt e e e oo e e s e e bbbt e e et e e e e e s e s 196
IMIFHGCZ oo e ettt e e e e e e e s e e et e e e e e e e e e a e 197
L 1 PP PO TP PPTTRTPPPTI 198
IMIFLLO et e oo e e e e e e e e et e e e e e e e 199
L@ AT {1 1 PP PP PO PP PP PP PP PPPPPPPPPUPPRTN 200
MOV et e oottt e e e e e e e s et e et e e e e e a s 201
L@ AN o 0| ST PP TP PP PP PP PPPPPPPPPPPPRTN 202
IMIOVN Lot e e oo e et e e e e e e e e e s e e e bbb et e e et e e e e e e s e e 203
L@ AN {10 | PP TP PP PP PP PPPPPPPPPPPPRTN 204
IOV T et e e e e oo e e et e e e e e e e e e e e et e e e e 205
LAY I 0| ST PP PO PP PP PP PP PPPPPPPPPPPPRTN 206
IMOVZ ..ot e oottt e e e e e e e s et e e e e e e e e a s 207
VIOV Z M ettt oottt e ookttt oo oaE et oo 4okt e e e Rt e e ekt e e e e b e e e e e e e e e 208
IMISUB e oo e e e e e e e et e e e e a e 209
IVISUB LTI ettt oottt e oo e et e ookt e e oo a Rttt e ookttt e et R et e e ekt e e e a b e e e e e e e e e 210

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 6

IVITIC0 ettt e e e e oo e e e e e e e e e e e e et r e et e e e e e e e 212
N X PP PP PPTTP TP 213
I KOO PR PPTTOTPPTI 215
IMITHCO ettt e e oo e e e et e e e e e e e s e e s bbb et e e e e e e e e e s s e bbb e e e e e e ae s 216
IMITHGCL ettt e oo e e oot et e e e e e e e s e e e bbb e et e e et e e e e e s s e bbb e r e e e e e e ae s 217
IMITHCZ et e e e oottt e e e e e e e s e e s bbb e et e e et e e e e e s s e ae e e e e e ae s 218
I I8 1 PP TP PPTTPTPPTI 219
IVITLLO ettt e e e oo o4 e e e e et e e e e e e e e e et e e et e e e e e e e 220
VUL ettt e e oo e e e e e e e e e e et r e et e e e e e e e 221
1 1 PP PP PP P PP PPPPPPPPPPPPPPRTN 222
/L PP TP TP PPPTOTPPPI 223
IVIULTU ettt e e e e e oo e e bbb e ettt e e e e e e e s e e e bbb b e et e e et e e e e e e s bbb r e e e e e eaee s 224
N = TN 11 1 ST PP P PP PP PP PPPPRPPPPPPPRTN 225
N N BB N 0| PP PP PP PP PPPPPPRPPPPPPPRTN 226
N ST = 11 | ST PP PP PP PP PP PPPPPPPPPPPPRTN 227
N[O PP PP PPTTOTPPI 229
N O R e e e e e e e e et e e e e e e e 230
L0 PO P PO TP TR PPTPOPN 231
R e e e e e e e e e e e e e e e e e e 232
PAUSE .o e e e 234
P L P S e e r e e e e 236
P LU P S e e e 237
P R EF e 238
PREFE . .o oo r e e 242
P RE X e e e e 245
P UL P S e e e e 246
PUU L P S et e e e e e e e a e e 247
RDHWR .ot e e e e e e et e e e e e e e st e e et e e e e a e 248
RDPGPR e e r e 250
Y= O | i 1 ST PP PP P PP PP PPPPPPPPPPPPRTN 251
ROTR et e e e oo et e e e e e e e e e e e e e e e e e e 252
ROTRY et e ettt e e e e e e e s e e e bbbt e e e e e e e e e e a e 253
ROUND LTI Lottt ettt ookt e e oo e et e ookt ee e e ettt e e e ea b et e e e e b e e e e e e nanneeeeean 254
ROUND WVLIIMIT .ottt oot e e oo ettt o4kt ee e e et ettt e e ea e e e e anb e e e e e nanneeeeeaa 255
RS O I 111 PP PP PP PP PP R PP PPPPPPPPPPPPRTN 256
R PP PP TR 257
OB e e e e e e e e r e e e e e 258
] PO PP PP TP 259
S e e e e e e e e e et er e e e e e 262
SDBBP e e e e e e e a e e e e e e 265
Y I L 1 PP P PO PP RPN 266
Y L O PP TP PP TR TP 267
ST) O TP PP PPTPON 268
S B e e e e e e e e et r e r e e e e e 269
S H e e e e r e e e e 270
SH e e e e e e e e e e e e e e e e e e e 271
SHEE e e e e r e e e 272
R I PP P PO TP PPTPOPN 273
R I I PP TP P PO TP PPTPOIN 274
R I PP TP TP P PO TP 275
R I I PP PP TP TP PPTPOPN 276
ST I e e et e e e e e e et r e e e e e e e 277

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 5.04

10] I 111 T PP P PP TP PP PPPPPP 279
] T OO P PP UPRPRPPPPPP 280
SR AV bR R AR e e AR £ oAb £ e oAbt e R et e b et et b e et nne s 281
S T O OO P PP TP PP PPPPPP 282
S IR T PO P PP UPRPPPPPPP 283
S 3S] N[O TP TP P PP UPPPPPPPPP 284
ST T O TP PP UPPPPPPPPP 285
ST 1 1 ST O OO PP UPRPPPPPOP 286
SUBU ettt E R R £ e AR b e e R b e oA e oAb e e e oAb et e 4Rt e b et e R bt et e e e nne s 287
10 (O3 T T PO P PP UPPPPPPPPP 288
)T O TP PP TP PP PPPPPP 289
11T T OO TP PP TP PP PPPPOP 290
11T O OO P PP TP PP PPPPOP 291
YT T PO TP PP UPRPRPPPPOP 292
S T OO P PP UPRPRPPPPPP 293
SWVLE .ttt bR R R R oA R oAb e e oAb et ekt e e b et e R b et e e nne s 296
11T T O PO P PP TP PP PPPPPP 298
SV RE ..ttt bR E R e R e AR e oAb et oAb e e e e R e e e bt e Rt e bt e nne s 300
11T O3 TP PP UP PP PPPPOP 302
2 N T OO P PP UPPPPPPPPP 303
5 N T OO PP UPRPPPPPPP 308
SY SCALL ettt R R R b oAb e e bt e bt e bt e R b et e s 310
LI =0 LT OO TUPP T O PP PPRPPPPN 311
LI =10 O O PTO PP PP PPRPPPPN 312
LI OO P PP PPRPPPPN 313
L] = O PP O PP PP PPRPPPPN 314
L] =1 1O O OO P P OPP PP PPRPPPPN 315
L] =1 O O ST PP PP PP UPRPPPRN 316
LI | O OO TP PP PP PPRPRPPPN 318
LI Y1 LT ST T PP O PP PPRPPPPN 320
LI T O OO PP PP PPRPPPPN 322
LI T O TP PP PP PPRPRPPPN 323
LI S O OO PP PPRP PP 325
TLBWR ettt E R e R e oAbt R et 4R R e e bt e e b et e he e et e et 327
L1 T TP PP PPRPPPRN 329
1 I OO O PP PPRPPPPN 330
1L 1 O O TP PP PP UPRPPPPN 331
1L 1O O TP PP PP PPRPPPPN 332
LI LTSS PP PP UPPPRPPPN 333
LI L= O TP P PP UPRPPPPN 334
TRUNC . LML etttk e ek ookt e 44 h e e s ket e 4 A b et e e s bt e e ekt e ebe e e e bb e e e nnbee e 335
TRUNC .M IME. ettt ookt ookt e ekt e e 1h e e e h bt e e e A b et e e kbt e et et e e bb e e e bb e e e nnbe e e e 336
L I T PP PPPPPPPRPPPPN 337
L T o T TP PP PP PPPPPPP 338
LTS =] o T T TP PP PP PPPPPPPN 339
D@ T O OO TP PP UPRPPPPN 340
D@ T O OO PP PPRPPPPN 341
AppendixX A: INSTruction Bit ENCOAINGS ...uuuuuiiiiiiiiiiiiiiiiiiiieiiisiieseresssssssssssesesessaerressrseesarrre——————————. 342
A.1: Instruction Encodings and INSIIUCLION CIASSESuviiiiiiiiiiieiiiii ettt 342
A.2: Instruction Bit ENCOAING TaADIES......ccoiiiiiiieiiiiii e 342
A.3: Floating Point Unit Instruction FOrmat ENCOTINGSccooiiiiiiiiiiiiiiieeiiee e 350

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 8

Appendix B: MisaligNed MeEMOTIY ACCESSES ...uuuuuuuuuiuuierrrerruerrrrerreerenssrnsrrsreseerrerrre——.————————————————— 353

L I =T 01T Vo] (o T YRR 353
B.2: Hardware versus software support for misaligned memory aCCESSESccoouvvvriiiiieieeaeaaaieeiiiieeeeaeeeans 354
B.3: Detecting MiSAlIgNE SUPPOITuu ittt e et e e e e e e s e e e bbb et e r e e e e e e e e e s e nnnbbsaeeeaaaaaens 355
B.4: MiSAlIgNEA SEMANTICSeii ittt e ettt e e e ettt ettt e e e e e e s e e s bbb be et e e e eaaaeeeeaaannnbbebeeeaaaaaens 355
B.4.1: Misaligned Fundamental Rules: Single Thread Atomic, but not Multi-threadcccceeeeen. 355
B.4.2: Permissions and misaligned MemOIY GCCESSESoiiuururriieiiaiaaaaaaaaaaiiiteieeeeaeaa e e e e e s e annbeereeeeaeaaens 355
B.4.3: Misaligned Memory Accesses Past the End of MEeMOIY ...ttt 356
B.4.4: TLBS and MiSaligned MeEmMOIY ACCESSES.....cuutiiiaaaiiiiaiiititiieee e e e e e e e e e ettt e e aa e e e e e s e e annbbeeeeeaaaaaens 357
B.4.5: Memory Types and Misaligned MemOry ACCESSESuuuuuuiiiiiiieaaaeaiaiaiiiiiieeeeaaa e e e e e s e aenbeeeeeeeaeaaeas 358
B.4.6: Misaligneds, Memory Ordering, and CONEIENCEc..uuiiiiiiiiiiaaae e 358
o =10 o [oToTo Lo [PP P PP PP PPPPPPPPPPPPRTN 360
B.5.1: Pseudocode distinguishing Actually Aligned from Actually Misalignedccccccoiiiiiiiiiiinnnnnnnn. 361
B.5.2: ACTUAIY ANIGNEA ...ttt et e e e e e e e e e aab b bbbt e e e e e e e e e e e e e nnnbeeneeeaaaaaens 361
SRR Ml =1 (IS = T o [T R TUSOPPTPPPRI 362
B.5.4: Pseudocode Expressing Most General Misaligned Semanticscccuvvviieiiiiieeaniniiiiiiiieeeeeenn 363
B.5.5: Example Pseudocode for Possible Implementations. ...t 363
B.6: Misalignment and MSA VECIOr MEMOIY GCCESSES ...cetiiieaaiiiiiuiiieeietetaaaaaaaaaaanbtebeeeeaeaaaaaaasaaannnrsseeeeeaaaans 364
BLB.0: SEIMABINTICSeeeeiitiiete ettt ettt ekt e ookttt e 4 h et oo Rt e b et e e e e e s 364
B.6.2: Pseudocode for MSA memory operations with misalignment ... 365
APPENdiX C: REVISION HISTOIY ...ttt e e s e e e e e e e et s e e e e e e e e eeaaaaa s e eeeaeeeennnnns 368

9 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 5.04

Figures

Figure 2.1: Example of INStruction DESCIIPLIONoeiiiiiiiiiiiiie ettt e e e e e e et eeeeeaaeas 21
Figure 2.2: Example of INSIrUCHON FIEIASeiiiiiiiiiii et e e e e as 22
Figure 2.3: Example of Instruction Descriptive Name and MNEMONICuueiiiiiiieiaiiiiiiiiiiiieee et 22
Figure 2.4: Example of INStrUCTION FOMMIAL.........iiiiiiiiiiie et e e e e e bbb e e e e e s 22
Figure 2.5: Example of INSrUCHION PUIMPOSEiiiiiiiii ittt e e e e e e st eeeaaeas 23
Figure 2.6: Example of INStruction DESCIIPLIONeoiiiiiiiiiiiiie ettt e e e e e e et eeeeeeeas 23
Figure 2.7: Example of INStruCtioN RESIICHIONS.coiiiiiiitiiie ittt e e e e e e e eeeeas 24
Figure 2.8: Example of INStrUCHION OP@IatiON.cciiiiiiiiiiiiie ettt e e et e e e e e e e e e e s e bbb e e eeeeas 24
Figure 2.9: Example of INStrUCHION EXCEPLION.ciiiiiiiiiiiiite ettt e e e e e e e e e e eeeeeeas 24
Figure 2.10: Example of Instruction Programming NOTEScciiiiiiiiiiiiiiiiiiiiee et e s 25
Figure 2.11: COP_LW PSeud0oCOde FUNCHIONoeviiiiiiiiiiiiieies e s s e e e e e e e e e e et s s e e e e e e e e e aaaaeaeaeeeees 26
Figure 2.12: COP_LD PSeUdOCOOE FUNCLION..........ceiiiiiiiiiiiiiieies s e s et a s e e e e e e e e e aaaaaaaaaeaeees 26
Figure 2.13: COP_SW PSeudoCOde FUNCHION...........eiiiieiitiiiiis s e s s e e e e e e e e e e e e e e et s s s s e e e e e e e e aaaaeaaaeaeees 26
Figure 2.14: COP_SD PSeudOCOTE FUNCLONcoeiiiiiiiiiiiiiiiiies s e e e e e e e e et s n s e e e e e e e e e e e aaaaeaeeeees 27
Figure 2.15: CoprocessorOperation PSeudoCode FUNCHONoiiiiiiiiiiiiiiiiiii et 27
Figure 2.16: AddressTranslation PSeudoCode FUNCLONuuiiiiiiiiiiie et a e e e e e e e e e aeaees 27
Figure 2.17: LoadMemory PSeudoCOde FUNCHIONuuiiiiiiciei et a e e e e e e e e e e e aeaeaees 28
Figure 2.18: StoreMemory PSeudoCOdE FUNCHION...........uuieiiiie et e e e e e e e e e e aaaaaaeaaeaees 28
Figure 2.19: Prefetch PSeUdOCOAE FUNCLION...........oiiiiiiiieiei e e e e e e e e e e e e aaaaeaeaeees 29
Figure 2.20: SyncOperation PSEUAOCOTE FUNCHIONcuiiiiiiiiiieiie ettt e e re e e as 30
Figure 2.21: ValueFPR PSeUAOCOAE FUNCLON..........ciiiiiiiiiiiiee e st e e e et s e e e e e e e e e e e aaeaeaeaeees 30
Figure 2.22: StoreFPR PSeud0oCOde FUNCLIONooviiiiiiiiiiiiise st e e e e e e e e e e e e e aeaeaeees 31
Figure 2.23: CheckFPEXxception PSEUAOCOUE FUNCHION.uuuiiiiiiiiaiiiiiiiite ettt e e 32
Figure 2.24: FPConditionCode PSeudoCOde FUNCLON..........uuuriiiiiii it a e e e e e e e e e aeaees 32
Figure 2.25: SetFPConditionCode PSeudocode FUNCHIONuuiiiiiiiici e e e e e e e e e e e 32
Figure 2.26: SignalException PSeUdOCOTE FUNCHONuiiiiiiiiiiiieii et e e 33
Figure 2.27: SignalDebugBreakpointException PSeudocode FUNCHON..........uuiiiiiiiiiiiiiiiiiiieee e 33
Figure 2.28: SignalDebugModeBreakpointException Pseudocode FUNCLION............oooiiiiiiiiiiiiiiiiiieeeeeee 33
Figure 2.29: NullifyCurrentinstruction PSeudoCode FUNCHONccooiiiiiiiiiiiccceeeeee e e e e e e e e e e e e e e 34
Figure 2.30: JumpDelaySIot PSEUAOCOUE FUNCHIONcuuiiiiiiiiie ettt e e e e e e et eeeaeeas 34
Figure 2.31: PolyMult PSEUdOCOOE FUNCLIONcoiiiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e aeaeaeees 34
Figure 3.1: Example of an ALNV.PS OPEIAtIONccoiiiiiiiiiiiiiiit ettt e e e e e e e s e bbb eeeaeaaeas 52
Figure 3.2: Usage of Address Fields to Select INndeX and Wayccooooiiiiiiiiiiiiees e e e 94
Figure 3.1: Usage of Address Fields to Select IndeX and Waycoooooeiiiiiiiiiiiiiee e 100
Figure 3.2: Operation Of the EXT INSITUCTIONeiiiiiiiiiiiiiiie et e e e e e 136
Figure 3.3: Operation Of the INS INSIIUCTIONeviiiiiiiiiii e e e e e e e 140
Figure 3.4: Unaligned Word Load UsiNg LWL and LWR.........uuuiiiii i a e e e e 177
Figure 3.5: Bytes Loaded DY LWL INSIFUCTIONoivieiieieieii et e s e e a e a e e e e e e aaaaeaees 178
Figure 3.6: Unaligned Word Load Using LWLE @nd LWREccooiiiiiiiiii s 180
Figure 3.7: Bytes Loaded DY LWLE INSIIUCTIONiuiiieiiiiiiie s s e e e ettt e e a e e e e e e e e aaaaeaeees 181
Figure 3.8: Unaligned Word Load UsiNg LWL and LWR.........uuuiiiiiiii e aaaa e 182
Figure 3.9: Bytes Loaded by LWR INSITUCTION..........oeiiiiiieieiie ettt e e n e e e e e e aaaaeaeees 183
Figure 3.10: Unaligned Word Load Using LWLE and LWREcccooiiiiiiii s 184
Figure 3.11: Bytes Loaded by LWRE INSITUCTIONovviiiiiiiiiiiie s s ettt e e a e e e e e e e e aaaaaaees 185
Figure 4.12: Unaligned Word Store Using SWL and SWRuiiiiiiiii s e e e e e e e e 293
Figure 4.13: Bytes Stored by an SWL INSITUCTIONvvviiiiiiiiieei et ea e e e e e e e e aeaaeaeees 294
Figure 4.14: Unaligned Word Store Using SWLE and SWREcooooiiiiiiiiiie s 296
MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 10

Figure 4.15: Bytes Stored by an SWLE INSTIUCHIONuuuuuiiiiiieie et a e e e e e e aaaaeaees 297

Figure 4.16: Unaligned Word Store USiNg SWR @nNd SWLuiiiiiiiii i 298
Figure 4.17: Bytes Stored by SWR INSITUCHION..........ouviiiiiieiiess et a e e e e e e e e aaaaeaeees 299
Figure 4.18: Unaligned Word Store Using SWRE and SWLEccooi i 300
Figure 4.19: Bytes Stored by SWRE INSITUCTIONeviiiiiiiiiiiiees e ettt a e e e e e e e e aaaaaaeees 301
Figure A.1: Sample Bit ENCOAING TaDIEuuiiiiiiie e 343
Figure B.1: LoadPossiblyMisaligned / StorePossiblyMisaligned pseudocodeoooiiiiiiiiiiiiieeeienieiiie 361
Figure B.2: LoadAligned / StoreAligned PSEUAOCOEuuuiiiiiiiiiiaiiiiiiii et e e 361
Figure B.3: LoadRawMemory PSeudoCOde FUNCHION...........uuuieiciei e a e e e e e e e e e 362
Figure B.4: StoreRawMemory PSeudocOde FUNCHIONuuuuiieiieie et a e e e e e e e e e aeaees 362
Figure B.5: Byteswapping pSeUdOCOTE FUNCLIONScooiiiiiiiiiiiiiie et e e e e e e 362
Figure B.6: LoadMisaligned most general PSEUAOCOTEuuiiiiiiiiiaiiiiiiee ettt 363
Figure B.7: Byte-by-byte pseudocode for LoadMisaligned / StoreMisaligned.............cccooiiiiiiiiiiiie 364
Figure B.8: LoadTYPEVector / StoreTYPEVector used by MSA specification ... 365
Figure B.9: PSeudocode fOr LOAUVECIONcoiiiieieeeeeeit e e s e e e e e e e e e e e e et e e e e s a e e e e e e e aeeaaaaeaeees 366
Figure B.10: PSeudocode fOr STOIEVECIONciiiieieeeeieiitet e e e e e e e e e et a e e e e e e e e e eeaaaaeaeees 366

11 MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 5.04

Tables

Table 1.1:
Table 2.1:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:
Table 3.9:

Table 3.10:
Table 3.11:
Table 3.12:
Table 3.13:

Symbols Used in Instruction Operation StatemMENTS........coooiiiiiiiiiiiiii e 16
AccessLength Specifications for LOAUS/STOIESciiiiiiiiiiiiiieee et e e 29
CPU ArthMELIC INSIIUCTIONS ...ttt ettt e e e e ettt et e e e e e e e e bb et eeeaeeeeas 37
CPU Branch and JUMP INSTIUCTIONSoeiiiiiiiiiiiie ettt e e e et e et e e e e e e e s e aeibbe e eeeeaeeas 38
CPU Instruction Control INSIIUCTIONScooiiiiiiiiiieie ettt e e e e e e e e bbb eeaeeeas 38
CPU Load, Store, and Memory Control INStIUCHIONScccoeieiiiiiiiiieeeeeeee e e e e e e e e e e e e aaeeaens 38
CPU LOGICAI INSIIUCTIONSot e e e e e e e e e e e e e et e e et ee e e e e ettt e e e e e e e e e aeeaaeaeeeaeees 39
CPU INSEIt/EXIrACt INSIIUCTIONSteiiiiiieeeeei ittt ettt e e e e e e e e bbb e et e e e e e e e e e bbe e eeeeaeeas 40
CPU MOVE INSIIUCTIONS ...ttt e oottt e et e e e e e e e e bbb bt e et et e e e e e e e e e annbbebeeeeeeeeeas 40
CPU Shift INSIIUCTIONS ...ttt e ettt et et e e e e s e s bbb bt e et et e e e e e e e e e annbbabbeeeeeeeeas 40
CPU Trap INSIIUCTIONS ..ottt e ettt e e e e e e e e e e e bbb bbb st e et e e e e e e e e e annbbnbeeeeeaeeens 41
Obsolete CPU BranCh INSIIUCHIONScoiiiiiiiiiiiiit ittt e e e e et e e e e e e as 41
FPU ArtNMETIC INSIIUCTIONS. ...ttt ettt e e e e e e e e e et eeeaeeeeas 41
FPU BranCh INSIIUCTIONSueeiieiiieiiee ettt e e e e e e ettt et e e e e e e s e n e e e e eeeeas 42
FPU COMPAIe INSIIUCTIONSeuttieiieiieeeee ittt e e e e e e e e s bbb bttt et e e e e e e e e bb e e eeeeeeeas 42

Table 3.14: FPU CONVEIT INSITUCTIONSui ittt et e et e e e e e st e st e e e e et e e s e e e e et e e s eaneesbaeesenaans 42

Table 3.15:
Table 3.16:
Table 3.17:
Table 3.18:
Table 3.19:
Table 3.20:
Table 3.21:
Table 3.22:
Table 3.23:
Table 3.24:
Table 3.25:
Table 3.26:
Table 3.27:
Table 3.28:
Table 3.29:

Table 3.1:
Table 3.2:
Table 3.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table A.1:
Table A.2:
Table A.3:
Table A.4:
Table A.5:
Table A.6:
Table A.7:
Table A.8:
Table A.9:

FPU Load, Store, and Memory Control INSIIUCLIONSuuuuiiiiieieiee e 43
FPU MOVE INSIIUCTIONSeiiiiiieiiieit ettt ettt et e e e et e s e e e e e e e e e 43
Obsolete FPU Branch INStIUCHIONS.........coiiiiiiiiiiiiii ettt 44
Coprocessor BranCh INSTIUCTIONSiiiiiiiiiiiii ettt e e e e e e e et e e e e eaeeas 44
Coprocessor EXECULE INSIIUCTIONSciiiiiiiiiiiiiie ittt e e e e e e e e e e e eeeas 44
Coprocessor Load and StOre INSTIUCTIONSuuuuiiiiiieeee ettt e e e e e e e e eeeeas 44
COProCESSOr MOVE INSIIUCTIONS.eeeiiiiee ettt e e e e e e bbbttt e e e e e e e e e annbbb e e eeeeeeas 44

Obsolete Coprocessor BranCh INSITUCHIONS.uuuiiiiiiiieiiiiii e 45
L VL[To T=To I 1 £ 0T 1 45
EJTAG INSIIUCTIONS ...ttt ettt et e oo oo oo bbbttt et e e e e e a4 e e e e bbbt ettt e e e e e e e e e aanb bbb bbeeeeeaaaeeaaan 45
FPU Comparisons Without Special Operand EXCEPLIONSccuiiiiiiiiiiiiiiiiiiiieeiee e 91
FPU Comparisons With Special Operand Exceptions for QNaNScc.uuiiiiiiiiiiiiiiiiiiieeeeeeeeee 92
USAQE Of EffECHVE AQUIESS ... e e e e e e e e e e e e e et et e e e et e ae e b anaeeas 94
Encoding of BitS[17:16] Of CACHE INSIIUCHIONcoiiiiiiiiiiiiiie ittt 95
Encoding of Bits [20:18] of the CACHE INSIUCTIONccuuiiiiiiiiiieeee e 96
USAQE Of EffECHVE AQUMESS....ueeiiii ittt e e e e e e e e e e e e e e e et e e e e et rea e eas 100
Encoding of BitS[17:16] of CACHEE INSIIUCHION.cciiiiiiiiiiiiiiiiie et 101
Encoding of Bits [20:18] of the CACHEE INStIUCTION...........uuuiiiiiiieiieeeie e 102
Values of hint Field for PREF INSIIUCTIONcciiiiiiiiiiiiie et e e e e 238
Values of hint Field for PREFE INSIUCTIONcoiiiiiiiiiiieiiie ettt e e e e 243
LR o LAV =T o Ty (= g U] 1= £ 248
Encodings of the Bits[10:6] of the SYNC instruction; the SType Field..........cccooiiiiiiiiiiiieen 305
Symbols Used in the Instruction ENcoding TabIesuuvuiiiiiiiii e 343
MIPS32 Encoding of the OpCOde FIEIdoooiiiiii e 344
MIPS32 SPECIAL Opcode Encoding of FUNction Field............coooiiiiiiiii e 345
MIPS32 REGIMM ENCoding Of It FI@Iuiiiiii e a e e e e e 345
MIPS32 SPECIAL2 Encoding of FUNCLION FIeldoooiiiiiiee e 345
MIPS32 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture.................oovvvvnnnes 346
MIPS32 MOVCI ENCOTING OF 1 Bteeieiiiieiiit ettt 346
MIPS32 SRL Encoding of Shift/ROIALEccoiiiiiii e e e 346
MIPS32 SRLV Encoding of Shift/ROTALE.........cccoiiiii e e e e e e e e 346

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 12

Table A.10:
Table A.11:
Table A.12:
Table A.13:
Table A.14:
Table A.15:
Table A.16:
Table A.17:
Table A.18:
Table A.19:
Table A.20:
Table A.21:

13

MIPS32 BSHFL ENcoding Of S& FIEld.......ccccoieiiiiiic e e e e e e e e e e e e 347
MIPS32 COPO ENCoding Of IS FIEIAueeiiiiie i e e e e e e e e e e e e e e 347
MIPS32 COPO Encoding of Function Field When rS=CO..........uuiiiiiiiiiiiiii e 347
MIPS32 COP1 ENcoding Of IS FIEIAuveeiiie i e e e e e e e e e e e e e 348
MIPS32 COP1 Encoding of Function Field When rS=S........ooooiiiiiiiiiciiie e 348
MIPS32 COP1 Encoding of Function Field When rS=Doovvviiiiiiiiiiiiieee e 348
MIPS32 COP1 Encoding of Function Field When rS=W O Lvvvviviiiiiiiiii e 349
MIPS32 COP1 Encoding of Function Field When rS=PS ..., 349
MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF.................cccvvvvvrvrrirnnnnns 349
MIPS32 COP2 ENcoding Of IS FIEIAueeeiiie it e e e e e e e e e e e e e e nae e 350
MIPS32 COP1X Encoding of FUNCLION FIeldcoooiiiiiie e 350
Floating Point Unit Instruction Format ENCOTINGS............oiiiiiiiiiiiiiiieis e e e e e e e e e e e e e 350

MIPS® Architecture For Programmers Volume 1l-A: The MIPS32® Instruction Set, Revision 5.04

Chapter 1

About This Book

The MIPS® Architecture For Programmers Volume 11-A: The MIPS32® Instruction Set comes as part of a multi-vol-
ume set.

* VolumeI-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

* Volumell-A provides detailed descriptions of each instruction in the MIPS32® instruction set
* Volumell-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

e Volume Il describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* VolumeIV-adescribesthe MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the Ml Architecture and
microMI1PS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

* Volume IV-d describes the SmartM 1 PS®A pplication-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

* Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

* Volume IV-f describesthe MIPS® MT Module to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU A pplication-Specific Extension to the MIPS® Architecture
* Volume IV-i describesthe MIPS® Virtualization Module to the MIPS® Architecture

e Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture
1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 14

About This Book

1.1.1 ltalic Text

isused for emphasis

isused for hits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, suchas S, D,
and PS

is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

represents aterm that is being defined

is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

is used for ranges of numbers; the range isindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel ow.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

15

Theterms UNPREDI CTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only asthe result of executing instructions
inaprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

UNPREDI CTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
 UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operationa state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as afunction of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy 2 Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless

than z, this expression is an empty (zero length) bit string.

+,— 2's complement or floating point arithmetic: addition, subtraction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 16

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwiselogical XOR
and Bitwiselogical AND
or Bitwiselogical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is ashort-hand notation for SGPR[SRSCltlcgs, X].
SGPR[s,X] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,X] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[1] .
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,5] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z] Coprocessor unit z condition signal
Xlat[x] Trandation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRrg and User mode).

17

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when astore to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction
I+n:, time during which the pseudocode appearsto “execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the

instruction time of another instruction. When this happens, the instruction operation is written in sections
|abeled with the instruction time, relative to the current instruction |, in which the effect of that pseudocode
appearsto occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled 1+1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of theinstruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register
on an exception. The PC value contains afull 32-bit address all of which are significant during amemory ref-

erence.

ISA Mode In processors that implement the M1PS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, asfol-
lows:

Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Modeinto a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bitsimplemented is represented by the symbol PABITS. As such, if 36
physical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pyteg,

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 18

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU

has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
aly in MIPS32 Release2 and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in

any FPR.

In MIPS32 Release 1 implementations, FP32Register sM odeisawaysa0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32Register M ode is computed from the FR bit in the Status register. If this bitis a0, the pro-
cessor operates asiif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis
falseif abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of abranch or jump.

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL.: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

19 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields’ on page 21

» “Instruction Descriptive Name and Mnemonic” on page 22

e “Format Field” on page 22

» “Purpose Field” on page 23

» “Description Field” on page 23

* “Restrictions Field” on page 23

» “Operation Field” on page 24

+ “Exceptions Field” on page 24

» “Programming Notes and Implementation Notes Fields’ on page 25

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 20

Guide to the Instruction Set

Figure 2.1 Example of Instruction Description

Instruction Mnemonic and .
Descriptive Name —————> Example Instruction Name EXAMPLE
EXAMPLE
Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0
e 0 . a 0 | exaune
000000 00000 000000
6 5 5 5 5 6

Architecture level at which

instruction was defined/redefined \A

Format: EXAMPLE fd,rs,rt MI1PS32
Assembler format(s) for each /7
definition)
/D Purpose: Example Instruction Name
Short description
To execute an EXAMPLE op.

Symbolic descriptio ——J> Description: GPR[rd] < GPR[r]s exampleop GPR[rt]

Full description of ———————>> This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation includes information that would be difficult to encode in the Operation section.

Restrictions on instruction = Restrictions:

and operands

This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca
tions.

High-level language ——J> Operation:

description of instruction

operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It 1is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ¢ GPR[rs] exampleop GPR[rt]

GPR[rd] « temp

Exceptions that = Exceptions:
instruction can cause

A list of exceptions taken by the instruction
Notes for programmers _ Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Notes for implementors ——J~ [Implementation Notes:

Like Programming Notes, except for processor implementors

2.1.1 Instruction Fields

21 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

2.1 Understanding the Instruction Fields
Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant valuesin afield are shown in binary below the symbolic or hexadecimal value.

* All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

» Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 ADD
000000 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

Theinstruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembl er formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructionsin pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectura level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data

show an assembly format with the actual assembler mnemonic for each valid value of the fnt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 22

Guide to the Instruction Set

The assembler format lines sometimes include parenthetical commentsto help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

Purpose: Add Word
To add 32-hit integers. If an overflow occurs, then trap.

2.1.5 Description Field

If aone-line symbolic description of the instruction is feasible, it appearsimmediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

Description: GPR[rd] <« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit
result.

» |If theaddition resultsin 32-bit 2's complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rd.

23

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs" is the floating point operand register specified by theinstruction field fs. “ CP1 register

fd” isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Validvaluesfor instruction fields (for example, see floating point ADD fmt)

ALIGNMENT reguirements for memory addresses (for example, see LW)
» Vaidvalues of operands (for example, see ALNV.PS)

» Valid operand formats (for example, see floating point ADD fmt)

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

2.1 Understanding the Instruction Fields
» Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).
» Vaid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:
None

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. Thisformal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

Operation:

temp < (GPR[rsli;||GPR[rslz; o) + (GPR[rtlsq||GPR[rtls; o)
if temps;, # temps; then
SignalException (IntegerOverflow)
else
GPR[rd] ¢« temp
endif

See 2.2 “Operation Section Notation and Functions” on page 25 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception
Exceptions:

Integer Overflow

Aninstruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 24

Guide to the Instruction Set

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

25

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

» “Instruction Execution Ordering” on page 25

» “Pseudocode Functions’ on page 25

2.2.1 Instruction Execution Ordering

Each of the high-level language statementsin the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

» “Coprocessor General Register Access Functions’ on page 25

* “Memory Operation Functions’ on page 27

* “Floating Point Functions’ on page 30

» “Miscellaneous Functions’ on page 33

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CPO, have instructions to exchange words and doublewords between coprocessor
genera registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and
how a coprocessor supplies aword or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-

word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-

tents of memdouble in coprocessor general register rt.
Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */
endfunction COP_LD
COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 2.13 COP_SW Pseudocode Function

dataword ¢« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */
endfunction COP_SW
COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-

order doubleword in coprocessor general register rt.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 26

Guide to the Instruction Set

Figure 2.14 COP_SD Pseudocode Function
datadouble ¢« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value
/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword isthe smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the foll owing functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function trandates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceis to Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual addressisin one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute, the method used to access caches*/

27 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

2.2 Operation Section Notation and Functions

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
accesstype of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the accesstypeis cached but the datais not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy aload reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */

/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */

/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory
The StoreMemory function stores a value to memory.

The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the
bytesthat are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytesin memory will
actually be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 28

Guide to the Instruction Set

29

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* VAddr: virtual address */
endfunction StoreMemory
Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA:
/*

/* pAddr:
/* vAddr:
/* DATA:
/* hint:

endfunction

Cacheability&Coherency Attribute, the method used to access */
caches and memory and resolve the reference. */

physical address */

virtual address */

Indicates that access is for DATA */

hint that indicates the possible use of the data */

Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

SyncOperation

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 hits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

The SyncOperation function orders loads and stores to synchronize shared memory.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

2.2 Operation Section Notation and Functions

This action makes the effects of the synchronizable |oads and storesindicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR
The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function
value ¢« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* 1s not known as, for example, in SWC1l and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
valueFPR ¢« UNPREDICTABLE
else
valueFPR < FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR « FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 30

Guide to the Instruction Set

else
valueFPR « FPR[fpr]
endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] « value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE’? || value;;
FPR[fpr+l] <« UNPREDICTABLE’? || valueg; 3,
endif
else
FPR[fpr] <« value
endif

L, PS:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif

endcase

31 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

2.2 Operation Section Notation and Functions

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.
CheckFPException
Figure 2.23 CheckFPException Pseudocode Function
CheckFPException ()
/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSR1g. .15 and FCSRqq_ . 7) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
Figure 2.24 FPConditionCode Pseudocode Function
tf «FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then
FPConditionCode ¢« FCSRj3
else
FPConditionCode ¢ FCSRyg,cc

endif
endfunction FPConditionCode
SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ¢« FCSR3; 24 || tf || FCSRyy. g
else
FCSR ¢ FCSR31. 254cc | | tf | | FCSR334cc. .0

endif

endfunction SetFPConditionCode

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 32

Guide to the Instruction Set

33

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignhalException
The Signal Exception function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignhalDebugBreakpointException

The Signal DebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
NullifyCurrentinstruction

The NullifyCurrentInstruction function nullifies the current instruction.

Theinstruction isaborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
killsthe instruction in the delay slot of the branch likely instruction.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

2.3 Op and Function Subfield Notation

Figure 2.29 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-rélative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in ajump delay slot. A jump delay slot always immedi-
ately followsaJr, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function
JumpDelaySlot (vAddr)
/* vAddr:Virtual address */
endfunction JumpDelaySlot
PolyMult
The PolyMult function multiplies two binary polynomial coefficients.
Figure 2.31 PolyMult Pseudocode Function

PolyMult (x, vy)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(31-i)..0 || 0%)
endif
endfor

PolyMult <« temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name con-

tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfieldsin an instruction format (such asfs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-

case.

For the sake of clarity, an aliasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase since it refersto a

variable subfield.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 34

Guide to the Instruction Set
Bit encodings for mnemonics are given in Volume , in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 34 for a description of the op and function subfields.

35 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Chapter 3

The MIPS32® Instruction Set

3.1 Compliance and Subsetting

To be compliant with the M1PS32 Architecture, designs must implement a set of required features, as described in
this document set. To alow flexibility in implementations, the MIPS32 Architecture does provide subsetting rules.
Animplementation that follows these rules is compliant with the MIPS32 Architecture aslong asit adheres strictly to
therules, and fully implements the remaining instructions.Supersetting of the MIPS32 Architectureis only allowed
by adding functions to the SPECIAL2 major opcode, by adding control for co-processors viathe COP2, LWC?2,
SWC2, LDC2, and/or SDC2, or viathe addition of approved Application Specific Extensions.

Note: The use of COP3 as a customizable coprocessor has been removed in the Release 2 of the M1PS32 architecture.
The use of the COP3 is now reserved for the future extension of the architecture. Implementations using Releasel of
the MIPS32 architecture are strongly discouraged from using the COP3 opcode for a user-available coprocessor as
doing so will limit the potential for an upgrade path to a 64-bit floating point unit.

Theinstruction set subsetting rules are as follows:

* All non-privileged (does not need access to Coprocessor 0) CPU (non-FPU) instructions must be implemented -
no subsetting is alowed (unless described in thislist).

* TheFPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determineif an FPU isimplemented by checking the state of the FP bit in the Configl CPO regis-
ter. If the FPU isimplemented, it must include S, D, and W formats, operate instructions, and all supporting
instructions. Software may determine which FPU data types are implemented by checking the appropriate bit in
the FIR CP1 register. The following allowable FPU subsets are compliant with the MIPS32 architecture:

* NoFPU
 FPUwith S, D, and W formats and all supporting instructions

» Coprocessor 2 isoptional and may be omitted. Software may determine if Coprocessor 2 isimplemented by
checking the state of the C2 bit in the Configl CPO register. If Coprocessor 2 isimplemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be
omitted on an instruction-by-instruction basis.

* Thestandard TLB-based memory management unit may be replaced with asimpler MMU (e.g., a Fixed Map-
ping MMU). If thisis done, the rest of the interface to the Privileged Resource Architecture must be preserved. If
aTLB-based MMU is not implemented, the TLB related instructions can be subsetted out. Software may deter-
mine the type of the MMU by checking the MT field in the Config CPO register.

* Instruction, CPO Register, and CP1 Control Register fields that are marked “ Reserved” or shown as“0” in the

description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 36

The MIPS32® Instruction Set

Supported Modules and ASEs are optional and may be subsetted out. If most cases, software may determineif a
supported Module/ASE isimplemented by checking the appropriate bit in the Configl or Config3 or Config4
CPO register. If they are implemented, they must implement the entire | SA applicable to the component, or
implement subsets that are approved by the ASE specifications.

EJTAG is optional and may be subsetted out. If it isimplemented, it must implement only those subsets that are
approved by the EJTAG specification. If EJTAG is not implemented, the EJTAG instructions (SDBBP and
DERET) can be subsetted out.

The JALX instruction is only implemented when there are other instruction sets are available on the device
(microMIPS or MIPS16€).

EVA load/store (LWE, LHE, LHUE, LBE, LBUE, SWE, SHE, SBE) instructions are optional.

If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

3.2 Alphabetical List of Instructions

37

Table 3.1 through Table 3.24 provide alist of instructions grouped by category. Individual instruction descriptions
follow the tables, arranged in alphabetical order.

Table 3.1 CPU Arithmetic Instructions

Mnemonic Instruction
ADD Add Word
ADDI Add Immediate Word
ADDIU Add Immediate Unsigned Word
ADDU Add Unsigned Word
CLO Count Leading Onesin Word
CLz Count Leading Zeros in Word
DIV Divide Word
DIVU Divide Unsigned Word
MADD Multiply and Add Word to Hi, Lo
MADDU Multiply and Add Unsigned Word to Hi, Lo
MSUB Multiply and Subtract Word to Hi, Lo
MSUBU Multiply and Subtract Unsigned Word to Hi, Lo
MUL Multiply Word to GPR
MULT Multiply Word
MULTU Multiply Unsigned Word
SEB Sign-Extend Byte Release 2 & subsequent
SEH Sign-Extend Halftword Release 2 & subsequent
SLT Set on Less Than
SLTI Set on Less Than Immediate
SLTIU Set on Less Than Immediate Unsigned
SLTU Set on Less Than Unsigned

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

3.2 Alphabetical List of Instructions

Table 3.1 CPU Arithmetic Instructions (Continued)

Mnemonic Instruction
SuUB Subtract Word
SUBU Subtract Unsigned Word

Table 3.2 CPU Branch and Jump Instructions

Mnemonic Instruction
B Unconditional Branch
BAL Branch and Link
BEQ Branch on Equal
BGEZ Branch on Greater Than or Equal to Zero
BGEZAL Branch on Greater Than or Equal to Zero and Link
BGTZ Branch on Greater Than Zero
BLEZ Branch on Less Than or Equal to Zero
BLTZ Branch on Less Than Zero
BLTZAL Branch on Less Than Zero and Link
BNE Branch on Not Equal
J Jump
JAL Jump and Link
JALR Jump and Link Register
JALR.HB Jump and Link Register with Hazard Barrier Release 2 & subsequent
JALX Jump and Link Exchange microMIPS or MIPS16e

also implemented
JR Jump Register
JR.HB Jump Register with Hazard Barrier Release 2 & subsequent
Table 3.3 CPU Instruction Control Instructions

Mnemonic Instruction
EHB Execution Hazard Barrier Release 2 & subsequent |
NOP No Operation
PAUSE Wait for LLBit to Clear Release 2.6 & subsequent |
SSNOP Superscalar No Operation

Table 3.4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction
LB Load Byte
LBE Load Byte EVA Release 3.03 & subsequent

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

38

The MIPS32® Instruction Set

39

Table 3.4 CPU Load, Store, and Memory Control Instructions (Continued)

Mnemonic Instruction
LBU Load Byte Unsigned
LBUE Load Byte Unsigned EVA Release 3.03 & subsequent
LH Load Halfword
LHE Load Halfword EVA Release 3.03 & subsequent
LHU Load Halfword Unsigned
LHUE Load Halfword Unsigned EVA Release 3.03 & subsequent
LL Load Linked Word
LLE Load Linked Word-EVA Release 3.03 & subsequent
LW Load Word
LWE Load Word EVA Release 3.03 & subsequent
LWL Load Word Left
LWLE Load Word Left EVA Release 3.03 & subsequent
LWR Load Word Right
LWRE Load Word Right EVA Release 3.03 & subsequent
PREF Prefetch
PREFE Prefetch-EVA Release 3.03 & subsequent
SB Store Byte
SBE Store Byte EVA Release 3.03 & subsequent
SC Store Conditional Word
SCE Store Conditional Word EVA Release 3.03 & subsequent
SH Store Halfword
SHE Store Halfword EVA Release 3.03 & subsequent
SW Store Word
SWE Store Word EVA Release 3.03 & subsequent
SWL Store Word L eft
SWLE Store Word Left EVA Release 3.03 & subsequent
SWR Store Word Right
SWRE Store Word Right EVA Release 3.03 & subsequent
SYNC Synchronize Shared Memory
SYNCI Synchronize Caches to Make I nstruction Writes Effective Release 2 & subsequent

Table 3.5 CPU Logical Instructions

Mnemonic Instruction
AND And
ANDI And Immediate
LUI Load Upper Immediate

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

3.2 Alphabetical List of Instructions

Table 3.5 CPU Logical Instructions (Continued)

Mnemonic Instruction
NOR Not Or
OR Or
ORI Or Immediate
XOR Exclusive Or
XORI Exclusive Or Immediate

Table 3.6 CPU Insert/Extract Instructions

Mnemonic Instruction
EXT Extract Bit Field Release 2 & subsequent
INS Insert Bit Field Release 2 & subsequent
WSBH Word Swap Bytes Within Halfwords Release 2 & subsequent

Table 3.7 CPU Move Instructions

Mnemonic Instruction
MFHI Move From HI Register
MFLO Move From LO Register
MOVF Move Conditional on Floating Point False
MOVN Move Conditional on Not Zero
MOVT Move Conditional on Floating Point True
MOVZ Move Conditional on Zero
MTHI Move To HI Register
MTLO Move To LO Register
RDHWR Read Hardware Register Release 2 & subsequent

Table 3.8 CPU Shift Instructions

Mnemonic Instruction
ROTR Rotate Word Right Release 2 & subsequent
ROTRV Rotate Word Right Variable Release 2 & subsequent
SLL Shift Word Left Logical
SLLV Shift Word Left Logical Variable
SRA Shift Word Right Arithmetic
SRAV Shift Word Right Arithmetic Variable
SRL Shift Word Right Logical
SRLV Shift Word Right Logical Variable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

40

The MIPS32® Instruction Set

Table 3.9 CPU Trap Instructions

Mnemonic Instruction
BREAK Breakpoint
SYSCALL System Call
TEQ Trap if Equal
TEQI Trap if Equal Immediate
TGE Trap if Greater or Equal
TGEI Trap if Greater of Equal Immediate
TGEIU Trap if Greater or Equal Immediate Unsigned
TGEU Trap if Greater or Equal Unsigned
TLT Trapif Less Than
TLTI Trap if Less Than Immediate
TLTIU Trap if Less Than Immediate Unsigned
TLTU Trap if Less Than Unsigned
TNE Trap if Not Equal
TNEI Trap if Not Equal Immediate

Table 3.10 Obsolete! CPU Branch Instructions

Mnemonic Instruction
BEQL Branch on Equal Likely
BGEZALL Branch on Greater Than or Equal to Zero and Link Likely
BGEZL Branch on Greater Than or Equal to Zero Likely
BGTZL Branch on Greater Than Zero Likely
BLEZL Branch on Less Than or Equal to Zero Likely
BLTZALL Branch on Less Than Zero and Link Likely
BLTZL Branch on Less Than Zero Likely
BNEL Branch on Not Equal Likely

1. Softwareis strongly encouraged to avoid use of the Branch Likely instructions, asthey will be removed from afuture revision
of the MIPS32 architecture.

Table 3.11 FPU Arithmetic Instructions

Mnemonic Instruction
ABSfmt Floating Point Absolute Value
ADD.fmt Floating Point Add
DIV fmt Floating Point Divide
MADD.fmt Floating Point Multiply Add Release 2 & subsequent

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

3.2 Alphabetical List of Instructions

Table 3.11 FPU Arithmetic Instructions (Continued)

Mnemonic Instruction
MSUB fmt Floating Point Multiply Subtract Release 2 & subsequent
MUL fmt Floating Point Multiply
NEG.fmt Floating Point Negate
NMADD fmt Floating Point Negative Multiply Add Release 2 & subsequent
NMSUB fmt Floating Point Negative Multiply Subtract Release 2 & subsequent
RECIPfmt Reciprocal Approximation Release 2 & subsequent
RSQRT fmt Reciprocal Square Root Approximation Release 2 & subsequent
SQRT fmt Floating Point Square Root
SUB fmt Floating Point Subtract

Table 3.12 FPU Branch Instructions

Mnemonic Instruction
BC1F Branch on FP False
BC1T Branch on FP True

Table 3.13 FPU Compare Instructions

Mnemonic Instruction

C.cond fmt Floating Point Compare
Table 3.14 FPU Convert Instructions

Mnemonic Instruction
ALNV.PS Floating Point Align Variable 64-bit FPU Only
CEIL.L fmt Floating Point Ceiling Convert to Long Fixed Point 64-bit FPU Only
CEIL.W fmt Floating Point Ceiling Convert to Word Fixed Point
CVT.D fmt Floating Point Convert to Double Floating Point
CVT.L fmt Floating Point Convert to Long Fixed Point 64-bit FPU Only
CVT.PS.S Floating Point Convert Pair to Paired Single 64-bit FPU Only
CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point 64-bit FPU Only
CVT.SPU Floating Point Convert Pair Upper to Single Floating Point 64-bit FPU Only
CVT.Sfmt Floating Point Convert to Single Floating Point
CVT.W.fmt Floating Point Convert to Word Fixed Point
FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point 64-bit FPU Only
FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point
PLL.PS Pair Lower Lower 64-bit FPU Only

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

42

The MIPS32® Instruction Set

43

Table 3.14 FPU Convert Instructions (Continued)

Mnemonic Instruction
PLU.PS Pair Lower Upper 64-bit FPU Only
PUL.PS Pair Upper Lower 64-bit FPU Only
PUU.PS Pair Upper Upper 64-bit FPU Only
ROUND.L.fmt Floating Point Round to Long Fixed Point 64-bit FPU Only
ROUND.Wfmt | Floating Point Round to Word Fixed Point
TRUNC.L fmt Floating Point Truncate to Long Fixed Point 64-bit FPU Only
TRUNC.W fmt Floating Point Truncate to Word Fixed Point

Table 3.15 FPU Load, Store, and Memory Control Instructions

Mnemonic Instruction
LDC1 Load Doubleword to Floating Point
LDXC1 Load Doubleword Indexed to Floating Point Release 2 & subsequent
LUXC1 Load Doubleword Indexed Unaligned to Floating Point Release 2 & subsequent
LwC1 Load Word to Floating Point
LWXC1 Load Word Indexed to Floating Point Release 2 & subsequent
PREFX Prefetch Indexed Release 2 & subsequent
SDC1 Store Doubleword from Floating Point
SDXC1 Store Doubleword Indexed from Floating Point Release 2 & subsequent
SUXC1 Store Doubleword Indexed Unaligned from Floating Point Release 2 & subseguent
SWC1 Store Word from Floating Point
SWXC1 Store Word Indexed from Floating Point Release 2 & subsequent

Table 3.16 FPU Move Instructions

Mnemonic Instruction
CFC1 Move Control Word from Floating Point
CTC1 Move Control Word to Floating Point
MFC1 Move Word from Floating Point
MFHC1 Move Word from High Half of Floating Point Register Release 2 & subsequent
MOV.fmt Floating Point Move
MOV Ffmt Floating Point Move Conditional on Floating Point False
MOVN fmt Floating Point Move Conditional on Not Zero
MOVT.fmt Floating Point Move Conditional on Floating Point True
MOVZ fmt Floating Point Move Conditional on Zero
MTC1 Move Word to Floating Point
MTHC1 Move Word to High Half of Floating Point Register Release 2 & subsequent

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

3.2 Alphabetical List of Instructions

Table 3.17 Obsolete! FPU Branch Instructions

Mnemonic Instruction
BC1FL Branch on FP False Likely
BC1TL Branch on FP True Likely

1. Softwareis strongly encouraged to avoid use of the Branch Likely instructions, asthey will be removed from afuture revision
of the MIPS32 architecture.

Table 3.18 Coprocessor Branch Instructions

Mnemonic Instruction
BC2F Branch on COP2 False
BC2T Branch on COP2 True

Table 3.19 Coprocessor Execute Instructions

Mnemonic Instruction
COP2 Coprocessor Operation to Coprocessor 2

Table 3.20 Coprocessor Load and Store Instructions

Mnemonic Instruction
LDC2 Load Doubleword to Coprocessor 2
LweC2 Load Word to Coprocessor 2
SDC2 Store Doubleword from Coprocessor 2
SWC2 Store Word from Coprocessor 2

Table 3.21 Coprocessor Move Instructions

Mnemonic Instruction
CFC2 Move Control Word from Coprocessor 2
CcTC2 Move Control Word to Coprocessor 2
MFC2 Move Word from Coprocessor 2
MFHC2 Move Word from High Half of Coprocessor 2 Register Release 2 & subsequent |
MTC2 Move Word to Coprocessor 2
MTHC2 Move Word to High Half of Coprocessor 2 Register Release 2 & subsequent |

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 44

The MIPS32® Instruction Set

Table 3.22 Obsolete! Coprocessor Branch Instructions

Mnemonic Instruction
BC2FL Branch on COP2 False Likely
BC2TL Branch on COP2 True Likely

1. Softwareis strongly encouraged to avoid use of the Branch Likely instructions, asthey will be removed from afuture revision
of the MIPS32 architecture.

Table 3.23 Privileged Instructions

Mnemonic Instruction
CACHE Perform Cache Operation
CACHEE Perform Cache Operation EVA Release 3.03 & subsequent
DI Disable Interrupts Release 2 & subsequent
El Enable Interrupts Release 2 & subsequent
ERET Exception Return
MFCO Move from Coprocessor 0
MTCO Move to Coprocessor 0
RDPGPR Read GPR from Previous Shadow Set Release 2 & subsequent
TLBP Probe TLB for Matching Entry
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
WAIT Enter Standby Mode
WRPGPR Write GPR to Previous Shadow Set Release 2 & subsequent
Table 3.24 EJTAG Instructions
Mnemonic Instruction
DERET Debug Exception Return
SDBBP Software Debug Breakpoint

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Absolute Value ABS.fmt

31 26 25 21 20 16 15 11 10 6 5 0
copP1 0 ABS
010001 fmt 00000 fs fd 000101
6 5 5 5 5 6

Format: aBS.fmt

ABS.S fd, fs MIPS32
ABS.D fd, fs MIPS32
ABS.PS fd, fs MI1PS64, M1 PS32 Release 2

Purpose: Floating Point Absolute Value

Description: FPR[fd] « abs(FPR[fs])

The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are values in format fmt.
ABS.PS takes the absolute value of the two values in FPR fs independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bitsif no exception is taken.

If FIRHas0008=0 Or FCSRagsp00s=0 then this operation is arithmetic. For this case, any NaN operand signals invalid
operation.

If FCSRaps00s=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No |EEE exception can be generated for this

case.
Restrictions:

Thefields fs and fdmust specify FPRs valid for operands of type fnt. If they are not valid, the result isUNPREDICT -
ABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

The result of ABS.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register mode!;
i.e. itispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 46

Add Word ADD

a7

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6
Format: apD rd, rs, rt MI1PS32

Purpose: Add Word
To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] <« GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit result.

» |If the addition resultsin 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

» |If the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:
None

Operation:

temp < (GPR[rsli;||GPR[rslz; o) + (GPR[rtlsqi||GPR[rtlsq o)
if temp;, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« temp
endif
Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Add ADD.fmt

31 26 25 21 20 16 15 11 10 6 5 0
CcoP1 ADD
010001 fmt ft fs fd 000000
6 5 5 5 5 6

Format: aDD. fmt

ADD.S fd, fs, ft MIPS32
ADD.D fd, fs, ft MIPS32
ADD.PS fd, fs, ft MI1PS64, M1 PS32 Release 2

Purpose: Floating Point Add
To add floating point values

Description: FPR[fd] < FPR[fs] + FPR[ft]

Thevauein FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
ADD.PS adds the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated
exceptions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format ft; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of ADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-hit FPU register mode!;
i.e.itispredictableif executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +¢, ValueFPR(ft, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 48

Add Immediate Word ADDI

49

31 26 25 21 20 16 15 0
ADDI .)
001000 rs rt immediate
6 5 5 16
Format: ADDI rt, rs, immediate MIPS32

Purpose: Add Immediate Word
To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: GPR[rt] < GPR[rs] + immediate
The 16-bit signed immediate is added to the 32-bit value in GPR rsto produce a 32-bit result.

» |If the addition resultsin 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rt.

Restrictions:
None

Operation:

temp < (GPR[rsli;||GPR[rslz; o) + sign_extend(immediate)
if temp;, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rt] « temp
endif
Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Add Immediate Unsigned Word ADDIU

31 26 25 21 20 16 15 0
ADDIU .)
001001 rs rt immediate
6 5 5 16
Format: aDDIU rt, rs, immediate M1PS32

Purpose: Add Immediate Unsigned Word
To add a constant to a 32-hbit integer

Description: GPR[rt] <« GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPRrt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
None

Operation:

temp ¢ GPR[rs] + sign_extend(immediate)
GPR[rt] ¢« temp

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 50

Add Unsigned Word ADDU

51

26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 ADDU
000000 00000 100001
6 5 5 5 5 6
Format. ADDU rd, rs, rt MIPS32

Purpose: Add Unsigned Word
To add 32-hit integers

Description: GPR[rd] <« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into
GPRrd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
None

Operation:
temp ¢ GPR[rs] + GPR[rt]
GPR[rd] ¢« temp
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. Thisinstruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Align Variable ALNV.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1X ALNVPS
010011 ™ fi fs fd 011110
6 5 5 5 5 6
Format: ALNV.Ps fd, fs, ft, rs MIPS64, MIPS32 Release 2

Purpose: Floating Point Align Variable

To align a misaligned pair of paired single values

Description: FPR[fd] <« ByteAlign(GPR[rs], o, FPR[fs], FPR[ft])

FPR fs is concatenated with FPR f7 and this value is funnel-shifted by GPR 75, , bytes, and written into FPR fd. If
GPR 15, gis 0, FPR fd receives FPR fs. If GPR rs; g is 4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper half of
FPR fd receives the lower half of the paired single value in fs, and the lower half of FPR fd receives the upper half of
the paired single value in FPR f7.

Figure 3.1 Example of an ALNV.PS Operation
FPRJfs FPRft
AL FoRIY

L IS Oy I —

—

[-

63 323 0

———
FPRIfd]

The move is non arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields f5, f#, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

If GPR 154 (are non-zero, the results are UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model:; i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit
FPU.

Operation:

if GPR[rs],; .o = 0 then
StoreFPR(fd, PS,ValueFPR(fs,PS))
else if GPR[rsl,; o # 4 then
UNPREDICTABLE
else if BigEndianCPU then
StoreFPR(fd, PS, ValueFPR(fs, PS)3;. o || ValueFPR(ft,PS)¢;. 32)

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 52

Floating Point Align Variable ALNV.PS

else

StoreFPR(fd, PS, ValueFPR(ft, PS)3; o || ValueFPR(fs,PS)g3. 35)
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:
ALNV.PSisdesigned to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example:

/* Copy T2 bytes (a multiple of 16) of data TO to T1l, TO unaligned, Tl aligned.
Reads one dw beyond the end of TO. */

LUXC1 FO, 0(TO0) /* set up by reading lst src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, TO, 8 /* base for odd dw loads */
ADDIU T5, Tl, -8/* base for odd dw stores */
LOOP:
LUXC1 F1l, T3(T4)
ALNV.PS F2, FO, Fl1, TO/* switch FO, Fl for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 FO, T3(TO)
ALNV.PS F2, F1, FO, TO/* switch F1l, FO for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)
DONE :

ALNV.PSisaso useful with SUXCL1 to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = TO[i] + F8, TO aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes lst pair into FO0, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get TO[i+2]/TO0[i+3] */
ADD.PS Fl, F2, F8/* compute T1[i+2]/T1[i+43] */
ALNV.PS F3, FO, F1, Tl1/* align to dst memory */
SUXC1 F3, T3(T1l)/* store to T1[i+0]/T1[i+1] */
ADDIU T3, 16 /* 1 =1+ 4 */
LDC1 F2, T3(TO0)/* get TO[i+0]/TO[i+1] */
ADD.PS FO, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, F1, FO, Tl/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of FO, depending on Tl alignment */

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " d 0 AND
000000 00000 100100
6 5 5 5 5 6
Format: aAND rd, rs, rt MIPS32

Purpose: And
To do abitwise logical AND

Description: GPR[rd] < GPR[rs] AND GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] ¢« GPR[rs] and GPR[rt]

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 54

And Immediate ANDI
31 26 25 21 20 16 15 0
ANDI .]
001100 rs rt immediate
6 5 5 16
Format: aANDI rt, rs, immediate M1PS32

55

Purpose: And Immediate
To do a bitwise logical AND with a constant

Description: GPR[rt] <« GPR[rs] AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin abitwise logical AND

operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt]

Exceptions:
None

< GPR[rs] and zero_extend (immediate)

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Unconditional Branch B

31 26 25 21 20 16 15 0
BEQ 0 0
000100 00000 00000 offset
6 5 5 16
Format: B offset Assembly Idiom

Purpose: Unconditional Branch
To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || 02)
I+1: PC < PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-hit signed instruction offset, the conditional branch range is+ 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 56

Branch and Link BAL

31 26 25 21 20 16 15 0
REGIMM 0 BGEZAL offset
000001 00000 10001
6 5 5 16
Format: BAL offset Assembly Idiom

57

Purpose: Branch and Link
To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset isthe assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BGEZAL rO0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-bit offset field shifted |eft 2bits) is added to the address of the instruction following the
branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
re-executed. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an excep-
tion handler to resume execution by re-executing the branch when an exception occurs in the branch delay sot.
Operation:

I: target_offset ¢« sign_extend(offset || 02)
GPR[31] « PC + 8
I+1: PC « PC + target_offset
Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on FP False BC1F

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
010001 01000 « lolo offset
6 5 3 1 1 16
Format: BC1F offset (cc = 0 implied) M1PS32
BC1F cc, offset MIPS32

Purpose: Branch on FP False
To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 0 then branch

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit ccisfalse (0), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.
I: condition ¢« FPConditionCode(cc) = 0
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C bit in the FP Control/Satus register. MIPS |, I1, and 111 architectures must have the CC
field set to O, which isimplied by the first format in the “ Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPSI, 11, and 111 architectures there must be at least one instruction between the compare instruction that sets

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 58

the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

59 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on FP False Likely BC1FL

31 26 25 21 20 18 17 16 15 0
CoP1 BC nd| tf
010001 01000 © 110 offset
6 5 3 1 1 16
Format: BC1FL offset (cc = 0 implied) MIPS32
BC1lFL cc, offset MIPS32

Purpose: Branch on FP False Likely

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch istaken.

Description: if FPConditionCode(cc) = 0 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dot to form a PC-relative effective target address. If the FP Con-
dition Code hit cc is false (0), the program branches to the effective target address after the instruction in the delay
dot is executed. If the branch is not taken, the instruction in the delay ot is not executed.

An FP condition code is set by the FP compare instruction, C.cond fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for

tf and nd.
I: condition ¢« FPConditionCode(cc) = 0
target_offset « (offsets)CPREEN-(16+2) || offset || 02
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 60

61

Branch on FP False Likely BC1FL

encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C hit in the FP Control/Status register. MIPS 1, 11, and I11 architectures must have the CC
field set to O, which isimplied by the first format in the “Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code hits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPS |1 and 111 architectures, there must be at |east one instruction between the compare instruction that setsa
condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on FP True BC1T

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
010001 01000 © 1ol offset
6 5 3 1 1 16
Format: BC1T offset (cc = 0 implied) M1PS32
BC1T cc, offset MIPS32

Purpose: Branch on FP True
To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 1 then branch

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit cc istrue (1), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.
I: condition ¢« FPConditionCode(cc) =1
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C bit in the FP Control/Satus register. MIPS |, I1, and 111 architectures must have the CC
field set to O, which isimplied by the first format in the “ Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPSI, 11, and 111 architectures there must be at least one instruction between the compare instruction that sets

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 62

the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

63 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on FP True Likely BC1TL

31 26 25 21 20 18 17 16 15 0
COP1 BC nd| tf
010001 01000 e N offset
6 5 3 1 1 16
Format: BC1TL offset (cc = 0 implied) MIPS32
BCI1TL cc, offset MIPS32

Purpose: Branch on FP True Likely

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only if
the branch is taken.

Description: if FPConditionCode(cc) = 1 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dot to form a PC-relative effective target address. If the FP Con-
dition Code hit cc istrue (1), the program branches to the effective target address after the instruction in the delay slot
is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for

tf and nd.
I: condition ¢« FPConditionCode(cc) = 1
target_offset « (offsetl15)CPREEN-(16+2) || offget || 02
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 64

65

Branch on FP True Likely BC1TL

will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BCLT instruction instead.

Historical Information:

The MIPS | architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (CplCond) and the C hit in the FP Control/Status register. MIPS 1, 11, and I11 architectures must have the CC
field set to O, which isimplied by the first format in the “Format” section.

The MIPS 1V and MIPS32 architectures add seven more Condition Code hits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

Inthe MIPS |1 and 111 architectures, there must be at |east one instruction between the compare instruction that setsa
condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on COP2 False BC2F

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
010010 01000 « lolo offset
6 5 3 1 1 16
Format: BC2F offset (cc = 0 implied) M1PS32
BC2F cc, offset MIPS32

Purpose: Branch on COP2 False
To test a COP2 condition code and do a PC-relative conditional branch

Description: if copP2Condition(cc) = 0 then branch

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition ¢« COP2Condition(cc) = 0
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 66

Branch on COP2 False Likely BC2FL

67

31 26 25 21 20 18 17 16 15 0
CoP2 BC nd| tf
010010 01000 © 110 offset
6 5 3 1 1 16
Format: BC2FL offset (cc = 0 implied) MIPS32
BC2FL cc, offset MIPS32

Purpose: Branch on COP2 False Likely

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the delay slot
only if the branch is taken.

Description: if cop2Condition(cc) = 0 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dlot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay dot is executed. If the branch is not taken, the instruction in the delay dlot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition « COP2Condition(cc) = 0
target_offset « (offset;g) PREEN-(16+2) || offget || 02
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2F instruction instead.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on COP2 True BC2T

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
010010 01000 © 1ol offset
6 5 3 1 1 16
Format: BC2T offset (cc = 0 implied) M1PS32
BC2T cc, offset MIPS32

Purpose: Branch on COP2 True
To test a COP2 condition code and do a PC-relative conditional branch

Description: if cop2Condition(cc) = 1 then branch

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay dot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition ¢« COP2Condition(cc) =1
target_offset ¢« (offset;g) PREEN-(16+2) || offget || 02
I+1l: if condition then
PC < PC + target_offset
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-hit signed instruction offset, the conditional branch rangeis=+ 128 KBytes/. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 68

Branch on COP2 True Likely BC2TL

69

31 26 25 21 20 18 17 16 15 0
COP2 BC nd| tf
010010 01000 e N offset
6 5 3 1 1 16
Format: BC2TL offset (cc = 0 implied) MIPS32
BC2TL cc, offset MIPS32

Purpose: Branch on COP2 True Likely

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch istaken.

Description: if copP2Condition(cc) = 1 then branch_likely

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dlot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay dot is executed. If the branch is not taken, the instruction in the delay dlot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.
I: condition ¢« COP2Condition(cc) =1
target_offset « (offset;g) PREEN-(16+2) || offget || 02
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2T instruction instead.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on Equal BEQ

31 26 25 21 20 16 15 0
BEQ
000100 rs rt offset
6 5 5 16
Format: BEQ rs, rt, offset M1PS32

Purpose: Branch on Equal
To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] = GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay
dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: target_offset <« sign_extend(offset || 02)
condition « (GPR[rs] = GPR[rt])

I+1: if condition then
PC < PC + target_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, rO offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 70

Branch on Equal Likely BEQL

71

31 26 25 21 20 16 15 0
BEQL
010100 rs rt offset
6 5 5 16
Format: BEQL rs, rt, offset MIPS32

Purpose: Branch on Equal Likely
To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] = GPR[rt] then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the instruction in the delay dlot is
executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« (GPR[rs] = GPR[rt])
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BEQ instruction instead.

Historical Information:

Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on Greater Than or Equal to Zero BGEZ
31 26 25 21 20 16 15 0
REGIMM BGEZ
000001 s 00001 offset
6 5 5 16
Format: BGEZ rs, offset M1PS32

Purpose: Branch on Greater Than or Equal to Zero
To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs]

0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the

instruction in the delay dlot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)

condition ¢« GPR[rs] > QCFRLEN
I+1l: if condition then

PC < PC + target_offset

endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

72

Branch on Greater Than or Equal to Zero and Link BGEZAL

31 26 25 21 20 16 15 0
REGIMM BGEZAL
000001 rs 10001 offset
6 5 5 16
Format. BGEZAL rs, offset MIPS32

73

Purpose: Branch on Greater Than or Equal to Zero and Link
To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] > 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Operation:

I: target_offset « sign_extend(offset || 02)
condition « GPR[rs] > QCGFRLEN
GPR[31] « PC + 8

I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL isused in amanner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL

31 26 25 21 20 16 15 0
REGIMM BGEZALL
000001 rs 10011 offset
6 5 5 16
Format: BGEZALL rs, offset MI1PS32

Purpose: Branch on Greater Than or Equal to Zero and Link Likely
To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rsare greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

I: target_offset « sign_extend(offset || 02)
condition <« GPR[rs] > QCFPRLEN
GPR[31] « PC + 8

I+1l: if condition then
PC« PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is + 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of ataken branch is unknown, software is
encouraged to use the BGEZAL instruction instead.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 74

Historical Information:
In the MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

75 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on Greater Than or Equal to Zero Likely BGEZL

31 26 25 21 20 16 15 0
REGIMM BGEZL
000001 rs 00011 offset
6 5 5 16
Format: BGEzZL rs, offset MI1PS32

Purpose: Branch on Greater Than or Equal to Zero Likely
To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] 2 QGPRLEN
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZ instruction instead.

Historical Information:

Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 76

77

Branch on Greater Than Zero

31

26 25

21 20

16 15

BGTZ

BGTZ
000111

rs

00000

offset

6

Format: BGTZ rs, offset

Purpose: Branch on Greater Than Zero

5

To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs] > 0 then branch

16

MIPS32

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address

after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)

condition ¢« GPR[rs] > OQCFPRLEN
I+1l: if condition then

PC < PC + target_offset

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on Greater Than Zero Likely BGTZL

31 26 25 21 20 16 15 0
BGTZL 0
010111 rs 00000 offset
6 5 5 16
Format: BGTzZL rs, offset MI1PS32

Purpose: Branch on Greater Than Zero Likely
To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not exe-
cuted.

Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] > QGPRLEN
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGTZ instruction instead.

Historical Information:

Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 78

Branch on Less Than or Equal to Zero

79

31

26 25

21 20

16 15

BLEZ

BLEZ
000110

rs

00000

offset

6

Format: BLEZ rs, offset

Purpose: Branch on Less Than or Equal to Zero

5

To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs]

0 then branch

16

MIPS32

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)

condition ¢« GPR[rs] < QCFRLEN
I+1l: if condition then

PC < PC + target_offset

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on Less Than or Equal to Zero Likely BLEZL

31 26 25 21 20 16 15 0
BLEZL 0
010110 rs 00000 offset
6 5 5 16
Format: BLEZL rs, offset MI1PS32

Purpose: Branch on Less Than or Equal to Zero Likely
To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is
not executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] < QGPRLEN
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLEZ instruction instead.

Historical Information:

Inthe MIPS | architecture, this instruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 80

Branch on Less Than Zero BLTZ

81

31 26 25 21 20 16 15 0
REGIMM BLTZ
000001 rs 00000 offset
6 5 5 16
Format: BLTZ rs, offset M1PS32

Purpose: Branch on Less Than Zero
To test a GPR then do a PC-relative conditiona branch

Description: if GPR[rs] < 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dlot is executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] < QGPRLEN
I+1: if condition then
PC « PC + target_offset
endif

Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on Less Than Zero and Link BLTZAL

31 26 25 21 20 16 15 0
REGIMM BLTZAL
000001 rs 10000 offset
6 5 5 16
Format: BLTZAL rs, offset MI1PS32

Purpose: Branch on Less Than Zero and Link
To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dlot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dlot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: target_offset « sign_extend(offset || 02)
condition ¢« GPR[rs] < QCFRLEN
GPR[31] « PC + 8

I+1: if condition then
PC « PC + target_offset
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 82

Branch on Less Than Zero and Link Likely BLTZALL

83

31 26 25 21 20 16 15 0
REGIMM BLTZALL
000001 rs 10010 offset
6 5 5 16
Format: BLTZALL rs, offset MI1PS32

Purpose: Branch on Less Than Zero and Link Likely
To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dot is executed. If the branch is not taken, the instruction in the delay dlot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occursin the branch delay slot.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

I: target_offset « sign_extend(offset || 02)
condition ¢« GPR[rs] < QCFRLEN
GPR[31] « PC + 8

I+1l: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is = 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZAL instruction instead.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Historical Information:
In the MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 84

Branch on Less Than Zero Likely BLTZL

85

31 26 25 21 20 16 15 0
REGIMM BLTZL
000001 rs 00010 offset
6 5 5 16
Format: BLTZL rs, offset MI1PS32

Purpose: Branch on Less Than Zero Likely
To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then branch likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay dot is executed. If the branch is not taken, the instruction in the delay dot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition ¢« GPR[rs] < QGPRLEN
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZ instruction instead.

Historical Information:

Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Branch on Not Equal BNE
31 26 25 21 20 16 15 0
BNE
000101 rs rt offset
6 5 5 16
Format: BNE rs, rt, offset M1PS32

Purpose: Branch on Not Equal
To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] # GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay dot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the

delay dot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.

Operation:

I: target_offset <« sign_extend(offset || 02)
condition ¢

(GPR[rs]

I+1l: if condition then

PC < PC + target_offset

endif

Exceptions:
None

Programming Notes:

GPR[rt])

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

86

Branch on Not Equal Likely BNEL

87

31 26 25 21 20 16 15 0
BNEL
010101 rs rt offset
6 5 5 16
Format: BNEL rs, rt, offset MIPS32

Purpose: Branch on Not Equal Likely
To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] # GPR[rt] then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay dot is executed. If the branch is not taken, the instruction in the delay dlot is not executed.
Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:
I: target_offset ¢« sign_extend(offset || 02)
condition <« (GPR[rs] # GPR[rt])
I+1: if condition then
PC « PC + target_offset
else
NullifyCurrentInstruction ()
endif
Exceptions:
None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BNE instruction instead.

Historical Information:

Inthe MIPS | architecture, thisinstruction signaled a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Breakpoint BREAK
31 26 25 0
SPECIAL code BREAK
000000 001101
6 20 6
Format: BREAK MI1PS32

Purpose: Breakpoint
To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the

contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (Breakpoint)

Exception
Breakpoint

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

S:

88

89

Floating Point Compare C.cond.fmt

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0
COP1 A| FC
010001 fmt ft fs cc 0 ol 11 cond
6 5 5 5 3 1 1 2 4
Format: cC.cond.fmt

C.cond.S fs, ft (cc = 0 implied) MIPS32
C.cond.D fs, ft (cc = 0 implied) MIPS32
C.cond.PS fs, ft(cc = 0 implied) MI1PS64, MIPS32 Release 2
C.cond.S cc, fs, ft MIPS32
C.cond.D cc, fs, ft MIPS32
C.cond.PS cc, fs, ft MIPS64, M| PS32 Release 2

Purpose: Floating Point Compare
To compare FP values and record the Boolean result in a condition code

Description: FPConditionCode(cc) ¢« FPR[fs] compare cond FPR[ft]

Thevaluein FPR fsis compared to the value in FPR ft; the values are in format fmt. The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified by the cond field of the instruction is true for the operand values, the result is true; other-
wise, the result isfalse. If no exception is taken, the result is written into condition code CC; trueis 1 and false is 0.

In the cond field of the instruction: cond, 4 specify the nature of the comparison (equals, less than, and so on); cond,
specifies whether the comparison is ordered or unordered, i.e. false or true if any operand is a NaN; conds indicates
whether the instruction should signal an exception on QNaN inputs, or not (see Table 3.26).

c.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction is UNPREDICTABLE.

If one of the values is an SNaN, or conds is set and at least one of the valuesis a QNaN, an Invalid Operation condi-

tionisraised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation Enable bit is set in the FCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of theinstruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If the equal relation is true, for example, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields atrue result.

Logical negation of acompare result allows eight distinct comparisons to test for the 16 predicates as shown in Table
3.25. Each mnemonic tests for both a predicate and its logical negation. For each mnemonic, compare tests the truth
of thefirst predicate. When the first predicate is true, the result is true as shown in the “ If Predicate Is True” column,
and the second predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do
not follow the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of thefirst predicate can be made with the Branch on FP True (BCL1T) instruction and the truth of the second

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Compare C.cond.fmt

can be made with Branch on FP False (BCL1F).

Table 3.26 shows another set of eight compare operations, distinguished by aconds value of 1 and testing the same 16

conditions. For these additional comparisons, if at least one of the operandsis a NaN, including Quiet NaN, then an
Invalid Operation condition israised. If the Invalid Operation condition is enabled in the FCSR, an Invalid Operation
exception occurs.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 90

91

Floating Point Compare C.cond.fmt
Table 3.25 FPU Comparisons Without Special Operand Exceptions
Instruction Comparison Predicate Comparison CC Result | Instruction
Relation Inv Op Con_dition
Cond Name of Predicate and Logically Negated Values If Predicate| Excp. if Field
Mnemonic Predicate (Abbreviation) >(<|=]7? Is True QNaN? 3 2.0
F False [this predicate is always False] FIF|F|F F No 0 0
True (T) TIT|T|T
UN Unordered FIF|F[T T 1
Ordered (OR) T|T|T|F F
EQ Equal FIF|T|F T 2
Not Equal (NEQ) TI|T|F|T F
UEQ Unordered or Equal FIF|T|T T 3
Ordered or Greater Than or Less Than (OGL) T|T|F|F F
OLT Ordered or Less Than FIT|F|F T 4
Unordered or Greater Than or Equal (UGE) TIF|T|T F
ULT Unordered or Less Than FIT|F|T T 5
Ordered or Greater Than or Equal (OGE) TIF|T|F F
OLE Ordered or Less Than or Equal FIT|T|F T 6
Unordered or Greater Than (UGT) TIF|F|T F
ULE Unordered or Less Than or Equal FIT|T|T T 7
Ordered or Greater Than (OGT) T|F|F|F F
Key: ?=unordered, > = greater than, < =lessthan, =isequal, T = True, F = False

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Compare C.cond.fmt
Table 3.26 FPU Comparisons With Special Operand Exceptions for QNaNs
Instruction Comparison Predicate Comparison CC Result | Instruction
Relation Inv Op Con.dition
Cond Name of Predicate and Logically Negated Values If Predicate| Excp If Field
Mnemonic Predicate (Abbreviation) > <|=]7 Is True QNaN? 3 2.0
SF Signaling False [this predicate always False] FIF|F|F F Yes 1 0
Signding True (ST) TIT|T|T
NGLE Not Greater Than or Less Than or Equal FIF|IF[T T 1
Greater Than or Less Than or Equal (GLE) T|IT|T|F F
SEQ Signaling Equal FIF|T|F T 2
Signaling Not Equal (SNE) TIT|F|T F
NGL Not Greater Than or Less Than FIF|IT|T T 3
Greater Than or Less Than (GL) T|IT|F|F F
LT Less Than FIT|F|F T 4
Not Less Than (NLT) TIF|T|T F
NGE Not Greater Than or Equal FIT|F[T T 5
Greater Than or Equal (GE) TIF|T|F F
LE Less Than or Equal FIT|T|F T 6
Not Less Than or Equal (NLE) TIF|F|T F
NGT Not Greater Than FIT|IT|T T 7
Greater Than (GT) T|F|F|F F
Key: ?=unordered, > = greater than, < =lessthan, =isequal, T = True, F = False
Restrictions:

Thefields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT -

ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of C.cond.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU,.

The result of C.cond.PSis UNPREDICTABLE if the condition code number is odd.

Operation:

if SNaN (ValueFPR(fs,

fmt))
QNaN (ValueFPR(fs, fmt))
less « false

equal <« false
unordered « true

if (SNaN(ValueFPR(fs, fmt))

(cond; and (QNaN(ValueFPR(fs, fmt))

SignalException (InvalidOperation)

endif

else
less « ValueFPR(fs, fmt)
equal « ValueFPR(fs, fmt)

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

or SNaN (ValueFPR(ft,
or QNaN (ValueFPR(ft,

or SNaN (ValueFPR(ft,fmt)))
or QNaN (ValueFPR(ft,fmt))))

<¢fmt ValueFPR(ft,
=fmt ValueFPR(ft,

or
then

fmt))
fmt))

fmt)

fmt)

or

then

92

Floating Point Compare C.cond.fmt

93

unordered <« false
endif
condition ¢« (cond, and less) or (cond; and equal)
or (condy and unordered)
SetFPConditionCode (cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing the unordered relation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for which unordered would be an error.

comparisons using explicit tests for QNaN

c.eq.d $f2,sf4 # check for equal

nop

bclt L2 # it is equal

c.un.d $f2,$f4 # it is not equal,

but might be unordered

bclt ERROR # unordered goes off to an error handler

not-equal-case code here

equal-case code here
L2:

comparison using comparisons that signal QNaN
c.seq.d $f2,$f4 # check for equal
nop
bclt L2 # it is equal
nop
it is not unordered here

not-equal-case code here

equal-case code here

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Perform Cache Operation CACHE

31 26 25 21 20 16 15 0
CACHE
101111 base op offset
6 5 5 16
Format: CACHE op, offset (base) MIPS32

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 3.27 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, an unmapped address (such as within
kseg0) should always be used for cache operations that require an index. See the
Programming Notes section below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit <« Log2 (BPT)

IndexBit « Log2(CS / A)

WayBit ¢« IndexBit + Ceiling(Log2(A))

Way < Addryaypit-1..Indexsit

Index ¢ Addringeymit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully
specifies the cache tag. This is shown symbolically in the figure below.

Figure 3.2 Usage of Address Fields to Select Index and Way
WayBit OffsetBit

[[[0

Unused Way Index Byte Index

IndexBit

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 94

Perform Cache Operation CACHE

95

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and compl etion rules of the SYNC instruction.

Bits[17:16] of the instruction specify the cache on which to perform the operation, as follows:

Table 3.28 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
0b00 I Primary Instruction

0ObO1 D Primary Data or Unified Primary

0Ob10 T Tertiary

Ob11 S Secondary

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

For implementations which implement multiple level of caches and where the hardware maintains the smaller cache
as a proper subset of alarger cache (every address which is resident in the smaller cache is aso resident in the larger
cache; also known as the inclusion property), it is recommended that the CACHE instructions which operate on the
larger, outer-level cache; should first operate on the smaller, inner-level cache. For example, a Hit_ Writeback
_Invalidate operation targeting the Secondary cache, should first operate on the primary data cache first. If the
CACHE instruction implementation does not follow this policy then any software which flushes the caches must
mimic this behavior. That is, the software sequences must first operate on the inner cache then operate on the outer
cache. The software must place a SYNC instruction after the CACHE instruction whenever there are possible write-
backs from the inner cache to ensure that the writeback data is resident in the outer cache before operating on the
outer cache. If neither the CACHE instruction implementation nor the software cache flush sequence follow this pol-
icy, then the inclusion property of the caches can be broken, which might be a condition that the cache management
hardware cannot properly deal with.

For implementations which implement multiple level of caches without the inclusion property, the use of a SYNC
instruction after the CACHE instruction is still needed whenever writeback data hasto be resident in the next level of
memory hierarchy.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Perform Cache Operation

CACHE

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect al coherent caches within the implementation. If the effective address uses a coherent
Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either al affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction

Code

Effective
Address
Operand

Type

Compliance

Caches Name Operation Implemented

0b000

| Index Invalidate Index Set the state of the cache block at the specified
index to invalid.

Thisrequired encoding may be used by software
to invalidate the entire instruction cache by step-

ping through all valid indices.

Required

Index Writeback
Invalidate / Index
Invalidate

Index

ST

Index Writeback
Invalidate / Index
Invalidate

Index

For awrite-back cache: If the state of the cache
block at the specified index isvalid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block isvalid but not dirty, set the
state of the block to invalid.

For awrite-through cache: Set the state of the
cache block at the specified index to invalid.
Thisrequired encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

Required

Requiredif S, T cache

isimplemented

0b001

All

Index Load Tag

Index

Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor O
registers. If the DatalLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the Datal.o and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registersisimple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

96

Perform Cache Operation

CACHE

Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor
O registers. This operation must not cause a
Cache Error Exception.
Thisrequired encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
Thisrequired encoding may be used by software | mended otherwise
to invalidate arange of addresses from the
ST Hit Invalidate Address | ImSruction Cacge tr’]y Sepping ”;ror:’gh thhe Optiond, if
ress range by the line size of the cache. Hit_Invalidate D is
In multiprocessor implementations with coher- mpl emt_ented, the S
. . and T variants are rec-
ent caches, the operation may optionally be ommended
broadcast to all coherent caches within the sys- '
tem.
Ob101 | Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For awrite-back cache: If the cache block con- Required
idate/ Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
ST | HitWriteback Inval-| Address | that operation is completed, set the state of the - "o e v o1i S T cache
idate / Hit Invalidate cacht_ablocktomvalld. Iftheblockls_valld_ but is implemented
not dirty, set the state of the block to invalid.
For awrite-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
Thisrequired encoding may be used by software
to invalidate arange of addresses from the data
cache by stepping through the address range by
the line size of the cache.
In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.
97 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Perform Cache Operation

CACHE

Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
Ob110 D Hit Writeback Address If the cache block contains the specified address Recommended
and itisvalid and dirty, write the contents back
ST Hit Writeback Address | (0 memory. After the operation is completed, Optional, if
|eave the state of the line valid, but clear the . . .
-) . Hit_Writeback_D is
dirty state. For awrite-through cache, thisoper- | .
i be treated implemented, the S
lon may ber asanop. and T variants are rec-
. . . . ommended.
In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to al coherent caches within the sys-
tem.
Ob111 I,D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a Recommended

writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In set-
associative or fully-associative caches, the way
selected on afill from memory isimplementa-
tion dependent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or viaan Index Store
Tag operation to the line that clears the lock bit.
Note that clearing the lock state via Index Store
Tag is dependent on the implementati on-depen-
dent cache tag and cache line organization, and
that Index and Index Writeback Invalidate oper-
ations are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It isimplementation dependent whether alocked
lineis displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It isimplementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. Itis
recommended that only the single line contain-
ing the referenced address be affected.

Restrictions:

The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

98

99

Perform Cache Operation CACHE

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or awriteback invalidate.

If thisinstruction is used to lock all ways of acache at a specific cache index, the behavior of that cache to subsequent
cache missesto that cache index is UNDEFINED.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of thisinstruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback datais not yet visible at the next level of the memory hierarchy.

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation (vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should aways be converted to an
unmapped address (such as an kseg0 address - by ORing the index with 0x80000000 before being used by the cache
instruction). For example, the following code sequence performs a data cache Index Store Tag operation using the
index passed in GPR &0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Perform Cache Operation EVA CACHEE
31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 b foct 0 CACHEE
011111 ase P ollse 011011
6 5 5 9 1 6
Format: CACHEE op, offset (base) MIPS32

Purpose: Perform Cache Operation EVA

To perform the cache operation specified by op using a user mode virtual address while in kernel mode.

Description:

The 9 bit offset is sign-extended and added to the contents of the base register to form an effective address. The effec-
tive address is used in one of the following ways based on the operation to be performed and the type of cache as

described in the following table.

Table 3.1 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical | The effective address is translated by the MMU to a physical address. The physical
address 1s then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, a kseg0 address should always be used
for cache operations that require an index. See the Programming Notes section
below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit « Log2 (BPT)

IndexBit « Log2(CS / A)

WayBit ¢« IndexBit + Ceiling(Log2(A))

Way < Addryaypit-1..IndexBit

Index < Addringexpit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully
specifies the cache tag. This is shown symbolically in the figure below.

Figure 3.1 Usage of Address Fields to Select Index and Way

WayBit OffsetBit

[[[:

IndexBit

Unused

Way Index Byte Index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

100

Perform Cache Operation EVA CACHEE

101

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHEE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by thisinstruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported viaa
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHEE instruction and the memory transactions which are sourced by the CACHEE instruction, such as cache
refill or cache writeback, obey the ordering and compl etion rules of the SYNC instruction.

Bits[17:16] of the instruction specify the cache on which to perform the operation, as follows:

Table 3.2 Encoding of Bits[17:16] of CACHEE Instruction

Code Name Cache
0b00 I Primary Instruction

0ObO1 D Primary Data or Unified Primary

0Ob10 T Tertiary

Ob11 S Secondary

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

For implementations which implement multiple level of caches and where the hardware maintains the smaller cache
as a proper subset of alarger cache (every address which is resident in the smaller cache is aso resident in the larger
cache; also known as the inclusion property), it is recommended that the CACHEE instructions which operate on the
larger, outer-level cache; should first operate on the smaller, inner-level cache. For example, a Hit_ Writeback
_Invalidate operation targeting the Secondary cache, should first operate on the primary data cache first. If the
CACHEE instruction implementation does not follow this policy then any software which flushes the caches must
mimic this behavior. That is, the software sequences must first operate on the inner cache then operate on the outer
cache. The software must place a SY NC instruction after the CACHEE instruction whenever there are possible write-
backs from the inner cache to ensure that the writeback data is resident in the outer cache before operating on the
outer cache. If neither the CACHEE instruction implementation nor the software cache flush sequence follow this
policy, then the inclusion property of the caches can be broken, which might be a condition that the cache manage-
ment hardware cannot properly deal with.

For implementations which implement multiple level of caches without the inclusion property, the use of a SYNC
instruction after the CACHEE instruction is still needed whenever writeback data has to be resident in the next level
of memory hierarchy.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Perform Cache Operation EVA CACHEE

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHEE instruction
operations may optionally affect all coherent caches within the implementation. If the effective address uses a coher-
ent Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHEE instruction, al of the affected cache levels
must be processed in the same manner - either al affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

The CACHEE instruction functions in exactly the same fashion as the CACHE instruction, except that address trans-
lation is performed using the user mode virtual address space mapping in the TLB when accessing an address within
a memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible . Refer to Volume |11, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Table 3.3 Encoding of Bits [20:18] of the CACHEE Instruction

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b000 | Index Invalidate Index Set the state of the cache block at the specified Required
index toinvalid.
Thisrequired encoding may be used by software
to invalidate the entire instruction cache by step-
ping through al valid indices.
D Index Writeback Index For awrite-back cache: If the state of the cache Required
Invalidate / Index block at the specified index isvalid and dirty,
Invalidate write the block back to the memory address
specified by the cache tag. After that operation
ST Index Writeback Index ?s °°T“p' eted, set the_ state_ of the cache block to Requiredif S, T cache
Invalidate / Index invalid. If the block |_sval_|d but not dirty, set the is implemented
Invalidate state of the block to invalid.

For awrite-through cache: Set the state of the
cache block at the specified index to invalid.
Thisrequired encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 102

Perform Cache Operation EVA CACHEE
Table 3.3 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)
Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b001 All Index Load Tag Index Read the tag for the cache block at the specified Recommended
index into the TagLo and TagHi Coprocessor O
registers. If the Datal.o and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DatalLo and
DataHi registers. This operation must not cause
a Cache Error Exception.
The granularity and alignment of the data read
into the DatalLo and DataHi registersisimple-
mentation-dependent, but istypically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.
0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor
0 registers. This operation must not cause a
Cache Error Exception.
Thisrequired encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
Thisrequired encoding may be used by software | mended otherwise
to invalidate a range of addresses from the
ST Hit Invalidate Address | nstruction cache by stepping through the Optional, if
address range by the line size of the cache. Hit_Invalidate D is
In multiprocessor implementations with coher- implemented, the S
. . and T variants are rec-
ent caches, the operation may optionally be ommended
broadcast to all coherent caches within the sys- '
tem.
103 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Perform Cache Operation EVA CACHEE
Table 3.3 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)
Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b101 | Fill Address | Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For awrite-back cache: If the cache block con- Required
idate / Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
ST | HitWriteback Inval- | Address thath"pbelr Alon s C;mg' ﬁ‘iﬂ' " thlf _St""t;_o(j ;hf Requiredif S, T cache
idate / Hit Invalidate cache biock fo ivaid. 1 The block IS valid bu isimplemented
not dirty, set the state of the block to invalid.
For awrite-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
Thisrequired encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.
In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.
Ob110 D Hit Writeback Address If the cache block contains the specified address Recommended
and it isvalid and dirty, write the contents back
ST Hit Writeback Address to memory. After the operation is completed, Optional, if

|eave the state of the line valid, but clear the
dirty state. For awrite-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Hit_Writeback D is
implemented, the S
and T variants are rec-
ommended.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

104

Perform Cache Operation EVA CACHEE

Table 3.3 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Effective

Address

Operand Compliance
Code Caches Name Type Operation Implemented
Ob111 I,D Fetch and Lock Address If the cache does not contain the specified

address, fill it from memory, performing a Recommended
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In set-
associative or fully-associative caches, the way
selected on afill from memory isimplementa
tion dependent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or viaan Index Store
Tag operation to the line that clears the lock hit.
Note that clearing the lock state via Index Store
Tag is dependent on the implementati on-depen-
dent cache tag and cache line organization, and
that Index and Index Writeback Invalidate oper-
ations are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It isimplementation dependent whether alocked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It isimplementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

105

Restrictions:
The operation of thisinstruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDI CTABL E if the cache line that contains the CACHEE instruction is the
target of an invalidate or awriteback invalidate.

If thisinstruction is used to lock all ways of acache at a specific cache index, the behavior of that cache to subsequent
cache missesto that cache index is UNDEFINED.

Any use of thisinstruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback datais not yet visible at the next level of the memory hierarchy.

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Perform Cache Operation EVA CACHEE

Operation:

vAddr <« GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢« AddressTranslation(vAddr, DataReadReference)
CacheOp (op, VvAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Reserved Instruction

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical addressis used as the cache index. Therefore, the index value should aways be converted to a ksegO
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR &0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 106

Fixed Point Ceiling Convert to Long Fixed Point CEIL.L.fmt

107

31 26 25 21 20 16 15 11 10 6 5 0
CcoP1 0 CEILL
010001 fmt 00000 fs fd 001010
6 5 5 5 5 6

Format: CEIL.L.fmt
CEIL.L.S fd, fs M1PS64, M1 PS32 Release 2
CEIL.L.D fd, fs M1PS64, M1 PS32 Release 2

Purpose: Fixed Point Ceiling Convert to Long Fixed Point
To convert an FP value to 64-hit fixed point, rounding up

Description: FPR[fd] ¢« convert_and_round(FPR[fs])

Thevaluein FPR fs, in format ft, is converted to a value in 64-bit long fixed point format and rounding toward +eo
(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 2%3-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 262-1, is written to fd.

Restrictions:

Thefieldsfs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avaluein format fimt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Ceiling Convert to Word Fixed Point

CEIL.W.fmt

31 26 25 21 20 16 15 11 10 0
COP1 fmt 0 fs fd CEIL.W
010001 00000 001110
6 5 5 5 5 6
Format: CEIL.W.fmt
CEIL.W.S fd, fs MIPS32
CEIL.W.D fd, fs MIPS32

Purpose: Floating Point Ceiling Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevauein FPR fs, in format fnt, is converted to a value in 32-bit word fixed point format and rounding toward +eo

(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result

isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, I nexact

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

fmt) ,

fmt, W))

108

Move Control Word From Floating Point CFC1

109

31 26 25 21 20 16 15 11 10 0
COP1 CF f fs 0
010001 00010 000 0000 0000
6 5 5 5 11
Format. crc1 rt, fs MIPS32

Purpose: Move Control Word From Floating Point
To copy aword from an FPU control register to aGPR

Description: GPR[rt] ¢« FP_Control[fs]
Copy the 32-bit word from FP (coprocessor 1) control register fsinto GPR rt.

The definition of this instruction has been extended in Release 5 to support user mode read of Statusgi under the
control of Config5gr. This required feature is meant to facilitate transition from FR=0 to FR=1 floating-point reg-
ister modes in order to obsolete FR=0 mode.

Restrictions:

There are afew control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifiesa
register that does not exist.

In particular, the result is UNPREDICTABLE if fs specifies the UNFR write-only control. R5.03 implementations
are required to produce a Reserved I nstruction Exception; software must assume it is UNPREDICTABLE.

Operation:

if fs = 0 then
temp <« FIR
elseif fs = 1 and FIRypgp then /* read UFR (CPl Register 1) */
if ConfigSypgr
temp ¢ Statusgpy
else
signalException (RI)
endif
/* note: fs=4 UNFR not supported for reading - UFR suffices */
elseif fs = 25 then /* FCCR */

temp « 02* || FCSR3; .5 || FCSRys
elseif fs = 26 then /* FEXR */

temp « 0% || FCSRyp 1, || 0° || FCSRg. , || 0
elseif fs = 28 then /* FENR */

temp « 0°° || FCSRyy 5 || 0% || FCSRy, || FCSRy,

elseif fs = 31 then /* FCSR */
temp < FCSR
else
temp < UNPREDICTABLE
endif
GPR[rt] « temp
Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:
For the MIPS I, Il and 11l architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
availablein MIPSI, 11, I11, or IV.

MIPS32r5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 110

Move Control Word From Coprocessor 2 CFC2

31 26 25 21 20 16 15 11 10 0
CoP2 CF . .
010010 00010 P
6 5 5 16
Format: crc2 rt, Impl MI1PS32

The syntax shown above is an example using CFC1 as amodel. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2
To copy aword from a Coprocessor 2 control register to aGPR

Description: GPR[rt] ¢« CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field. Theinterpretation of the Impl
field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if Impl specifies aregister that does not exist.

Operation:

temp ¢ CP2CCR[Impl]
GPR[rt] ¢« temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

111 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Count Leading Ones in Word CLO
31 26 25 21 20 16 15 11 10 0
SPECIAL2 rs it d 0 CLO
011100 00000 100001
6 5 5 5 5 6
Format: cLO rd, rs MIPS32

Purpose: Count Leading Onesin Word
To count the number of leading onesin aword

Description: GPR[rd] ¢« count_leading_ones GPR[rs]

Bits 31..0 of GPR rsare scanned from most significant to least significant bit. The number of leading onesis counted

and the result is written to GPR rd. If all of bits 31..0 were set in GPR rs, the result written to GPR rdis 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if thert and rd fields of the
instruction contain different values.

Operation:

temp < 32
for i in 31 ..

if GPR[rs]; = 0 then

temp « 31 - i

break
endif
endfor
GPR[rd] ¢« temp

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

112

Count Leading Zeros in Word

113

31

26 25

21 20

16 15

11 10

CLz

SPECIAL2
011100

rs

rt

rd

00000

CLz
100000

6

Format: cLz rd, rs

Purpose: Count Leading Zerosin Word

Count the number of leading zerosin aword

Description: GPR[rd] ¢« count_leading_zeros GPR[rs]

MIPS32

Bits 31..0 of GPR rsare scanned from most significant to least significant bit. The number of leading zerosis counted
and the result iswritten to GPR rd. If no bits were set in GPR rs, the result written to GPR rdis 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if thert and rd fields of the
instruction contain different values.

Operation:

temp < 32
for i in 31 ..

if GPR[rs]; = 1 then

temp « 31 - i

break
endif
endfor
GPR[rd] ¢« temp

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Coprocessor Operation to Coprocessor 2

COP2

31 26 25 24 0
COP2 CcO cofun
010010 1
6 1 25
Format. copr2 func

Purpose: Coprocessor Operation to Coprocessor 2
To perform an operation to Coprocessor 2

DESCI’iptiOhZ CoprocessorOperation (2, cofun)

MIPS32

An implementation-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and interna state are

described in the documentation for each Coprocessor 2 implementation.
Restrictions:

Operation:

CoprocessorOperation (2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

114

Move Control Word to Floating Point CTC1

115

31 26 25 21 20 16 15 11 10 0
COP1 CT f fs 0
010001 00110 000 0000 0000
6 5 5 5 11
Format. cTCcl rt, fs MIPS32

Purpose: Move Control Word to Floating Point
To copy aword from a GPR to an FPU control register

Description: FP_control[fs] « GPR[rt]
Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit
and its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR
to set a cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause it is already set
causes the appropriate exception. The register is written before the exception occurs and the EPC register contains
the address of the CTC1 instruction.

The definition of thisinstruction has been extended in Release 5 to support user mode set and clear of Statusgg under
the control of Config5gr. This required feature is meant to facilitate transition from FR=0 to FR=1 floating-point
register modes in order to obsolete FR=0 mode.

Restrictions:

There are afew control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifiesa
register that does not exist.

Furthermore, the result is UNPREDICTABLE if fd specifies the UFR or UNFR aliases, with fs anything other than
00000, GPRJ[0Q]. R5.03 implementations are required to produce a Reserved Instruction Exception; software must
assumeit is UNPREDICTABLE.

Operation:

temp <« GPR[rtls3; g
if fs = 1 and rt = 0 and FIRypgp then /* clear UFR (CP1l Register 1)*/
if Config5ypgr
Statusgg < 0
else
signalException (RI)
endif
elseif fs = 4 and rt = 0 and FIRypgp then /* clear UNFR (CPl Register 4) */
if Configbypgr
Statuspg < 1
else
signalException (RI)
endif
elseif fs = 25 then /* FCCR */
if tempszq g # 024 then
UNPREDICTABLE
else
FCSR « temp; 1 || FCSRy, || tempy || FCSRyy
endif

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Move Control Word to Floating Point CTC1

elseif fs = 26 then /* FEXR */
if tempszq 13 # 0 or temp;; 7 # 0 or temp, o # Othen
UNPREDICTABLE
else
FCSR ¢ FCSR3; 18 || tempyy 15 || FCSRyp 7 ||
tempg. 5 || FCSRy.
endif
elseif fs = 28 then /* FENR */
if tempsz;. 15 # 0 or tempg 3 # 0 then

UNPREDICTABLE

else
FCSR ¢« FCSR31 45 || temp, || FCSRy3. 15 || tempqiq. 4
|| FCSRg. o || tempy o

endif

elseif fs = 31 then /* FCSR */
if (FCSRyppy field is not implemented) and(tempyy 15 # 0) then
UNPREDICTABLE
elseif (FCSRyqy; field is implemented) and tempy; 1 # 0 then
UNPREDICTABLE
else
FCSR « temp
endif
else
UNPREDICTABLE
endif
CheckFPException ()

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS 1, 1l and |11 architectures, the contents of floating point control register fs are UNPREDICTABLE for
the instruction immediately following CTCL1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
availablein MIPS I, 11, 11, or IV.

MIPS32r5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 116

Move Control Word to Coprocessor 2

117

CTC2

31 26 25 21 20 16 15 11 10 0
COP2 CT o ol
010010 00110 P
6 5 5 16
Format:. cTC2 rt, Impl

MIPS32

The syntax shown above is an example using CTC1 as a model. The specific syntax isimplementation dependent.

Purpose: Move Control Word to Coprocessor 2
To copy aword from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] <« GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation

of the Impl field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if rd specifies aregister that does not exist.

Operation:

temp ¢ GPR[rt]

CP2CCR[Impl] <« temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Convert to Double Floating Point CVT.D.fmt
31 26 25 21 20 16 15 11 10 5 0
COP1 fmt 0 fs fd CVTD
010001 00000 100001
6 5 5 5 5 6
Format: cvT.D.fmt

CVT.D.S fd, fs MI1PS32
CVT.D.W fd, fs MI1PS32

CVT.D.L fd, f£fs

Purpose: Floating Point Convert to Double Floating Point
To convert an FP or fixed point value to double FP

Description: FPR[fd] ¢« convert_and_round(FPR[fs])

MIPS64, MIPS32 Release 2

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR fd. If fmt is S or W, then the operation is aways

exact.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for double floating point—if they are not valid,
theresult isUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of thisinstruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; i.e. it isthe FR=0 32-bit FPU register model; it is predictable if executing on a 64-bit FPU in the

FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, D, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, I nexact

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

fmt) ,

fmt,

118

Floating Point Convert to Long Fixed Point CVT.L.fmt

119

31 26 25 21 20 16 15 11 10 6 5 0
Ccop1 0 CVTL
010001 fmt 00000 fs fd 100101
6 5 5 5 5 6

Format: cvT.L.fmt
CVT.L.S fd, fs MIPS64, MIPS32 Release 2
CVT.L.D fd, fs MIPS64, MIPS32 Release 2
Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-hit fixed point

Description: FPR[£d] <« convert_and_round (FPR[fs])

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. Theresult is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 283-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 26°—1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
resultis UNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;
Invalid Operation, Unimplemented Operation, Inexact,

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Convert Pair to Paired Single CVT.PS.S

31 26 25 21 20 16 15 1 10 6 5 0
COP1 fmt CVT.PS
010001 10000 fi ks fd 100110
6 5 5 5 5 6
Format: cvT.ps.s fd, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Convert Pair to Paired Single

To convert two FP values to a paired single value

Description: FPR[£d] <« FPR[fsla;..o || FPR[ftlai..o

The single-precision values in FPR fs and f7 are written into FPR fd as a paired-single value. The value in FPR fs is
written into the upper half, and the value in FPR f7 is written into the lower half.

fs ft

31 0 31 0

fd
CVT.PS.S is similar to PLL.PS, except that it expects operands of format S instead of PS.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and f# must specify FPRs valid for operands of type S: if they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format S; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model: it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 120

Floating Point Convert to Single Floating Point

121

CVT.S.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 fmt 0 fs td CVTS
010001 00000 100000
6 5 5 5 5 6
Format. cvT.s.fmt
CVT.S.D fd, fs MIPS32
CVT.S.W fd, fs MIPS32

CVT.S.L fd, fs

Purpose: Floating Point Convert to Single Floating Point
To convert an FP or fixed point value to single FP

Description: FPR[fd] ¢« convert_and_round(FPR[fs])

MIPS64, MIPS32 Release 2

Thevauein FPR fs, in format fmt, is converted to avalue in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

Thefields fs and fd must specify valid FPRs—fs for type fmt and fd for single floating point. If they are not valid, the

resultisUNPREDICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on

a 32-bit FPU.

Operation:

StoreFPR(fd, S,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

ConvertFmt (ValueFPR (fs,

fmt) ,

fmt,

S))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Convert Pair Lower to Single Floating Point CVT.S.PL

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.S.PL
010001 10110 00000 101000
6 5 5 5 5 6
Format:. cvT.s.PL fd, fs M1PS64, M1PS32 Release 2
Purpose:

Floating Point Convert Pair Lower to Single Floating Point
To convert one half of a paired single FP value to single FP

Description: FPR[fd] « FPR[fsl3;. o

The lower paired single value in FPR fs, in format PS, is converted to a value in single floating point format. The
result is placed in FPR fd. Thisinstruction can be used to isolate the lower half of a paired single value.

The operation is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

Thefields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the
resultis UNPREDICTABLE.

The operand must be avaluein format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of CVT.S.PL is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, S, ConvertFmt (ValueFPR(fs, PS), PL, S))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 122

Floating Point Convert Pair Upper to Single Floating Point

123

31

26 25

21 20

16 15

11 10

CVT.S.PU

COP1
010001

fmt
10110

00000

fs

fd

CVT.SPU
100000

6

Format. cvT.s.pPU fd,

5

fs

Purpose: Floating Point Convert Pair Upper to Single Floating Point

To convert one half of a paired single FP value to single FP

Description: FPR[fd] <« FPR[fslgs. 32

6

MI1PS64, M1 PS32 Release 2

The upper paired single value in FPR fs, in format PS is converted to a value in single floating point format. The
result is placed in FPR fd. Thisinstruction can be used to isolate the upper half of a paired single value.

The operation is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

Thefields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format PS; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of CVT.S.PU isUNPREDICTABLE if the processor is executing ithe FR=0 32-hit FPU register modd!; it
is predictable if executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU

Operation:

StoreFPR

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

(fd, S, ConvertFmt (ValueFPR(fs,

PS),

PU, S))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Convert to Word Fixed Point CVT.W.fmt
31 26 25 21 20 16 15 11 10 0
COP1 fmt 0 fs fd CVT.W
010001 00000 100100
6 5 5 5 5 6
Format: cvT.w.fmt

CVT.wW.S fd, fs MI1PS32
CVT.wW.D fd, fs MI1PS32

Purpose: Floating Point Convert to Word Fixed Point
To convert an FP value to 32-bit fixed point

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fmt, is converted to avaluein 32-bit word fixed point format and rounded according to

the current rounding mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, I nexact

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

fmt) ,

fmt, W))

124

Debug Exception Return DERET

31 26 25 24 6 5 0
COPO CcO 0 DERET
010000 1 000 0000 0000 0000 0000 011111
6 1 19 6
Format: DERET EJTAG

Purpose: Debug Exception Return
To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

Thisinstruction is legal only if the processor is executing in Debug Mode. The operation of the processor is UNDE-
FINED if aDERET is executed in the delay slot of a branch or jump instruction.

Operation:

Debugpy ¢« 0

Debugrpxr < 0

if IsMIPSl16Implemented() | (Config3;ga > 0) then
PC ¢« DEPC3;..7 || O
ISAMode < DEPCj,

else
PC « DEPC

endif

ClearHazards ()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

125 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Disable Interrupts DI

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO rt 12 0 sc| O 0
0100 00 01011 01100 000 00 0| 0O 000
6 5 5 5 5 1 2 3
Format. b MI1PS32 Release 2
DI rt MIPS32 Release 2

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
rOisimplied, which discards the previous value of the Status register.

Description: GPR[rt] <« Status; Statusig < 0

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and El have a specific value for the sc field.

data ¢« Status
GPR[rt] ¢« data
Status;g < 0

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the | E bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction cannot be aborted in the middle by an interrupt or exception.

Thisinstruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. Thishazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that afixed latency will clear the execution hazard.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 126

Divide Word DIV

127

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " 0 DIV
000000 00 0000 0000 011010
6 5 5 10 6
Format: DIV rs, rt MIPS32

Purpose: Divide Word
To divide a 32-bit signed integers

Description: (HI, LO) <« GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as signed values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder isplaced into specia register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR rt is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:
g ¢« GPR[rslszj, .o div GPRI[rtlsq, .o
LO < g
r < GPR[rsls3;, .o mod GPR[rtlz;. .o
HI < r

Exceptions:
None

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if azero is detected.

By default, most compilers for the MIPS architecture will emit additional instructions to check for the divide-by-zero
and overflow cases when this instruction is used. In many compilers, the assembler mnemonic “DIV r0, rs, rt” can be
used to prevent these additional test instructions to be emitted.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 128

Floating Point Divide

129

31

26 25

21 20

16 15

11 10

DIV.fmt

COP1
010001

fmt

ft

fs

fd

DIV
000011

Format. DIv.fmt
DIV.S fd, fs, ft
DIV.D fd, fs, ft

Purpose: Floating Point Divide
To divide FP values

Description: FPR[£d] <« FPR[fs] / FPR[ft]

MIPS32
MIPS32

Thevaluein FPR fsis divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are valuesin format fmt.

Restrictions:

Thefieldsfs, ft, and fd must specify FPRs valid for operands of type fnt; if they are not valid, the result is UNPRED-

ICABLE.

The operands must be values in format frmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

fmt)

/ ValueFPR (ft,

fmt))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Divide Unsigned Word

31

26 25

21 20 16 15

DIVU

SPECIAL
000000

rs

rt

0
00 0000 0000

DIvU
011011

6

Format. DIVU rs, rt

Purpose: Divide Unsigned Word

To divide a 32-bit unsigned integers

Description: (HI, LO) <« GPR[rs] / GPR[rt]

The 32-bit word value in GPR rsis divided by the 32-bit value in GPR rt, treating both operands as unsigned values.
The 32-bit quotient is placed into special register LO and the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result valueis UNPREDICTABLE.

Operation:

q —
r —
LO «
HI <«

(0 || GPR[rs]z;..
(0 || GPRI[rslay..
sign_extend(qgasq,
sign_extend(rsq ., .

Exceptions:

None

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 11, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

o)
o)
.0)
o)

di

v (0 || GPRIrtlsi..o
mod (0 || GPR[rtlay..

10

)

o)

6

MIPS32

130

Execution Hazard Barrier EHB

131

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 3 SLL
000000 00000 00000 00000 00011 000000
6 5 5 5 5 6
Format. EHB MIPS32 Release 2

Purpose: Execution Hazard Barrier
To stop instruction execution until all execution hazards have been cleared.

Description:

EHB isthe assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
wareas SLL rQ, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting Statuscgyq, there

are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is exe-
cuted in the delay slot of abranch or jump. The EHB instruction does not clear instruction hazards—such hazards are
cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards ()

Exceptions:

None

Programming Notes:

In MIPS32 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB altersthe instruction issue behavior in amanner identical to SSNOP. For backward compatibility with Release 1
implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the
EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations,
replacing the final SSNOP with an EHB should have no performance effect because a properly sized sequence of
SSNOPs will have aready cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous
SSNOPs can be removed, leaving only the EHB.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Enable Interrupts El

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0
COPO MFMCO rt 12 0 sc| O 0
0100 00 01011 01100 000 00 1| 00 000
6 5 5 5 5 1 2 3
Format. EI MI1PS32 Release 2
EI rt MIPS32 Release 2

Purpose: Enable Interrupts

To return the previous value of the Status register and enable interrupts. If El is specified without an argument, GPR
rOisimplied, which discards the previous value of the Status register.

Description: GPR[rt] <« Status; Statusig < 1

The current value of the Status register is loaded into general register rt. The Interrupt Enable (IE) bit in the Status
register isthen set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and El have a specific value for the sc field.

data ¢« Status
GPR[rt] ¢« data
Status;g ¢« 1

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of thisinstruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the El
instruction cannot be aborted in the middle by an interrupt or exception.

Thisinstruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that afixed latency will clear the execution hazard.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 132

Exception Return ERET

133

31 26 25 24 6 5 0
COPO CcO 0 ERET
010000 1 000 0000 0000 0000 0000 011000
6 1 19 6
Format. ERET MIPS32

Purpose: Exception Return
To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlcsg from SRSCtlpgg in a Release 2

implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (i.e., it has no delay dlot).

Restrictions:

The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of abranch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlcgg from SRSCllpgg if Statusggy = 1, or if
Statusgr, = 1 because any exception that sets Statusggr to 1 (Reset, Soft Reset, NMI, or cache error) does not save
SRSCltlesgin SRSCltlpgs If software sets Statusgr to 1, it must be aware of the operation of an ERET that may be
subsequently executed.

Operation:

if Statusgg; = 1 then
temp < ErrorEPC
Statusggp, < O
else
temp < EPC
Statusgyg;, < O
if (ArchitectureRevision 2 2) and (SRSCtlyqg > 0) and (Statusggy = 0) then
SRSCtlegg ¢ SRSCtlpgg
endif
endif
if IsMIPSl6Implemented/() | (Config3;ga > 0) then
PC « temps; 1 || O
ISAMode <« tempg
else
PC « temp
endif
LLbit « 0
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Exception Return No Clear ERETNC

31 26 25 24 6 5 0
COPO CcO 0 1 ERET
010000 1 000 0000 0000 0000 000 011000
6 1 18 1 6
Format. ERETNC MIPS32 Release 5

Purpose: Exception Return No Clear
To return from interrupt, exception, or error trap without clearing the LL bit.

Description:

ERETNC clears execution and instruction hazards, conditionally restores SRSCtlcgg from SRSCtlpgs when imple-

mented, and returns to the interrupted instruction at the completion of interrupt, exception, or error processing.
ERETNC does not execute the next instruction (i.e., it has no delay slot).

ERETNC isidentical to ERET except that an ERETNC will not clear the LLbit that is set by execution of an LL
instruction, and thus when placed between an LL and SC sequence, will never cause the SC to fail.

An ERET should continue to be used by default in interrupt and exception processing handlers: the handler may have
accessed a synchronizable block of memory common to code that is atomically accessing the memory, and where the
code caused the exception or was interrupted. Similarly, a process context-swap must also continue to use an ERET
in order to avoid a possible false success on execution of SC in the restored context.

Multiprocessor systems with non-coherent cores (i.e., without hardware coherence snooping) should also continue to
use ERET, since it isthe responsibility of software to maintain data coherence in the system.

An ERETNC is useful in cases where interrupt/exception handlers and kernel code involved in a process context-
swap can guarantee no interference in accessing synchronizable memory across different contexts. ERETNC can also
be used in an OS-level debugger to single-step through code for debug purposes, avoiding the false clearing of the
LLbit and thus failure of an LL and SC sequence in single-stepped code.

Software can detect the presence of ERETNC by reading Config5 | g -

Restrictions:

The operation of the processor is UNDEFINED if an ERETNC is executed in the delay slot of a branch or jump
instruction.

ERETNC implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes. (For Release 2 implementations, refer to the SY NCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream.) The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction in the PC to which the ERETNC returns.

Operation:

if Statusgg; = 1 then
temp < ErrorEPC
Statusggp, < O
else
temp < EPC
Statusgy;, < 0
if (ArchitectureRevision 2 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlegg ¢ SRSCtlpgg
endif
endif
if IsMIPSl6Implemented() | (Config3igy > 0) then

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 134

PC « temps; 1 || O
ISAMode ¢« temp,
else
PC « temp
endif
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

135 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Extract Bit Field

31 26 25 21 20 16 15 11 10 5
SPECIAL3 rs " mshd Isb EXT
011111 (size-1) (pos) 000000

6 5 5 5 5 6

Format: EXT rt, rs, pos, size

Purpose: Extract Bit Field
To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] <« ExtractField(GPR[rs], msbd, 1lsb)

EXT

MIPS32 Release 2

The hit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and Isb

(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd ¢« size-1
1lsb « pos

The values of pos and size must satisfy al of the following relations:

0 £ pos < 32
0 < size < 32
0 < pos+size <

32

Figure 3-9 shows the symbolic operation of the instruction.

Figure 3.2 Operation of the EXT Instruction

pos+size pos+size-1 pos pos-1
31 Isb+msbd+1 Isb+msbd Isb Isb-1 0
IJKL MNOP ™~ QRST
GPRrs 32-(pos+size) size
Initial Value 32-(Isb+msbd+1) msbd+1
size size-1
31 msbd+1 mshd 0
0 MNOP
GPR rtFinal 32-size size
Value 32-(mshd+1) msbd+1

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

The operation is UNPREDICTABLE if Isb+mshd > 31.

Operation:
if (1sb + msbd)

> 31) then

UNPREDICTABLE

endif

temp ¢« 032— (msbd+1)

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

| | GPR[rS]msbd+lsb. .1sb

136

GPR[rt] <« temp

Exceptions:
Reserved Instruction

137 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Floor Convert to Long Fixed Point FLOOR.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 it 0 s ” FLOOR.L
010001 00000 001011
6 5 5 5 5 6

Format: FLOOR.L.fmt
FLOOR.L.S fd, fs MIPS64, MIPS32 Release 2
FLOOR.L.D fd, fs MIPS64, MIPS32 Release 2
Purpose: Floating Point Floor Convert to Long Fixed Point

To convert an FP value to 64-hit fixed point, rounding down

Description: FPR[£d] <« convert_and_round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward -
(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 283-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable hit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 28°—1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
resultis UNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;
Invalid Operation, Unimplemented Operation, I nexact

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 138

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt
31 26 25 21 20 16 15 11 10 0
COP1 fmt 0 fs fd FLOOR.W
010001 00000 001111
6 5 5 5 5 6
Format: FLOOR.W.fmt

FLOOR.W.S fd, fs MIPS32
FLOOR.W.D fd, fs MI1PS32

139

Purpose: Floating Point Floor Convert to Word Fixed Point
To convert an FP value to 32-hit fixed point, rounding down

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward —o

(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the

resultis UNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, I nexact

fmt) ,

fmt, W))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Insert Bit Field INS
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 rs i msb Isb INS
011111 (postsize-1) (pos) 000100
6 5 5 5 5 6
Format: INS rt, rs, pos, size MIPS32 Release 2

Purpose: Insert Bit Field
To merge aright-justified bit field from GPR rsinto a specified field in GPR rt.

Description: GPR[rt] ¢« InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result
isplaced back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msb (the most significant bit of the field), in instruction bits 15..11, and Isb (least significant bit of
the field), in instruction bits 10..6, as follows:

msb < pos+size-1

1lsb <« pos

The values of pos and size must satisfy al of the following relations:

0 <
0 <
0 <

pos < 32
size < 32
pos+size < 32

Figure 3-10 shows the symbolic operation of the instruction.

GPR s

GPR rt
Initial Value

GPRrtFinal
\alie

Restrictions:

Figure 3.3 Operation of the INS Instruction

size size-1
31 msb-Isb+1 msb-Isb 0
ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Ish-1 0
/ IJKL MNOP /QRST
32-(pos+size) size pos
32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
IJKL EFGH QRST
32-(pos+size) size pos
22-fmsh+1) msh-lsh+1 Ish

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

140

The operation is UNPREDICTABLE if Isb > msb.

Operation:

if 1lsb > msb) then
UNPREDICTABLE
endif

GPR[rt] ¢ GPRIrtls; meps1 || GPRITSIpgp-1sn..0 || GPRIrtligy 1. .0

Exceptions:
Reserved Instruction

141 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Jump J

31 26 25 0
J instr_index
000010 -
6 26
Format: J target MIPS32

Purpose: Jump
To branch within the current 256 M B-aligned region

Description:

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 hits of the target addressis the instr_index field shifted left 2bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jJump itself.
Restrictions:
Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:
I:
I+l: PC < PCuprien-1..28 || instr_index || 02
Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256MB region aligned on a 256MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction isin the last word of a256M B region,
it can branch only to the following 256M B region containing the branch delay slot.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 142

Jump and Link JAL

31 26 25 0
JAL . .
000011 instr_index
6 26
Format: JAL target MIPS32

Purpose: Jump and Link
To execute a procedure call within the current 256MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256MB-aligned region.
The low 28 bits of the target addressis the instr_index field shifted left 2bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of abranch or jump.
Operation:
I: GPR[31] « PC + 8
I+l: PC < PCeppren-1. 28 || instr_index || 02
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC isan
advantage if all program code addresses fit into a 256MB region aligned on a 256MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256MB
region, it can branch only to the following 256M B region containing the branch delay slot.

143 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Jump and Link Register JALR

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs 0 rd hint JALR
000000 00000 001001
6 5 5 5 5 6
Format: JALR rs (rd = 31 implied) M1PS32
JALR rd, rs MIPS32

Purpose: Jump and Link Register
To execute a procedure call to an instruction address in aregister

Description: GPR[rd] ¢« return_addr, PC <« GPR[rs]

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16e ASE nor microMIPS32/64 1SA:

» Jumpto the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Bit O of the target address is always zero so that no Address Exceptions
occur when bit O of the source register is one.

For processors that do implement the MIPS16e ASE or microMIPS32/64 | SA:

e Jump to the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch delay
dot, before executing the jump itself. Set the |SA Mode bit to the value in GPR rshbit 0. Bit 0 of the target address
isalways zero so that no Address Exceptions occur when bit O of the source register is one.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JALR. In Release
2 of the architecture, bit 10 of the hint field is used to encode a hazard barrier. See the JALR.HB instruction descrip-
tion for additional information.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such aninstructionis UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microM1PS32/64 | SA, the effective target address in GPR rs must be natu-
rally-aligned. For processors that do not implement the MIPS16e ASE nor microMIPS32/64 I1SA, if either of the two
least-significant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched
as an instruction.

For processors that do implement the MI1PS16e ASE or microMI1PS32/64 ISA, if target ISAMode bit is 0 (GPR rs bit
0) is zero and hit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.
Operation:

I: temp < GPR[rs]
GPR[rd] « PC + 8

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 144

I+1l:if Configlyy = 0 then

PC « temp
else
PC « tempgprren-1..1 || O
ISAMode <« temp,
endif
Exceptions:
None

Programming Notes:

This branch-and-link instruction that can select aregister for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

145 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Jump and Link Register with Hazard Barrier JALR.HB

31 26 25 21 20 16 15 11 10 9 6 5 0
SPECIAL < 0 y L IA”QO;H?{ ALR
000000 00000 & 001001
value
6 5 5 5 1 2 6
Format: JALR.HB rs (rd = 31 implied) M|PS32 Release 2
JALR.HB rd, rs M|PS32 Release 2

Purpose: Jump and Link Register with Hazard Barrier

To execute a procedure call to an instruction address in aregister and clear all execution and instruction hazards

Description: GPR[rd] ¢« return_addr, PC « GPR[rs], clear execution and instruction
hazards

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE nor microMIPS32/64 | SA:

« Jump to the effective target addressin GPR rs. Execute the instruction that follows the jump, in the branch
delay dot, before executing the jump itself. Bit O of the target address is always zero so that no Address
Exceptions occur when bit O of the source register is one.

For processors that do implement the MIPS16 ASE or microMIPS32/64 1SA:

» Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Set the |SA Mode bit to the valuein GPR rsbit 0. Bit O of the tar-
get address is always zero so that no Address Exceptions occur when bit O of the source register is one.

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor O
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivaent bar-
rier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JALR.HB islegal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JALR.HB uses hit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. Thisrestriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microM1PS32/64 | SA, the effective target address in GPR rs must be natu-
rally-aligned. For processors that do not implement the MIPS16 ASE nor microMI1PS32/64 ISA, if either of the two
least-significant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 146

Jump and Link Register with Hazard Barrier JALR.HB

147

as an instruction.

For processors that do implement the MIPS16 ASE or microMIPS32/64 I1SA, if bit O is zero and bit 1 is one, an
Address Error exception occurs when the jump target is subsequently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JR.HB, ERET, or
DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JALR.HB does not clear hazards created by any instruction that is executed in the delay dot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

I: temp< GPR[rs]
GPR[rd] « PC + 8
I+1l:if Configly, = 0 then
PC « temp
else
PC ¢ tempgprren-1..1 || 0
ISAMode < tempg
endif
ClearHazards ()

Exceptions:
None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

Thisinstruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*

* Code used to modify ASID and call a routine with the new
* mapping established.

*

* a0 = New ASID to establish

* al = Address of the routine to call

*/
mfcO v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtcO v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb al /* Call routine, clearing the hazard */

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

nop

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 148

149 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Jump and Link Exchange JALX

31 26 25 0
JALX . .
011101 instr_index
6 26
Format: JALX target MIPS32 with (microMIPS32 or M1PS16€)

Purpose: Jump and Link Exchange

To execute a procedure call within the current 256 MB-aligned region and change the |SA Mode from MIPS32 to
microM1PS32 or MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflects the current
value of the |SA Mode bit.

Thisis a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 hits of the target addressistheinstr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the |SA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

Restrictions:

Thisinstruction only supports 32-bit aligned branch target addresses.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

If the microMIPS base architecture is not implemented and the MIPS16e ASE is not implemented, a Reserved
Instruction Exception isinitiated.

Operation:
I: GPR[31] « PC + 8
I+l: PC ¢« PCoprrmn-1..28 || instr_index || 02

ISAMode ¢— (not ISAMode)

Exceptions:
None

Programming Notes:

Forming the branch target address by concatenating PC and index bits rather than adding a signed offset to the PC is
an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a
branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 150

Jump Register JR

151

31 26 25 21 20 11 10 6 5 0
SPECIAL rs 0 hint JR
000000 00 0000 0000 001000
6 5 10 5 6
Format. JRrR rs MIPS32

Purpose: Jump Register
To execute a branch to an instruction address in a register

Description: pPC « GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay dlot,
before jumping.
For processors that implement the MIPS16e ASE or microMI1PS32/64 | SA, set the |SA Mode bit to the value in GPR

rsbit 0. Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source regis-
ter isone

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS ISA, the effective target address in GPR rs must be naturally-
aligned. For processors that do not implement the M1PS16e ASE or microMIPS ISA, if either of the two least-signif-
icant bits are not zero, an Address Error exception occurs when the branch target is subsequently fetched as an
instruction.

For processors that do implement the MIPS16e ASE or microMIPS ISA, if bit O is zero and bit 1 is one, an Address
Error exception occurs when the jump target is subsegquently fetched as an instruction.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Release 2
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB instruction
description for additional information.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dot of abranch or jump.

Operation:

I: temp < GPR[rs]
I+1l:if Configley = 0 then
PC « temp
else
PC ¢« tempgprren-1..1 || O
ISAMode <« tempg
endif

Exceptions:
None

Programming Notes:

Software should use the value 31 for the rs field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 152

Jump Register with Hazard Barrier JR.HB

153

31 26 25 21 20 11 10 9 6 5 0
SPECIAL . 0) IA”QO;H?{ R
000000 00 0000 0000 € 001000
value
6 5 10 1 4 6
Format: JR.HB rs M1PS32 Release 2

Purpose: Jump Register with Hazard Barrier
To execute a branch to an instruction address in aregister and clear al execution and instruction hazards.

Description: pPC « GPR[rs], clear execution and instruction hazards

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay dlot,
before jumping.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor O
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor O is
enabled, whereas JR.HB islegal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JR.HB uses hit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

For processors that implement the M1PS16e ASE or microM|1PS32/64 | SA, set the | SA Mode bit to the value in GPR
rshit 0. Bit O of the target addressis always zero so that no Address Exceptions occur when bit O of the source regis-
ter isone.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that do not implement the microMIPS ISA, the effective target address in GPR rs must be naturally-
aligned. For processors that do not implement the MIPS16 ASE or microMIPS ISA, if either of the two least-signifi-
cant bits are not zero, an Address Error exception occurs when the branch target i s subsequently fetched as an instruc-
tion.

For processors that do implement the MIPS16 ASE or microMIPS ISA, if bit O is zero and bit 1 is one, an Address
Error exception occurs when the jump target is subsegquently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JR.HB, ERET, or DERET. Fur-
ther, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay dlot of the JR.HB. Only hazards
created by instructions executed before the JR.HB are cleared by the JR.HB.

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay dlot of abranch or jump.

Operation:

I: temp < GPR[rs]

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Jump Register with Hazard Barrier JR.HB

I+1l:if Configley = 0 then
PC « temp
else
PC « tempgprren-1..1 || O
ISAMode ¢« tempg
endif
ClearHazards ()

Exceptions:
None

Programming Notes:

Thisinstruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after awrite to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
seguence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
* Routine called to modify ASID and return with the new
* mapping established.

*

* a0 = New ASID to establish

*/
mfcO v0, CO_EntryHi /* Read current ASID */
1i vl, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, vl /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making awrite to the instruction stream visible

/*
* Routine called after new instructions are written to
* make them visible and return with the hazards cleared.

*/
{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Clearing instruction hazardsin-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /* hazards */

10:

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 154

Load Byte LB

155

31 26 25 21 20 16 15 0
LB
100000 base rt offset
6 5 5 16
Format: 1B rt, offset(base) M1PS32

Purpose: Load Byte
To load a byte from memory as asigned value

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr ¢« pPAdArpgrgg.1. .2 || (pAddr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, o xor BigEndianCPU?

GPR[rt] « sign_extend(memwordy,g+pyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Byte EVA LBE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LBE
011111 base rt offset 0 101100
6 5 5 9 1 6
Format: LBE rt, offset (base) M1PS32

Purpose: Load Byte EVA
To load a byte as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBE instruction functions in exactly the same fashion as the LB instruction, except that address trandation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode and executing in kernel mode. Memory segments using
UUSK or MUSK access modes are aso accessible. Refer to Volume 111, Enhanced Virtual Addressing section for
additional information.

Implementation of thisinstruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using

UUSK, MUSK or MUSUK access mode.

Operation:
vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« PAddrpgrzg-1. .2 || (PAddr; , xor ReverseEndian?)
memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr,; , xor BigEndianCPU?
GPR[rt] « sign_extend(memwordy,g+pyte..8*byte)

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction

Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 156

Load Byte Unsigned LBU

157

31 26 25 21 20 16 15 0
LBU
100100 base rt offset
6 5 5 16
Format: LBU rt, offset (base) M1PS32

Purpose: Load Byte Unsigned
To load a byte from memory as an unsigned value

Description: GPR[rt] <« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr ¢« pPAdArpgrgg.1. .2 || (pAddr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, o xor BigEndianCPU?

GPR[rt] « zero_extend(memwordy,gshyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Byte Unsigned EVA LBUE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LBUE
011111 base t offset 0 101000
6 5 5 9 1 6
Format: LBUE rt, offset (base) M1PS32

Purpose: Load Byte Unsigned EVA
To load a byte as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBUE instruction functions in exactly the same fashion asthe LBU instruction, except that address trandlation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of thisinstruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« PAddrpgrzg-1. .2 || (PAddr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr,; , xor BigEndianCPU?

GPR[rt] « zero_extend(memwordy,gshyte..8*byte)

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error
Watch

Reserved Instruction

Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 158

Load Doubleword to Floating Point LDC1
31 26 25 21 20 16 15 0
LDC1
110101 base ft offset
6 5 5 16
Format: 1»DCl ft, offset (base) M1PS32

159

Purpose: Load Doubleword to Floating Point
To load a doubleword from memory to an FPR

Description: FPR[ft] ¢« memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress, o+ 0 (not doubleword-aligned).

Operation:

vAddr ¢ sign_extend(offset)

if vAddr, , #0° then

SignalException (AddressError)

+ GPR[base]

endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢« LoadMemory (CCA, WORD, pAddr,

paddr ¢« paddr xor 0b100

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4,
memdoubleword ¢« memmsw || memlsw
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Address Error, Watch

vAddr,

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Doubleword to Coprocessor 2

LDC2

31 26 25 21 20 16 15 0
LDC2
110110 base rt offset
6 5 5 16
Format: L»DC2 rt, offset(base)

Purpose: Load Doubleword to Coprocessor 2
To load a doubleword from memory to a Coprocessor 2 register

Description: cPR[2,rt,0] < memory[GPR[base] + offset]

MIPS32

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress, o+ 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset)

+ GPR[base]

if vAddr, # 0% then SignalException(AddressError) endif

(pAddr,

CCA)

< AddressTranslation

(vAddr,

DATA, LOAD)

paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ¢« LoadMemory (CCA, WORD, pAddr,
paddr <« paddr xor 0bl00

memmsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr+4,

—memlsw
—memmsw

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

160

Load Doubleword Indexed to Floating Point LDXC1
31 26 25 21 20 16 15 11 10 0
COP1X base index 0 fd LDXC1
010011 00000 000001
6 5 5 5 5 6
Format: r»DxCc1l fd, index(base) M1 PS64

Purpose: Load Doubleword Indexed to Floating Point
To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ¢« memory[GPR[base] + GPR[index]]

MIPS32 Release 2

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR fd. The contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Compatibility and Availability:

LDXC1: Required in all versions of MIPS64 since MIPS64rl. Not available in MIPS32rl. Required in MIPS32r2
and all subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-hit or 64-bit

FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, Statusgr=0 or 1).

Operation:

vAddr ¢ GPR[base] + GPR[index]
if vAddr, , #0° then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)

memlsw ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100

memmsw ¢— LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)
memdoubleword ¢« memmsw || memlsw

StoreFPR (fd, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

161 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Halfword

LH

31 26 25 21 20 16 15 0
LH
100001 base rt offset
6 5 5 16

Format: LH rt, offset(base)

Purpose: Load Hafword
To load a halfword from memory as asigned value

Description: GPR[rt] ¢« memory[GPR[base] + offset]

MIPS32

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-

tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr <« pAddrpgrze-1..2 || (PAddr, xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 0)
GPR[rt] ¢ sign_extend(memwordis,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

162

163 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Halfword EVA LHE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LHE
011111 base t offset 0 101101
6 5 5 9 1 6
Format: LHE rt, offset (base) M1PS32

Purpose: Load Halfword EVA
To load a halfword as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHE instruction functions in exactly the same fashion as the LH instruction, except that address trandlation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of thisinstruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

PAddr ¢« pAddrpgrge-1..2 || (PAddr; , xor (ReverseEndian || 0))
memword ¢« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 0)

GPR[rt] « sign_extend(memword;s,g+pyte..8*byte)

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error

Watch

Reserved Instruction
Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 164

Load Halfword Unsigned

LHU

31 26 25 21 20 16 15 0
LHU
100101 base rt offset
6 5 5 16

Format: LHU rt, offset (base)

Purpose: Load Halfword Unsigned
To load a halfword from memory as an unsigned value

Description: GPR[rt] ¢« memory[GPR[base] + offset]

MIPS32

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-

tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr <« pAddrpgrze-1..2 || (PAddr, xor (ReverseEndian || 0))

memword ¢ LoadMemory (CCA, HALFWORD, pAddr,
byte ¢« vAddr, , xor (BigEndianCPU || 0)
GPR[rt] ¢« zero_extend(memword;s,gspyte..8*byte)

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

165 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Halfword Unsigned EVA LHUE

31 2 25 21 20 16 15 7 6 5 0
SPECIAL3 LHUE
011111 base rt offset 0 101001
6 5 5 9 1 6
Format: LHUE rt, offset (base) M1PS32

Purpose: Load Halfword Unsigned EVA
To load a halfword as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHUE instruction functionsin exactly the same fashion asthe LHU instruction, except that address trandation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of thisinstruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

PAddr ¢« pAddrpgrge-1..2 || (PAddr; , xor (ReverseEndian || 0))
memword ¢« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 0)

GPR[rt] « zero_extend(memword;s gspyte..8*byte)

Exceptions:

TLB Refill

TLB Invaid

Bus Error

Address Error

Watch

Reserved Instruction
Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 166

Load Linked Word LL

167

31 26 25 21 20 16 15 0
LL
110000 base rt offset
6 5 5 16
Format: LL rt, offset(base) M1PS32

Purpose: Load Linked Word
To load aword from memory for an atomic read-modify-write

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
seguence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
seguence without attempting a write.

Restrictions:

The addressed |ocation must be synchronizable by all processors and 1/0O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword
LLbit « 1

Exceptions:
TLB R€fill, TLB Invalid, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load

Linked Word EVA LLE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 LLE
011111 base rt offset 0 101110
6 5 5 9 1 6
Format: LLE rt, offset (base) MIPS32

Purpose: Load Linked Word EVA
To load aword from a user mode virtual address when executing in kernel mode for an atomic read-modify-write

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The LLE and SCE instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations using user mode virtual addresses while executing in kernel mode.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLE is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SCE instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LLE on one processor does not cause an action that, by itself, causes an SCE for the same block to fail on
another processor.

An execution of LLE does not have to be followed by execution of SCE; a program is free to abandon the RMW
sequence without attempting awrite.

The LLE instruction functions in exactly the same fashion asthe LL instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are
also accessible. Refer to Volume 111, Segmentation Control for additional information.

Implementation of thisinstruction is specified by the Config5g, field being set to one.

Restrictions:

The addressed location must be synchronizable by all processors and 1/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCE instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢ memword
LLbit « 1

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 168

Exceptions:
TLB Réfill, TLB Invalid, Address Error, Reserved Instruction, Watch, Coprocessor Unusable

Programming Notes:

169 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Upper Immediate LUI
31 26 25 21 20 16 15 0
LUI 0 . "
001111 00000 t immediate
6 5 5 16
Format: LUI rt, immediate M1PS32

Purpose: Load Upper Immediate

To load a constant into the upper half of aword

Description: GPR[rt] ¢« immediate || 0%°

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is
placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ¢« immediate ||

Exceptions:

None

016

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

170

Load Doubleword Indexed Unaligned to Floating Point

171

31

26 25

21 20

16 15

11 10

LUXC1

COP1X
010011

base

index

00000

fd

LUXC1
000101

6

5

Format: rLuxcl fd, index(base)

Purpose: Load Doubleword Indexed Unaligned to Floating Point
To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: FPR[£d] <« memory[(GPR[base] + GPR[index])pgrzp-1. 3]

6

MIPS64
MIPS32 Release 2

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective
address. The effective address is doubleword-aligned; EffectiveAddress, o areignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:
vAddr < (GPR[basel+GPR[index])¢; 5 || 03
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
paddr « paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
memlsw ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100
memmsw < LoadMemory (CCA, WORD, pAddr, vAddr+4, DATA)

memdoubleword ¢« memmsw || memlsw
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Word LW

31 26 25 21 20 16 15 0
LW
100011 base rt offset
6 5 5 16
Format: 1w rt, offset (base) M1PS32

Purpose: Load Word
To load aword from memory as asigned value

Description: GPR[rt] ¢« memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 0% then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ¢« memword

Exceptions:
TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 172

Load Word to Floating Point LWC1
31 26 25 21 20 16 15 0
LWC1
110001 base ft offset
6 5 5 16
Format: rwcl ft, offset (base) M1PS32

Purpose: Load Word to Floating Point
To load aword from memory to an FPR

Description: FPR[ft] ¢« memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR ft become UNPREDICTABLE. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress; g # 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

if vAddr; # 07 then
SignalException (AddressError)
endif

(pAddr, CCA) <« AddressTranslation (vAddr,

memword <« LoadMemory (CCA, WORD, pAddr, vAddr,

StoreFPR(ft, UNINTERPRETED_WORD,
memword)

Exceptions:

DATA, LOAD)

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

173 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Word to Coprocessor 2 LwC2

31 26 25 21 20 16 15 0
LWC2
110010 base rt offset
6 5 5 16
Format: Lwc2 rt, offset (base) M1PS32

Purpose: Load Word to Coprocessor 2
To load aword from memory to a COP2 register

Description: cPR[2,rt,0] < memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress; g # 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddri, #0° then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

memword ¢« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0] ¢« memword

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 174

175 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Word EVA

31 26 25

21 20

16 15

LWE

SPECIAL3
011111

base

rt

offset

LWE
101111

6

5

Format: LWE rt, offset (base)

Purpose: Load Word EVA

To load aword from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢« memory[GPR[base] + offset]

6

MIPS32

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 9-bit signed offset is added to the con-

tents of GPR base to form the effective address.

The LWE instruction functions in exactly the same fashion as the LW instruction, except that address trandation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes

are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of thisinstruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured

using UUSK, MUSK or MUSUK access mode.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr <« sign_extend(offset)
(pAddr, CCA) <« AddressTranslation
memword ¢ LoadMemory

GPR[rt] ¢« memword

Exceptions:

TLB Refill

TLB Invalid

Bus Error

Address Error

Watch

Reserved Instruction
Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

+ GPR[base]
(vAddr,
(CCA, WORD, pAddr,

DATA, LOAD)
DATA)

176

Load Word Left LWL

31 26 25 21 20 16 15 0
LWL
100010 base 1t offset
6 5 5 16
Format: LWL rt, offset (base) MIPS32

Purpose: Load Word Left

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: GPR[rt] ¢« GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (Eff4dddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word () in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of # is in the aligned word containing the Eff4ddr. This part of W is loaded into the
most-significant (left) part of the word in GPR 77. The remaining least-significant part of the word in GPR 77 is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of . 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 3.4 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0 | HBEE EBEE | 7 I 8 | 9 I Memory initial contents

| 2 | 3 | 4 | 5 | Then after LWR $24,5(%$0)

GPR 24 Initial contents

After executing LWL $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

177 MIPS® Architecture For Programmers Volume lI-A: The MIPS32® Instruction Set, Revision 5.04

Load Word Left LWL

Figure 3.5 Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «bhig-endian
| | | J | K L | offset (vAddry ¢) ’ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance —
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VvAddry o Little-endian
I J K L 0 L | f g h
J K L | h 1 K L | g h
K L | g h 2 J K L | h
L | f g h 3] J K L

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAdAr ¢« pPAdArpgrze-1. .2 || (PAAdr; o xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 07
endif

byte ¢« vAddr; o xor BigEndianCPU?
memword <« LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords,gspyte..0 || GPRITtlz3 gepyte. .o
GPR[rt] « temp
Exceptions:
None

TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same
destination register would correctly merge the 1 to 4 loaded bytes with the dataloaded by the previousinstruction. All
such restrictions were removed from the architecturein MIPS 1.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 178

179 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Word Left EVA LWLE

31 26 25 21 20 16 15 7 6 5 0
LWLE
SPECIAL3
011111 base rt offset 0 011001
6 5 5 9 1 6
Format: LWLE rt, offset (base) MIPS32

Purpose: Load Word Left EVA

To load the most-significant part of a word as a signed value from an unaligned user mode virtual address while exe-
cuting in kernel mode.

Description: GPR[rt] < GPR[rt] MERGE memory[GPR[base] + offset]

The 9-bit signed offsef is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word () in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of # is in the aligned word containing the Eff4ddr. This part of W is loaded into the
most-significant (left) part of the word in GPR 77. The remaining least-significant part of the word in GPR 77 is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWLE loads these 2 bytes into the left part of the destination register
word and leaves the right part of the destination word unchanged. Next, the complementary LWRE loads the remain-
der of the unaligned word

Figure 3.6 Unaligned Word Load Using LWLE and LWRE

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
(o]]2]3f4afs]s]7]8]°] Memory initial contents

I 2 I 3 | 4 | 5 I Then after LWRE $24,5($0)

GPR 24 Initial contents

After executing LWLE $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

The LWLE instruction functions in exactly the same fashion as the LWL instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5z,,, field being set to one.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 180

Load Word Left EVA LWLE

181

Figure 3.7 Bytes Loaded by LWLE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «bhig-endian
| | | J | K | L | offset (vAddry o) ’ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance —
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VvAddry o Little-endian
I J K L 0 L | f g h
J K L | h 1 K L | g h
K L | g h 2 J K L | h
L | f g h 3 I J K L

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢« pAddrpgrzg-1. .2 || (PAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr « pAddrpgizpi..z || 0
endif

byte « vAddr, o xor BigEndianCPU?
memword ¢ LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwordy,gspyre..0 || GPRITt]as_gipyre. .o
GPR[rt] « temp
Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved | nstruction, Coprocessor Unusable

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Word Right LWR

31 26 25 21 20 16 15 0
LWR
100110 base rt offset
6 5 5 16
Format: LWR rt, offset (base) MIPS32

Purpose: Load Word Right

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: GPR[rt] ¢« GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (Eff4dddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (#) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. This part of W is loaded into
the least-significant (right) part of the word in GPR 77. The remaining most-significant part of the word in GPR 77 is
unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination register.
Next, the complementary LWL loads the remainder of the unaligned word.

Figure 3.8 Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0 | Tl2]3f2]5]¢ | 7 | 8 | 9 | Memory initial contents

GPR 24 Initial contents

After executing LWR $24,5($0)

| 2 | 3 | 4 | 5 | Then after LWL $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 182

Load Word Right LWR

Figure 3.9 Bytes Loaded by LWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «big-endian
| I | 3 | K | L | offset (vAddry) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance—
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VAddry o Little-endian
e f g | I 0] J K L
e f | I J 1 e | I J K
e | I J K 2 e f | I J
I J K L 3 e f g | I

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAdAr ¢« pPAdArpgrze-1. .2 || (PAAdr; o xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 07
endif

byte ¢« vAddr; o xor BigEndianCPU?
memword <« LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp « memwords; 3z-gspyte || GPRITt]31 grpyte..0
GPR[rt] « temp

Exceptions:

TLB R€fill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

183 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Word Right EVA LWRE

31 26 25 21 20 16 15 7 6 5 0
LWRE
SPECIAL3
011111 base rt offset 0 011010
6 5 5 9 1 6
Format: LWRE rt, offset (base) MIPS32

Purpose: Load Word Right EVA

To load the least-significant part of a word from an unaligned user mode virtual memory address as a signed value
while executing in kernel mode.

Description: GPR[rt] < GPR[rt] MERGE memory[GPR[base] + offset]

The 9-bit signed offsef is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (#) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. This part of W is loaded into
the least-significant (right) part of the word in GPR 77. The remaining most-significant part of the word in GPR 77 is
unchanged.

Executing both LWRE and LWLE, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of . 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWRE loads these 2 bytes into the right part of the destination register.
Next, the complementary LWLE loads the remainder of the unaligned word.

The LWRE instruction functions in exactly the same fashion as the LWR instruction. except that address translation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5z, field being set to one.

Figure 3.10 Unaligned Word Load Using LWLE and LWRE

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least
| 0 | T2]3)4[5]¢6 | 7 I 8 | 9 I Memory initial contents

GPR 24 Initial contents

After executing LWRE $24,5($0)

I 2 I 3 | 4 | 5 I Then after LWLE $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 184

Load Word Right EVA LWRE

Figure 3.11 Bytes Loaded by LWRE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 «big-endian
| I | 3 | K | L | offset (vAddry) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance—
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VAddry o Little-endian
e f g | I 0] J K L
e f | I J 1 e | I J K
e | I J K 2 e f | I J
I J K L 3 e f g | I

Restrictions:

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

PAdAr ¢« pPAdArpgrze-1. .2 || (PAAdr; o xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 07
endif

byte ¢« vAddr; o xor BigEndianCPU?
memword <« LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp « memwords; 3z-gspyte || GPRITt]31 grpyte..0
GPR[rt] « temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch, Reserved I nstruction, Coprocessor Unusable

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 isloaded.

Historical Information:

In the MIPS | architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecturein MIPS 1.

185 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Load Word Indexed to Floating Point LWXC1
31 26 25 21 20 16 15 11 10 0
COP1X base index 0 fd LWXC1
010011 00000 000000
6 5 5 5 5 6
Format: rwxcl fd, index(base) M1 PS64

Purpose: Load Word Indexed to Floating Point
To load aword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ¢« memory[GPR[base] + GPR[index]]

MIPS32 Release 2

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR fd. If FPRs are 64 bitswide, bits 63..32 of FPR fs become UNPREDICTABLE. The

contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o+ 0 (nhot word-aligned).

Compatibility and Availability:

LWXC1: Required in all versions of MIPS64 since MIPS64rl. Not available in MIPS32r1. Required by MIPS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit

FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, Statusgr=0 or 1).

Operation:

vAddr ¢« GPR[base] + GPR[index]
if vAddr; # 07 then

SignalException (AddressError)
endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

StoreFPR (fd, UNINTERPRETED_WORD,
memword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

186

Multiply and Add Word to Hi,Lo MADD

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 rs " 0 0 MADD
011100 0000 00000 000000
6 5 5 5 5 6
Format. MADD rs, rt MIPS32

Purpose: Multiply and Add Word to Hi,Lo
To multiply two words and add the result to Hi, Lo

Description: (HI,LO) « (HI,LO) + (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) + (GPR[rs] X GPR[rt])
HI « tempgs 3
LO « temp31“0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

187 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Multiply Add MADD.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X MADD
010011 fr ft fs fd 100 fmt
6 5 5 5 5 3 3

Format: MADD. fmt

MADD.S fd, fr, fs, ft MIPS64, M| PS32 Release 2
MADD.D fd, fr, fs, ft MIPS64, M| PS32 Release 2
MADD.PS fd, fr, fs, ft MIPS64, M| PS32 Release 2

Purpose: Floating Point Multiply Add
To perform a combined multiply-then-add of FP values

Description: FPR[fd] « (FPR[fs] X FPR[ft]) + FPR[fr]
Thevauein FPR fsismultiplied by the value in FPR ft to produce an intermediate product.

The intermediate product is rounded according to the current rounding mode in FCSR. The value in FPR fr is added
to the product. The result sum is calculated to infinite precision, rounded according to the current rounding mode in
FCSR, and placed into FPR fd. The operands and result are values in format fmt. The results and flags are as if sepa-
rate floating-point multiply and add instructions were executed.

MADD.PS multiplies then adds the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format ft; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MADD.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
i.e.itispredictableif executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.
Compatibility and Availability:

MADD.S and MADD.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

vir < ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs Xgye vEt) +gye VED)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 188

189 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Multiply and Add Unsigned Word to Hi,Lo MADDU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 rs " 0 0 MADDU
011100 00000 00000 000001
6 5 5 5 5 6
Format. MADDU rs, rt MIPS32

Purpose: Multiply and Add Unsigned Word to Hi,Lo
To multiply two unsigned words and add the result to HI, LO.

Description: (HI,LO) « (HI,LO) + (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) + (GPR[rs] X GPR[rt])
HI « tempgs. 3
LO « temp31“0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 190

Move from Coprocessor 0 MFCO
31 26 25 21 20 16 15 11 10 0
COPO MF " d 0
010000 00000 00000000
6 5 5 5 8
Format: MFCO rt, rd MIPS32
MFCO rt, rd, sel MIPS32

191

Purpose: Move from Coprocessor O

To move the contents of a coprocessor O register to ageneral register.

Description: GPR[rt] « CPR[0,rd, sell

The contents of the coprocessor O register specified by the combination of rd and sel are loaded into general register
rt. Note that not all coprocessor O registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

Theresults are UNDEFINED if coprocessor 0 does not contain aregister as specified by rd and sel.

Operation:

reg = rd

data « CPRI[O0,reg, sell]

GPR[rt] ¢« data

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Move Word From Floating Point MFC1

31 26 25 21 20 16 15 11 10 0
COP1 MF " fs 0
010001 00000 000 0000 0000
6 5 5 5 11
Format. MFC1 rt, fs MIPS32

Purpose: Move Word From Floating Point
To copy aword from an FPU (CP1) general register to aGPR

Description: GPR[rt] <« FPR[fs]

The contents of FPR fsare loaded into general register rt.
Restrictions:

Operation:

data <« ValueFPR(fs, UNINTERPRETED_WORD)
GPR[rt] <« data

Exceptions:
Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS |, MIPS 11, and MIPS 111 the contents of GPR rt are UNPREDICTABLE for the instruction immediately
following MFC1.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 192

Move Word From Coprocessor 2 MFC2
31 26 25 21 20 16 15 11 10 8 7 0
COP2 MF it Imol
010010 00000 P
6 5 5
Format: MFC2 rt, Impl MI1PS32
MFC2, rt, Impl, sel MIPS32

193

The syntax shown above is an example using MFC1 as amodel. The specific syntax is implementation dependent.

Purpose: Move Word From Coprocessor 2

To copy aword from a COP2 general register to a GPR

Description: GPR[rt] ¢« CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are and placed into general register rt. The inter-
pretation of the Impl field isleft entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:
data <« CP2CPR[Impl]
GPR[rt] <« data
Exceptions:

Coprocessor Unusable

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 194

Move from High Coprocessor 0

195

MFHCO

31 26 25 21 20 16 15 11 10 2 0
COP0 MFH 0
010000 00010 " rd 00000000 s
6 5 5 5 8 3
Format: MFHCO rt, rd MIPS32 Release 5
MFHCO rt, rd, sel MIPS32 Release 5

Purpose: Move from High Coprocessor 0

To move the contents of the upper 32 hits of a Coprocessor O register, extended by 32-bits, to ageneral register.

Description: GPR[rt] « CPR[0,rd,sel] [63:32]

The contents of the Coprocessor O register specified by the combination of rd and sel are loaded into general register
rt. Note that not all Coprocessor O registers support the sel field, and in those instances, the sl field must be zero.

Restrictions:

The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rd and sel, or the register
exists but is not extended by 32-bits,or the register is extended for XPA, but XPA is not supported or enabled.

Operation:

reg < rd

data « CPRI[O0,reg,sell]
GPR[rt] <« datags 33

Exceptions:
Coprocessor Unusabl
Reserved Instruction

e

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Move Word From High Half of Floating Point Register

MFHC1

31 26 25 21 20 16 15 11 10 0
COP1 MFH " fs 0
010001 00011 000 0000 0000
6 5 5 5 11
Format. MFHC1 rt, fs MI1PS32 Release 2

Purpose: Move Word From High Half of Floating Point Register
To copy aword from the high half of an FPU (CP1) general register to aGPR

Description: GPR[rt] <« FPR[fslgs. 32

The contents of the high word of FPR fs are loaded into general register rt. Thisinstruction is primarily intended to
support 64-hit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

The results are UNPREDICTABLE if Statusgr = 0 and fsis odd.

Operation:

data < ValueFPR(fs, UNINTERPRETED_DOUBLEWORD) g5 35

GPR[rt] ¢« data

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 196

Move Word From High Half of Coprocessor 2 Register MFHC2

197

31 26 25 21 20 16 15 11 10 3 2 0
COP2 MFH it Imol
010010 00011 P
6 5 5 16
Format. MFHC2 rt, Impl MI1PS32 Release 2
MFHC2, rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MFHCL as a model. The specific syntax isimplementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register
To copy aword from the high half of a COP2 general register to aGPR

Description: GPR[rt] « CP2CPR[Impllgs. 39

The contents of the high word of the coprocessor 2 register denoted by the Impl field are placed into GPR rt. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

Theresults are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.
Operation:

data <« CP2CPR[Impl]lgs 35
GPR[rt] <« data

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Move From HI Register MFHI

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 rd 0 MFHI
000000 00 0000 0000 00000 010000
6 10 5 5 6
Format: MFHI rd MIPS32

Purpose: Move From HI Register
To copy the specia purpose HI register to a GPR

Description: GPR[rd] <« HI

The contents of special register HI are loaded into GPR rd.

Restrictions:
None

Operation:

GPR[rd] « HI

Exceptions:
None

Historical Information:

Inthe MIPS 1, 11, and 111 architectures, the two instructions which follow the MFHI must not modify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 198

Move From LO Register MFLO

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 rd 0 MFLO
000000 00 0000 0000 00000 010010
6 10 5 5 6
Format:. MFLO rd MIPS32

Purpose: Move From LO Register
To copy the special purpose LO register to aGPR

Description: GPR[rd] <« LO
The contents of special register LO are loaded into GPR rd.

Restrictions:
None

Operation:

GPR[rd] <« LO

Exceptions:
None

Historical Information:

Inthe MIPS, I, and 111 architectures, the two instructions which follow the MFLO must not modify the HI register.
If this restriction is violated, the result of the MFLO is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

199 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Move

MOV.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 0 MOV
010001 fnt 00000 fs fd 000110
6 5 5 5 5 6
Format: MOV. fmt

MOV.S fd, fs M1PS32
MOV.D f£d, fs M1PS32
MOV.PS £d, fs MIPS64, M1PS32 Release 2

Purpose: Floating Point Move

To move an FP value between FPRs

Description: FPR[fd] ¢« FPR[fs]

The value in FPR fsis placed into FPR fd. The source and destination are values in format fmt. In paired-single for-
mat, both the halves of the pair are copied to fd.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOV.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-hit FPU register mode!;
itis predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(£fd,

Exceptions:

fmt,

ValueFPR(fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

fmt))

200

Move Conditional on Floating Point False MOVF

201

31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL 0| tf 0 MOVF
rs cc rd
000000 0|0 00000 000001
6 5 3 1 1 5 5 6
Format: MOvF rd, rs, cc M1PS32

Purpose: Move Conditional on Floating Point False
To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 0 then GPR[rd] ¢« GPR[rs]

If the floating point condition code specified by CC is zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

Operation:

if FPConditionCode(cc) = 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
Reserved Instruction, Coprocessor Unusable

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Move Conditional on Floating Point False MOVF.fmt

31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 fmt cc 0| tf s fd MOVF
010001 0|0 010001

6 5 3 11 5 5 6

Format: MOVF. fmt

MOVF.S fd, fs, cc MIPS32
MOVF.D fd, fs, cc MIPS32
MOVF.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose: Floating Point Move Conditional on Floating Point False

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 0 then FPR[fd] « FPR[fs]

If the floating point condition code specified by CC is zero, then the value in FPR fsis placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not zero, then FPR fsisnot copied and FPR fd retainsits previous value in format fmt. If fd did
not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVFE.PS conditionally merges the lower half of FPR fs into the lower half of FPR fd if condition code CC is zero,
and independently merges the upper half of FPR fsinto the upper half of FPR fd if condition code CC+1 is zero. The
CC field must be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avaluein format fmt; if it is not, the result is UNPREDITABL E and the value of
the operand FPR becomes UNPREDICTABLE.

Theresult of MOVF.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
it ispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit FPU.

Operation:
if FPConditionCode(cc) = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 202

Move Conditional on Not Zero MOVN

203

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 MOVN
000000 00000 001011
6 5 5 5 5 6
Format:. MOVN rd, rs, rt MIPS32

Purpose: Move Conditional on Not Zero
To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] # 0 then GPR[rd] <« GPR[rs]

If the valuein GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:
None

Operation:

if GPR[rt] # 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
None

Programming Notes:

The non-zero value tested might be the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions or a boolean value read from memory.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Move Conditional on Not Zero MOVN.fmt

31 26 25 21 20 16 15 11 10 6 5 0
CcoP1 MOVN
010001 fnt t fs fd 010011
6 5 5 5 5 6

Format: MOVN. fmt

MOVN.S fd, fs, rt MIPS32
MOVN.D fd, fs, rt MIPS32
MOVN.PS fd, fs, rt MIPS64, M| PS32 Release 2

Purpose: Floating Point Move Conditional on Not Zero
To test a GPR then conditionally move an FP value

Description: if GPR[rt] # 0 then FPR[fd] <« FPR[fs]

If thevaluein GPR rtis not equal to zero, then the valuein FPR fsis placed in FPR fd. The source and destination are
valuesin format fmt.

If GPR rt contains zero, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from aload or move-to operation that could be inter-
preted in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand
FPR becomes UNPREDICTABLE.

Theresult of MOVN.PSisUNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
itis predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.
Operation:

if GPR[rt] # 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 204

Move Conditional on Floating Point True MOVT

31 26 25 21 20 18 17 16 15 11 10 6 5 0
SPECIAL rs cc 0 |tf rd 0 MOVCI
000000 01 00000 000001
6 5 3 1 1 5 5 6
Format: ™MovT rd, rs, cc M1PS32

Purpose: Move Conditional on Floating Point True
To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 1 then GPR[rd] ¢« GPR[rs]

If the floating point condition code specified by CC is one, then the contents of GPR rs are placed into GPR rd.
Restrictions:

Operation:

if FPConditionCode(cc) = 1 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
Reserved Instruction, Coprocessor Unusable

205 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Move Conditional on Floating Point True MOVT.fmt

31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 fmt cc 0| tf s fd MOVF
010001 0|1 010001

6 5 3 11 5 5 6

Format: MOVT. fmt

MoOvVT.S fd, fs, cc MIPS32
MOVT.D fd, fs, cc MIPS32
MOVT.PS fd, fs, cc MIPS64, M| PS32 Release 2

Purpose: Floating Point Move Conditional on Floating Point True
To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 1 then FPR[fd] ¢« FPR[fs]

If the floating point condition code specified by CC is one, then the valuein FPR fsis placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not one, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd
did not contain a value either in format fmt or previously unused data from aload or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVT.PS conditionally merges the lower half of FPR fsinto the lower half of FPR fd if condition code CC is one,
and independently merges the upper half of FPR fsinto the upper half of FPR fd if condition code CC+1 isone. The
CC field should be even; if it is odd, the result of this operationis UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Theresult of MOVT.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register mode!;
itis predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:
if FPConditionCode(cc) = 1 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif
Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 206

Move Conditional on Zero MOVZ

207

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 MOVZ
000000 00000 001010
6 5 5 5 5 6
Format:. Movz rd, rs, rt MIPS32

Purpose: Move Conditional on Zero
To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] = 0 then GPR[rd] <« GPR[rs]

If thevaluein GPR rtis equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:
None

Operation:

if GPR[rt] = 0 then
GPR[rd] ¢« GPR[rs]
endif

Exceptions:
None

Programming Notes:

The zero value tested might be the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions or a boolean value read from memory.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Move Conditional on Zero

MOVZ.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 MOVZ
010001 fmt rt fs fd 010010
6 5 5 5 5 6
Format: Movz.fmt
MOvVZ.S fd, fs, rt MIPS32
MOVz.D fd, fs, rt MIPS32
MOvVz.Ps fd, fs, rt MI1PS64, M1PS32 Release 2
Purpose: Floating Point Move Conditional on Zero
To test a GPR then conditionally move an FP value
Description: if GPR[rt] = 0 then FPR[fd] « FPRI[fs]

If thevaluein GPR rtisequal to zero then the valuein FPR fsis placed in FPR fd. The source and destination are val-

uesin format fmt.

If GPR rtisnot zero, then FPR fsis not copied and FPR fd contains its previous value in format fmt. If fd did not con-
tain avalue either in format fmt or previously unused data from aload or move-to operation that could be interpreted

in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABL E and the value of the operand

FPR becomes UNPREDICTABLE.

Theresult of MOVZ.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
itis predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

if GPR[rt] = 0 then

StoreFPR(fd, fmt, ValueFPR(fs,

else

StoreFPR(fd, fmt, ValueFPR(fd,

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

fmt))

fmt))

208

Multiply and Subtract Word to Hi,Lo MSUB

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 s f 0 0 MSUB
011100 00000 00000 000100
6 5 5 5 5 6
Format. MSUB rs, rt MIPS32

Purpose: Multiply and Subtract Word to Hi,Lo
To multiply two words and subtract the result from HI, LO

Description: (HI,LO) « (HI,LO) - (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The most sig-
nificant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arithmetic
exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) - (GPR[rs] X GPR[rt])
HI « tempgs 3
LO « temp31“0

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

209 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Multiply Subtract MSUB.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X MSUB
010011 fr ft fs fd 101 fmt
6 5 5 5 5 3 3

Format: MSUB. fmt

MSUB.S fd, fr, fs, ft MIPS64, M| PS32 Release 2
MSUB.D fd, fr, fs, ft MIPS64, M| PS32 Release 2
MSUB.PS fd, fr, fs, ft MIPS64, M| PS32 Release 2

Purpose: Floating Point Multiply Subtract
To perform a combined multiply-then-subtract of FP values

Description: FPR[fd] « (FPR[fs] X FPR[ft]) — FPR[fr]

Thevauein FPR fsis multiplied by the valuein FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The subtraction result is calculated to infinite precision,
rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values
in format fmt. The results and flags are as if separate floating-point multiply and subtract instructions were executed.

MSUB.PS muiltiplies then subtracts the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Theresult of MSUB.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model;
i.e. it ispredictableif executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit FPU.
Compatibility and Availability:

MSUB.S and MSUB.D: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32r1. Required
by M1PS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

vir <« ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vis Xgpe vEt) —gpe vEr))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 210

Multiply and Subtract Word to Hi,Lo

211

MSUBU

MIPS32

31 26 25 21 20 16 15 11 10 0
SPECIAL2 rs " 0 0 MSUBU
011100 00000 00000 000101
6 5 5 5 5 6

Format: MSUBU rs, rt

Purpose: Multiply and Subtract Word to Hi,Lo

To multiply two words and subtract the result from HI, LO

Description: (HI,LO) « (HI,LO) - (GPR[rs] X GPR[rt])

The 32-bit word value in GPR rsis multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI and LO. The
most significant 32 bits of the result are written into HI and the least signficant 32 bits are written into LO. No arith-

metic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (HI || LO) - (GPR[rs] X GPR[rt])

HI <« tempgs. 32
LO « tempsq. g

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Move to Coprocessor O MTCO

31 26 25 21 20 16 15 11 10 3 2 0
COPO MT 0
010000 00100 t rd 0000 000 s
6 5 5 5 8 3
Format: MTCO rt, rd MI1PS32
MTCO rt, rd, sel MIPS32

Purpose: Moveto Coprocessor O

To move the contents of a general register to a coprocessor O register.

Description: cPR[0, rd, sel]l ¢« GPR[rt]

The contents of general register rt are loaded into the coprocessor O register specified by the combination of rd and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

In Release 5, for a 32-bit processor, the MTCO instruction writes all zeroes to the high-order bits of selected COPO
registers that have been extended beyond 32 bits. Thisisrequired for compatibility with legacy software that does not
use MTHCQO, yet has hardware support for extended COPO registers (such as for Extended Physical Addressing
(XPA)). Because MTCO overwrites the result of MTHCO, software must first read the high-order bits before writing
the low-order bits, then write the high-order bits back either modified or unmodified. For initialization of an extended
register, software may first write the low-order bits, then the high-order bits, without first reading the high-order bits.

Restrictions:

Theresults are UNDEFINED if coprocessor 0 does not contain aregister as specified by rd and sel.

Operation:

data < GPR[rt]
reg « rd
if (Configbyyy = 1) then
// The most-significant bit may vary by register. Only supported
// bits should be written 0.
// Extended LLAddr is not written with 0s, as it is a read-only register.
// BadVAddr is not written with 0Os, as it is read-only
if (Config3;py = 1) then
if (reg,sel = EntryLo0O or EntryLol) then CPR[0,reg,sellg3.35 = 032
if (reg,sel = MAAR) then CPR[0,reg,sellg3.35 = 032
// TagLo is zeroed only if the implementation-dependent bits are
// writeable
if (reg,sel = TagLo) then CPR[0,reg,sellgs.3; = 032
if (Config3yy = 1) then
if (reg,sel = EntryHi) then CPR[0,reg,sellg3.35 = 032
endif
endif
endif

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 212

Move Word to Floating Point

213

MTC1

31 26 25 21 20 16 15 11 10 0
COP1 MT " fs 0
010001 00100 000 0000 0000
6 5 5 5 11
Format. MTC1 rt, fs

Purpose: Move Word to Floating Point
To copy aword from a GPR to an FPU (CP1) general register

Description: FPR[fs] <« GPR[rt]

Thelow word in GPR rt is placed into the low word of FPR fs.

Restrictions:

Operation:

data <« GPR[rt]3l__O
StoreFPR(fs,

Exceptions:

UNINTERPRETED_WORD, data)

Coprocessor Unusable

Historical Information:
For MIPS I, MIPS I1, and MIPS 111 the value of FPR fsis UNPREDICTABLE for the instruction immediately fol-

lowing MTCL.

MIPS32

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 214

Move Word to Coprocessor 2 MTC2
31 26 25 21 20 16 15 11 10 8 7 0
COP2 MT it Imol
010010 00100 P
6 5 5 16
Format: wmMTC2 rt, Impl MIPS32
MTC2 rt, Impl, sel MIPS32

215

The syntax shown above is an example using MTC1 as amodel. The specific syntax isimplementation-dependent.

Purpose: Move Word to Coprocessor 2

To copy aword from a GPR to a COP2 general register

Description: CP2CPR[Impl] <« GPR[rt]

The low word in GPR rt is placed into the low word of a Coprocessor 2 general register denoted by the Impl field.
The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a Coprocessor 2 register that does not exist.

Operation:

data

< GPR[rt]

CP2CPR[Impl] ¢« data

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Move to High Coprocessor 0O

MTHCO

31 26 25 21 20 16 15 11 10 2 0
COPO MTH 0
010000 00110 t rd 0000 000 s
6 5 5 5 8 3
Format: MTHCO rt, rd MIPS32 Release 5
MTHCO rt, rd, sel MIPS32 Release 5

Purpose: Move to High Coprocessor 0

To copy aword from a GPR to the upper 32 bits of a COP2 general register that has been extended by 32 bits.

Description: cpr[O0,

rd,

sel] [63:32]

< GPR[rt]

The contents of general register rt are loaded into the Coprocessor O register specified by the combination of rd and
sel. Not all Coprocessor 0 registers support the sel field, and when thisis the case, the sel field must be set to zero.

Restrictions:

Theresultsare UNDEFINED if Coprocessor 0 does not contain aregister as specified by rd and sdl, or if the register
exists but is not extended by 32 bits, or the register is extended for XPA, but XPA is not supported or enabled.

Operation:

data < GPR[rt]
reg « rd

CPR[0,reg,sel] [63:32]

Exceptions:
Coprocessor Unusable
Reserved Instruction

< data

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

216

Move Word to High Half of Floating Point Register MTHC1

217

31 26 25 21 20 16 15 11 10 0
COP1 MTH " fs 0
010001 00111 000 0000 0000
6 5 5 5 11
Format:. MTHC1 rt, fs MI1PS32 Release 2

Purpose: Move Word to High Half of Floating Point Register
To copy aword from a GPR to the high half of an FPU (CP1) general register

Description: FPR[fslg; 35 ¢« GPR[rt]

The word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-bit
floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results are UNPREDICTABLE if Statusgr = 0 and fsis odd.

Operation:
newdata < GPR[rt]olddata < ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)sq g
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC1 to write avalue to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHC1.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to compl ete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Move Word to High Half of Coprocessor 2 Register MTHC2

31 26 25 21 20 16 15 11 10 0
COP2 MTH it Imol
010010 00111 P
6 5 5 16
Format:. MTHC2 rt, Impl MI1PS32 Release 2
MTHC2 rt, Impl, sel MIPS32 Release 2

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to High Half of Coprocessor 2 Register
To copy aword from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impllgs 35 ¢ GPR[rt]

The word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

Theresults are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data <« GPR[rt]

CP2CPR[Impl] « data || CPR[2,rd,sells;;
Exceptions:
Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the
MTHC2. This is because of the semantic definition of MTC2, which is not aware that software will be using an
MTHC?2 instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE
value.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 218

Move to HI Register MTHI

31 26 25 21 20 6 5 0
SPECIAL rs 0 MTHI
000000 000 0000 0000 0000 010001
6 5 15 6
Format: MTHI rs MIPS32

Purpose: Moveto HI Register
To copy a GPR to the special purpose HI register

Description: HI « GPR[rs]

The contents of GPR rs are loaded into special register HI.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI or MFLO
before anew result can be written into either HI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows thisillegal situation:

MULT r2,r4d # start operation that will eventually write to HI,LO
code not containing mfhi or mflo
MTHI r6

code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value
Operation:

HI ¢« GPR[rs]

Exceptions:
None

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS 1V and later, including MIPS32 and M1PS64, this restriction does not exist.

219 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Move to LO Register MTLO

31 26 25 21 20 6 5 0
SPECIAL rs 0 MTLO
000000 000 0000 0000 0000 010011
6 5 15 6
Format:. MTLO rs MIPS32

Purpose: Moveto LO Register
To copy a GPR to the special purpose LO register

Description: LO « GPR[rs]

The contents of GPR rs are loaded into special register LO.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by MFHI or MFLO
before anew result can be written into either HI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of HI are UNPREDICTABL E. The following example shows thisillegal situation:

MULT r2,r4d # start operation that will eventually write to HI,LO
code not containing mfhi or mflo
MTLO r6

code not containing mfhi
MFHI r3 # this mfhi would get an UNPREDICTABLE value
Operation:

LO ¢« GPR[rs]

Exceptions:
None

Historical Information:

In MIPS I-111, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS 1V and later, including MIPS32 and M1PS64, this restriction does not exist.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 220

Multiply Word to GPR MUL

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 s " rd 0 MUL
011100 00000 000010
6 5 5 5 5 6
Format: MUL rd, rs, rt MIPS32

Purpose: Multiply Word to GPR
To multiply two words and write the result to a GPR.

Description: GPR[rd] <« GPR[rs] X GPR[rt]

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are written to GPR rd. The contents of HI and
LO are UNPREDICTABLE after the operation. No arithmetic exception occurs under any circumstances.
Restrictions:

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

temp ¢« GPR[rs] X GPR[rt]

GPR[rd] <« temps3; g

HI < UNPREDICTABLE

LO ¢« UNPREDICTABLE
Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read GPR rd before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

221 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Multiply

MUL.fmt

31 26 25 21 20 16 15 11 10
COP1 MUL
010001 fnt ft fs fd 000010
6 5 5 5 5 6
Format: MUL. fmt

MUL.S fd, fs, M1PS32
MUL.D £d, fs, M1PS32
MUL.PS f£d, fs, ft M| PS64

Purpose: Floating Point Multiply

To multiply FP values

Description: FPR[fd] « FPR[fs] x FPR[ft]

MIPS32 Release 2

Thevaluein FPR fsismultiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
MUL.PS multiplies the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated

exceptional conditions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Theresult of MUL.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register modd!; it

ispredictable if executing on a64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

fmt) Xgne ValueFPR(fL,

fmt))

222

Multiply Word MULT

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " 0 MULT
000000 00 0000 0000 011000
6 5 5 10 6
Format. MULT rs, rt MIPS32

Purpose: Multiply Word
To multiply 32-bit signed integers

Description: (HI, LO) « GPR[rs] X GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is splaced into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:

prod < GPR[rs]ls; g X GPR[rtls3; g
LO « prodsz; g
HI « prodgs, 33

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

223 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Multiply Unsigned Word MULTU

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " 0 MULTU
000000 00 0000 0000 011001
6 5 5 10 6
Format: MULTU rs, rt MIPS32

Purpose: Multiply Unsigned Word
To multiply 32-bit unsigned integers

Description: (HI, LO) « GPR[rs] X GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:

prod <« (0 || GPR[rslsi o) X (0 || GPRIrtlsi o)
LO « prodsz;. g
HI <« prodgs. 33

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute beforeit is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 224

Floating Point Negate NEG.fmt

225

31 26 25 21 20 16 15 11 10 6 5 0
CcoP1 0 NEG
010001 fnt 00000 fs fd 000111
6 5 5 5 5 6

Format. NEG.fmt

NEG.S fd, fs MIPS32
NEG.D fd, fs MIPS32
NEG.PS fd, fs MIPS64, M1PS32 Release 2

Purpose: Floating Point Negate
To negate an FP value

Description: FPR[fd] « -FPR[fs]

Thevaluein FPR fsis negated and placed into FPR fd. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt. NEG.PS negates the upper and lower halves of FPR fs independently, and
ORs together any generated exceptional conditions.

If FIRHas0008=0 Or FCSRaps2008=0 then this operation is arithmetic. For this case, any NaN operand signalsinvalid
operation.

If FCSRagsp008=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No |EEE exception can be generated for this

case.
Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Theresult of NEG.PSis UNPREDI CTABLE if the processor is executing in the FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;
Unimplemented Operation, Invalid Operation

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Negative Multiply Add NMADD.fmt

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X NMADD
010011 fr ft fs fd 110 fmt
6 5 5 5 5 3 3

Format. NMADD. fmt

NMADD.S fd, fr, fs, ft MIPS64, M| PS32 Release 2
NMADD.D fd, fr, fs, ft MIPS64, M| PS32 Release 2
NMADD.PS fd, fr, fs, ft MIPS64, M| PS32 Release 2

Purpose: Floating Point Negative Multiply Add
To negate a combined multiply-then-add of FP values

Description: FPR[fd] « - ((FPR[fs] X FPR[ft]) + FPR[fr])

Thevauein FPR fsis multiplied by the valuein FPR ft to produce an intermediate product. The intermediate product
isrounded according to the current rounding modein FCSR. The value in FPR fr is added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign hit, and placed into FPR fd. The operands and result are values in format fmt. The results and
flags are as if separate floating-point multiply and add and negate instructions were executed.

NMADD.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMADD.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit
FPU.

Compatibility and Availability:

NMADD.S and NMADD.D: Required in al versions of MIPS64 since MIPS64rl. Not available in MIPS32r1.
Required by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present,
whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgg=0 or 1).

Operation:

vir < ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —(vir +gye (VEs Xgpe vEL)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 226

Floating Point Negative Multiply Subtract NMSUB.fmt

227

31 26 25 21 20 16 15 11 10 6 5 3 2 0
COP1X NMSUB
010011 fr ft fs fd 111 fmt
6 5 5 5 5 3 3

Format: NMSUB. fmt

NMSUB.S fd, fr, fs, ft MIPS64, M| PS32 Release 2
NMSUB.D fd, fr, fs, ft MIPS64, M| PS32 Release 2
NMSUB.PS fd, fr, fs, ft MIPS64, M| PS32 Release 2

Purpose: Floating Point Negative Multiply Subtract
To negate a combined multiply-then-subtract of FP values

Description: FPR[fd] « - ((FPR[fs] X FPR[ft]) — FPR[fr])

Thevauein FPR fsis multiplied by the valuein FPR ft to produce an intermediate product. The intermediate product
isrounded according to the current rounding modein FCSR. The value in FPR fr is subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated by
changing the sign hit, and placed into FPR fd. The operands and result are values in format fmt. The results and flags
are asif separate floating-point multiply and subtract and negate instructions were executed.

NMSUB.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bitsif no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMSUB.PS is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; i.e. it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-hit
FPU.

Compatibility and Availability:

NMSUB.S and NMSUB.D: Required in al versions of MIPS64 since MIPS64rl. Not available in MIPS32r1.
Required by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present,
whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgg=0 or 1).

Operation:

vir < ValueFPR(fr, fmt)
vis <« ValueFPR(fs, fmt)
vit « ValueFPR(ft, fmt)
StoreFPR(fd, fmt, —((vfs Xgye vEL) —gpe VEr))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 228

No Operation

229

31

26 25

21 20

16 15

11 10

NOP

SPECIAL
000000

00000

00000

00000

00000

SLL
000000

6

Format:. nNop

Purpose: No Operation

To perform no operation.

Description:
NOP is the assembly idiom used to denote no operation.

ro, ro, O.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

6

Assembly ldiom

The actual instruction isinterpreted by the hardware as SLL

The zero instruction word, which represents SLL, r0, r0, O, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " d 0 NOR
000000 00000 100111
6 5 5 5 5 6
Format: NOR rd, rs, rt MIPS32

Purpose: Not Or
To do abitwise logical NOT OR

Description: GPR[rd] ¢« GPR[rs] NOR GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] ¢« GPR[rs] nor GPR[rt]

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 230

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " d 0 OR
000000 00000 100101
6 5 5 5 5 6
Format: OR rd, rs, rt MIPS32

231

Purpose: Or
To do abitwise logical OR

Description: GPR[rd] < GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] ¢« GPR[rs] or GPR[rt]

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Or Immediate ORI
31 26 25 21 20 16 15 0
ORI . .
001101 rs rt immediate
6 5 5 16
Format: ORI rt, rs, immediate M1PS32

Purpose: Or Immediate

To do a bitwise logical OR with a constant

Description: GPR[rt] <« GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rsin a bitwise logical OR

operation. The result is placed into GPR rt.

Restrictions:
None

Operation:

GPR[rt] ¢« GPR[rs] or zero_extend(immediate)

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

232

233 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Wait for the LLBit to clear PAUSE

31 26 25 24 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 5 SLL
000000 00000 00000 00000 00101 000000
6 5 5 5 5 6
Format: PAUSE MIPS32 Release 2/M T Module

Purpose: Wait for the LLBit to clear

Description:

L ocks implemented using the LL/SC instructions are a common method of synchronization between threads of con-
trol. A typical lock implementation does aload-linked instruction and checks the value returned to determine whether
the software lock is set. If it is, the code branches back to retry the load-linked instruction, thereby implementing an
active busy-wait sequence. The PAUSE instructions is intended to be placed into the busy-wait sequence to block the
instruction stream until such time as the load-linked instruction has a chance to succeed in obtaining the software
lock.

The precise behavior of the PAUSE instruction isimplementation-dependent, but it usually involves descheduling the
instruction stream until the LLBIt is zero. In a single-threaded processor, this may be implemented as a short-term
WAIT operation which resumes at the next instruction when the LLBit is zero or on some other external event such as
an interrupt. On a multi-threaded processor, this may be implemented as a short term YIELD operation which
resumes at the next instruction when the LLBit is zero. In either case, it is assumed that the instruction stream which
gives up the software lock does so via a write to the lock variable, which causes the processor to clear the LLBIt as
seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previousimplementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

The operation of the processor is UNPREDICTABLE if a PAUSE instruction is placed in the delay slot of a branch
or ajump.

Operation:

if LLBit # 0 then
EPC « PC + 4 /* Resume at the following instruction */
DescheduleInstructionStream()

endif

Exceptions:
None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBiIt will ever be cleared.

An example use of the PAUSE instruction isincluded in the following example:

acquire_lock:

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 234

11 t0, 0(al) /* Read software lock, set hardware lock */
bnez t0, acquire_lock_retry: /* Branch if software lock is taken */
addiu tO0, tO0, 1 /* Set the software lock */
sc t0, 0(a0l) /* Try to store the software lock */
bnez t0, 10f /* Branch if lock acquired successfully */
sync

acquire_lock_retry:
pause /* Wait for LLBIT to clear before retry */
b acquire_lock /* and retry the operation */
nop

10:

Critical region code
release_lock:

sync

sw zero, 0(al) /* Release software lock, clearing LLBIT */
/* for any PAUSEd waiters */

235 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Pair Lower Lower

PLL.PS

31 26 25 21 20 16 15 11 10 5 0
COP1 fmt PLL
010001 10110 ft fs fd 101100
6 5 5 5 5 6
Format: pLL.PS fd, fs, ft MIPS64, M| PS32 Release 2

Purpose: Pair Lower Lower

To merge a pair of paired single values with realignment

Description: FPR[£d] ¢« lower (FPR[fs])

| | lower (FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the lower single of FPR

ft (bits 31..0).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft, PS)3; .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

236

Pair Lower Upper

237

PLU.PS

31 26 25 21 20 16 15 11 10 5 0
COP1 fmt PLU
010001 10110 ft fs fd 101101
6 5 5 5 5 6
Format: pLU.Ps fd, fs, ft MI1PS64, M1 PS32 Release 2

Purpose: Pair Lower Upper

To merge a pair of paired single values with realignment

Description: FPR[fd] <« lower (FPR[fs])

| | upper (FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the upper single of FPR

ft (bits 63..32).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)3; o || ValueFPR(ft, PS)gs .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Prefetch PREF

31 26 25 21 20 16 15 0
PREF .
110011 base hint offset
6 5 5 16
Format: PREF hint,offset (base) M1PS32

Purpose: Prefetch
To move data between memory and cache.

Description: prefetch_memory (GPR[base] + offset)

PREF adds the 16-hit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the datais expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or ater the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
State.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition isignored and no data movement occurs.However even if no datais
moved, some action that is not architecturally visible, such aswriteback of adirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as abyproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether thistype is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability& coherency attribute used for the
operation are determined by the memory access type and cacheability& coherency attribute of the effective address,
just asit would be if the memory operation had been caused by aload or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

Table 4.4 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched datais expected to be read (not modified).
Action: Fetch data asif for aload.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 238

Prefetch

239

PREF

Table 4.4 Values of hint Field for PREF Instruction

store

Use: Prefetched datais expected to be stored or modified.
Action: Fetch dataasif for astore.

2-3

Reserved

Reserved for future use - not available to implementations.

load_streamed

Use: Prefetched datais expected to be read (not modified) but not reused
extensively; it “streams’ through cache.

Action: Fetch dataasif for aload and place it in the cache so that it does not
displace data prefetched as “retained.”

store_streamed

Use: Prefetched datais expected to be stored or modified but not reused exten-
sively; it “streams’ through cache.

Action: Fetch dataasiif for astore and placeit in the cache so that it does not
displace data prefetched as “ retained.”

load retained

Use: Prefetched datais expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch dataasif for aload and place it in the cache so that it is not dis-
placed by data prefetched as “ streamed.”

store retained

Use: Prefetched datais expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch dataasif for a store and place it in the cache so that it is not dis-
placed by data prefetched as “ streamed.”

8-20

Reserved

Reserved for future use - not available to implementations.

21-24

Implementation Dependent

Unassigned by the Architecture - available for implementation-dependent use.

25

writeback_invalidate (also
known as “nudge’)

Use: Datais no longer expected to be used.

Action: For awriteback cache, schedule awriteback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache lineis not dirty, it isimplementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cacheline
islocked, no action is taken.

26-29

Implementation Dependent

Unassigned by the Architecture - available for implementation-dependent use.

30

PrepareForStore

Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.

Action: If the reference hitsin the cache, no action is taken. If the reference
misses in the cache, aline is selected for replacement, any valid and dirty vic-
tim iswritten back to memory, the entire line isfilled with zero data, and the
state of the lineis marked as valid and dirty.

Programming Note: Because the cache lineisfilled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
afast bzero-type function.

31

Implementation Dependent

Unassigned by the Architecture - available for implementation-dependent use.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Prefetch PREF

Restrictions:
None

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Bus Error, Cache Error
Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “ streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch datain an optimal way. If dataisto betruly
retained, software should use the Cache instruction to lock datainto the cache.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 240

241 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Prefetch EVA PREFE

31 26 25 21 20 16 15 7 6 5 0
PREFE
SPECIAL3 .
011111 base hint offset 0 100011
6 5 5 9 1 6
Format: PREFE hint, offset (base) MIPS32

Purpose: Prefetch EVA
To move data between user mode virtual address space memory and cache while operating in kernel mode.

Description: prefetch memory (GPR[base] + offset)

PREFE adds the 9-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
pliesinformation about the way that the datais expected to be used.

PREFE enables the processor to take some action, typically causing data to be moved to or from the cache, to
improve program performance. The action taken for a specific PREFE instruction is both system and context depen-
dent. Any action, including doing nothing, is permitted as long as it does not change architecturally visible state or
alter the meaning of a program. Implementations are expected either to do nothing, or to take an action that increases
the performance of the program. The PrepareForStore function is unique in that it may modify the architecturaly vis-
ible state.

PREFE does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition isignored and no data movement occurs.However even if no datais
moved, some action that is not architecturally visible, such aswriteback of adirty cache line, can take place.

It isimplementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as abyproduct of the action taken by the PREFE instruction.

PREFE neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether thistype is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREFE results in a memory operation, the memory access type and cacheability& coherency attribute used for the
operation are determined by the memory access type and cacheability& coherency attribute of the effective address,
just asit would be if the memory operation had been caused by aload or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREFE instruction and the memory transactions which are sourced by the PREFE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

The PREFE instruction functions in exactly the same fashion as the PREF instruction, except that address trandation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK' access
modes are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 242

Prefetch EVA

243

PREFE

Table 4.5 Values of hint Field for PREFE Instruction

Value Name Data Use and Desired Prefetch Action
0 load Use: Prefetched datais expected to be read (not modified).
Action: Fetch data asif for aload.
1 store Use: Prefetched datais expected to be stored or modified.
Action: Fetch data asif for a store.
2-3 Reserved Reserved for future use - not available to implementations.
4 load_streamed Use: Prefetched datais expected to be read (not modified) but not reused
extensively; it “streams’ through cache.
Action: Fetch dataasif for aload and place it in the cache so that it does not
displace data prefetched as “retained.”
5 store_streamed Use: Prefetched datais expected to be stored or modified but not reused exten-
sively; it “streams’ through cache.
Action: Fetch dataasiif for astore and placeit in the cache so that it does not
displace data prefetched as “retained.”
6 load_retained Use: Prefetched datais expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch dataasif for aload and place it in the cache so that it is not dis-
placed by data prefetched as “ streamed.”
7 store_retained Use: Prefetched datais expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch dataasif for a store and place it in the cache so that it is not dis-
placed by data prefetched as “ streamed.”
8-20 Reserved Reserved for future use - not available to implementations.
21-24 | Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.
25 writeback_invalidate (also Use: Datais no longer expected to be used.
known as “nudge”) Action: For awriteback cache, schedule awriteback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache lineis not dirty, it isimplementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cacheline
islocked, no action is taken.
26-29 | Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Prefetch EVA PREFE

Table 4.5 Values of hint Field for PREFE Instruction

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.

Action: If the reference hitsin the cache, no action is taken. If the reference
misses in the cache, aline is selected for replacement, any valid and dirty vic-
tim iswritten back to memory, the entire line is filled with zero data, and the
state of the lineis marked as valid and dirty.

Programming Note: Because the cache lineisfilled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
afast bzero-type function.

31 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« GPR[base] + sign_extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Bus Error, Cache Error, Address Error, Reserved Instruction, Coprocessor Usable
Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped |ocation unless the trandation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have tranglations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch datain an optimal way. If dataisto betruly
retained, software should use the Cache instruction to lock datainto the cache.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 244

Prefetch Indexed PREFX

31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index hint 0 PREFX
010011 00000 001111
6 5 5 5 5 6
Format: PREFX hint, index (base) M1 PS64

MIPS32 Release 2

Purpose: Prefetch Indexed
To move data between memory and cache.

Description: prefetch_memory [GPR[base] + GPR[index]]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The hint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of the hint field.
Restrictions:

Compatibility and Availability:

PREFX: Required in al versions of MIPS64 since MIPS64r1. Not available in MIPS32rl. Required by MIPS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit
FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, Statusgg=0 or 1).

Operation:

vAddr <« GPR[base] + GPR[index]
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations other than those in which the corresponding load and store indexed floating point instruc-
tions are generated.

Refer to the corresponding section in the PREF instruction description.

245 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Pair Upper Lower

PUL.PS

31 26 25 21 20 16 15 11 10 5 0
COP1 fmt PUL
010001 10110 ft fs fd 101110
6 5 5 5 5 6
Format: puL.Ps fd, fs, ft MI1PS64, M1 PS32 Release 2

Purpose: Pair Upper Lower

To merge a pair of paired single values with realignment

Description: FPR[fd] <« upper (FPR[fs])

|| lower (FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the lower single of
FPR ft (bits 31..0).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-

DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)g3 3o || ValueFPR(ft, PS)s3q. .

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

246

Pair Upper Upper PUU.PS

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt PUU
010001 10110 ft fs fd 101111
6 5 5 5 5 6
Format: puu.ps fd, fs, ft MI1PS64, M1 PS32 Release 2

Purpose: Pair Upper Upper
To merge a pair of paired single values with realignment

Description: FPR[£d] <« upper (FPR[fs]) || upper (FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the upper single of
FPR ft (bits 63..32).

The move is non-arithmetic; it causes no |EEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)g3 35 || ValueFPR(ft, PS)g3. 32)

Exceptions:
Coprocessor Unusable, Reserved Instruction

247 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Read Hardware Register

31 26 25 21 20 16 15 1 10 6 5
SPECIAL3 0 it d 0 RDHWR
011111 00 000 000 00 111011

6 5 5 5 2 3 6

Format. RDHWR rt,rd

RDHWR

MIPS32Release2

Purpose: Read Hardware Register

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-

leged software.

The purpose of thisinstruction is to give user mode access to specific information that is otherwise only visible in

kernel mode.

Description: GPR[rt] <« HWR[rd]

If accessis allowed to the specified hardware register, the contents of the register specified by rd is loaded into gen-

eral register rt. Access control for each register is selected by the bitsin the coprocessor 0 HWREnNa register.

The available hardware registers, and the encoding of the rd field for each, are shown in Table 4.6.

Table 4.6 RDHWR Register Numbers

Register
Number
(rd Value)

Mnemonic

Description

0

CPUNum

Number of the CPU on which the program is currently running. This register
provides read access to the coprocessor 0 EBasecpynum field.

SYNCI_Step

Address step size to be used with the SYNCI instruction, or zero if no caches
need be synchronized. See that instruction’s description for the use of this
value.

CcC

High-resolution cycle counter. This register provides read access to the copro-
cessor 0 Count Register.

CCRes

Resolution of the CC register. This value denotes the number of cycles
between update of the register. For example:

CCRes Value Meaning

1 CC register increments every CPU cycle

2 CC register increments every second CPU cycle

3 CC register increments every third CPU cycle
etc.

4-28

These registers numbers are reserved for future architecture use. Access
results in a Reserved Instruction Exception.

29

ULR

User Local Register. This register provides read access to the coprocessor 0
UserLocal register, if it isimplemented. In some operating environments, the
UserLocal register is apointer to a thread-specific storage block.

30-31

These register numbers are reserved for implementation-dependent use. If they
are not implemented, access results in a Reserved Instruction Exception.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

248

Read Hardware Register RDHWR

Restrictions:
In implementations of Release 1 of the Architecture, thisinstruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If accessis not allowed or the register is not implemented, a Reserved Instruction Exception is
signaled.

Operation:

case rd
0: temp <« EBasecpyyum
1: temp ¢« SYNCI_StepSize()
2: temp ¢« Count
3: temp « CountResolution/()
29: temp ¢« UserLocal
30: temp <« Implementation-Dependent-Value
31: temp < Implementation-Dependent-Value
otherwise: SignalException(ReservedInstruction)
endcase
GPR[rt] <« temp

Exceptions:
Reserved Instruction

249 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Read GPR from Previous Shadow Set

RDPGPR

31 26 25 21 20 16 15 11 10 0
COPO RDPGPR f d 0
0100 00 01010 000 0000 0000
6 5 5 5 11
Format: RDPGPR rd, rt MI1PS32 Release2

Purpose: Read GPR from Previous Shadow Set
To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rd] <« SGPR[SRSCtlpgg, rt]

The contents of the shadow GPR register specified by SRSCtlpgg (signifying the previous shadow set number) and rt

(specifying the register number within that set) is moved to the current GPR rd.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

GPR[rd] ¢« SGPR[SRSCtlpgg, rt]

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

250

Reciprocal Approximation RECIP.fmt

251

31 26 25 21 20 16 15 11 10 6 5 0
CcoP1 0 RECIP
010001 fnt 00000 fs fd 010101
6 5 5 5 5 6

Format: RECIP.fmt
RECIP.S fd, fs MIPS64, MIPS32 Release 2
RECIP.D fd, fs MIPS64, MIPS32 Release 2
Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly)

Description: FPR[£d] « 1.0 / FPRI[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR fd. The operand and result are values in
format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|EEE 754 Floating Point standard. The computed result differs from the both the exact result and the | EEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It isimplementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Compatibility and Availability:

RECIPS and RECIPD: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32rl. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Rotate Word Right

ROTR

31 26 25 22 21 20 16 15 11 10 6 5 0
SPECIAL R SRL
000000 0o | t rd 2 000010
6 4 1 5 5 5 6

Format. ROTR rd, rt,

sa

Purpose: Rotate Word Right

To execute alogical right-rotate of aword by a fixed number of bits

Description: GPR[rd] <« GPR[rt] <> (right) sa
The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-

rotate amount is specified by sa.

Restrictions:

SmartMIPS Crypto, MIPS32 Release 2

Operation:
if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE
endif
S « sa
temp < GPR[rtlg; o || GPRIrtls; o
GPR[rd] < temp
Exceptions:

Reserved Instruction

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

252

Rotate Word Right Variable

253

ROTRV

31 26 25 21 20 16 15 11 10 6 0
SPECIAL R SRLV
000000 rs t rd R) 000110
6 5 5 5 4 1 6

Format. ROTRV rd, rt, rs

Purpose: Rotate Word Right Variable

To execute alogical right-rotate of aword by a variable number of bits

Description: GPR[rd] ¢« GPR[rt] «>(right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The bit-

rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:
if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE
endif
S < GPR[rsl, g
temp < GPR[rtlg; o || GPRIrtls; o

GPR[rd] < temp

Exceptions:

Reserved Instruction

SmartMIPS Crypto, MIPS32 Release 2

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Round to Long Fixed Point ROUND.L.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 s ” ROUND.L
010001 00000 001000
6 5 5 5 5 6

Format: ROUND.L. fmt
ROUND.L.S fd, fs MIPS64, MIPS32 Release 2
ROUND.L.D fd, fs MIPS64, MIPS32 Release 2
Purpose: Floating Point Round to Long Fixed Point

To convert an FP value to 64-hit fixed point, rounding to nearest

Description: FPR[£d] <« convert_and_round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to nearest/
even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 283-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 262-1, iswritten to fd.

Restrictions:

Thefields fs and fdmust specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;
Inexact, Unimplemented Operation, Invalid Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 254

Floating Point Round to Word Fixed Point ROUND.W.fmt

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 s ” ROUND.W
010001 00000 001100
6 5 5 5 5 6

Format: ROUND.W. fmt
ROUND.W.S fd, fs MIPS32
ROUND.W.D fd, fs MIPS32
Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-hit fixed point, rounding to nearest

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevauein FPR fs, in format fnt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231-1, iswritten to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Unimplemented Operation, Invalid Operation

255 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Reciprocal Square Root Approximation RSQRT.fmt

31 26 25 21 20 16 15 11 10 6 5 0
CcoP1 0 RSORT
010001 fmt 00000 fs fd 010110
6 5 5 5 5 6

Format: RSQRT.fmt
RSQRT. S fd, fs MIPS64, MIPS32 Release 2
RSQRT.D fd, fs MIPS64, MIPS32 Release 2
Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly)

Description: FPR[fd] « 1.0 / sqrt(FPR[fs])

Thereciprocal of the positive square root of the value in FPR fsis approximated and placed into FPR fd. The operand
and result are valuesin format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|IEEE 754 Floating Point standard. The computed result differs from both the exact result and the | EEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Compatibility and Availability:

RSQRT.S and RSQRT.D: Required in all versions of MIPS64 since MIPS64rl. Not available in MIPS32r1. Required
by MIPS32r2 and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-
bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1, Statusgr=0 or 1).

Operation:

StoreFPR(fd, fmt, 1.0 / SquareRoot (valueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 256

Store Byte SB
31 26 25 21 20 16 15 0
SB
101000 base rt offset
6 5 5 16
Format: sB rt, offset (base) M1PS32

257

Purpose: Store Byte
To store a byte to memory

Description: memory[GPR[base] + offset] <« GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pPAddr < pAddrpgrze-1. 2 || (pAAdr; , xor ReverseEndian?)
bytesel ¢« vAddr; o xor BigEndianCPU?

dataword ¢ GPR[rtlsi_gspytesel..o || o8 bytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Byte EVA

SBE

31 26 25 21 20 16 15 7 0
SBE
SPECIAL3
011111 base rt offset 011100
6 5 5 9 6

Format: SBE rt, offset (base)

Purpose: Store Byte EVA
To store a byte to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base] + offset] <« GPR[rt]

MIPS32

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

9-bit signed offset is added to the contents of GPR base to form the effective address.

The SBE instruction functionsin exactly the same fashion as the SB instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are
also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of thisinstruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured

using UUSK, MUSK or MUSUK access mode.

Operation:
vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

pAddr ¢« pPAddrpgrzm-1. .2 || (pAddr; , xor ReverseEndian?)

bytesel <« vAddr,; o xor BigEndianCPU?
dataword ¢ GPR[rtls;_gspytesel..o || p8rbytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
Exceptions:
TLB Réfill
TLB Invalid
Bus Error
Address Error
Watch
Reserved Instruction

Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

258

Store Conditional Word SC

259

31 26 25 21 20 16 15 0
SC
111000 base rt offset
6 5 5 16
Format: sc rt, offset (base) M1PS32

Purpose: Store Conditional Word

To store aword to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] <« GPR[rt], GPR[rt] « 1
else GPR[rt] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations on syn-
chronizable memory locations. In Release 5, the behaviour of SC is modified when Config5, | g=1.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomicaly, the following occur:

» The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.

* A one, indicating success, iswritten into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

* A coherent store is completed by another processor or coherent 1/0 module into the block of synchronizable
physical memory containing the word. The size and alignment of the block isimplementation-dependent, but it is
at least one word and at most the minimum page size.

» A coherent store is executed between an LL and SC sequence on the same processor to the block of synchroniz-
able physical memory containing the word (if Config5, | g=1; else whether such astore causesthe SC to fail isnot

predictable).
e AnERET instruction is executed. (Release 5 includes ERETNC, which will not cause the SC to fail.)

Furthermore, an SC must always compare its address against that of the LL. An SC will fail if the aligned address of
the SC does not match that of the preceeding LL.

A load that executes on the processor executing the LL/SC sequence to the block of synchronizable physical memory
containing the word, will not cause the SC to fail (if Config5, | g=1; else such aload may cause the SC to fail).

If any of the events listed below occurs between the execution of LL and SC, the SC may fail where it could have suc-
ceeded, i.e, successis not predictable. Portable programs should not cause any of these events.

* Aload or store executed on the processor executing the LL and SC that is not to the block of synchronizable
physical memory containing the word. (Theload or store may cause a cache eviction between the LL and SC that
resultsin SC failure. The load or store does not necessarily have to occur between the LL and SC.)

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Conditional Word SC

» Any prefetch that is executed on the processor executing the LL and SC sequence (due to a cache eviction
between the LL and SC).

» A non-coherent store executed between an LL and SC sequence to the block of synchronizable physical memory
containing the word.

» Theinstructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

CACHE operations that are local to the processor executing the LL/SC sequence will result in unpredictable behav-
iour of the SC if executed between the LL and SC, that is, they may cause the SC to fail where it could have suc-
ceeded. Non-local CACHE operations (address-type with coherent CCA) may cause an SC to fail on either the local
processor or on the remote processor in multiprocessor or multi-threaded systems. This definition of the effects of
CACHE operations is mandated if Config5, | g=1. If Config5; | g=0, then CACHE effects are implementation-depen-

dent.

The following conditions must be true or the result of the SC is not predictable—the SC may fail or succeed (if
Config5, | g=1, then either success or failure is mandated, else the result is UNPREDICTABLE):

» Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
addressinthe LL and SC. The addressisthe same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

* Uniprocessor atomicity: To provide atomic RMW on asingle processor, al accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, al accesses to the location must be made
with amemory access type of cached coherent.

* |/O System: To provide atomic RMW with acoherent 1/0 system, all accesses to the location must be made with
amemory access type of cached coherent. If the 1/0O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the /O reads and writes.

Restrictions:

The addressed |ocation must have a memory access type of cached noncoherent or cached coherent; if it does not, the
resultis UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then
SignalException (AddressError)

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 260

Store Conditional Word

261

endif
(pAddr, CCA)

SC

< AddressTranslation (vAddr, DATA, STORE)

dataword <« GPR[rt]

if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

endif

GPR[rt] « 03! || LLbit

LLbit <« 0 //

Exceptions:

if Config5;;z=1, SC aways clears LLbit regardless of address match.

TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1,
ADDI T2,
SC T2,
BEQ T2,
NOP

(TO) # load counter

T1l, 1 # increment

(TO) # try to store, checking for atomicity
0, L1l # if not atomic (0), try again

branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

|ation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Conditional Word EVA SCE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 SCE
011111 base rt offset 0 011110
6 5 5 9 1 6
Format: SCE rt, offset (base) M1PS32

Purpose: Store Conditional Word EVA

To store a word to user mode virtual memory while operating in kernel mode to complete an atomic read-modify-
write

Description: if atomic_update then memory[GPR[base] + offset] « GPR[rt], GPR[rt] « 1
else GPR[rt] < O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 9-bit signed offset is added to the contents of GPR base to form an effective address.

The SCE completes the RMW sequence begun by the preceding LLE instruction executed on the processor. To com-
plete the RMW sequence atomically, the following occur:

» The 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective address.

* A1l indicating success, iswritten into GPR rt.
Otherwise, memory is not modified and a O, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

* A coherent store is completed by another processor or coherent 1/0 module into the block of synchronizable
physical memory containing the word. The size and alignment of the block isimplementation dependent, but it is
at least one word and at most the minimum page size.

 AnERET instruction is executed.

If either of the following events occurs between the execution of LLE and SCE, the SCE may succeed or it may fail;
the success or failureis not predictable. Portable programs should not cause one of these events.

* A memory accessinstruction (load, store, or prefetch) is executed on the processor executing the LLE/SCE.

» Theinstructions executed starting with the LL E and ending with the SCE do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCE is UNPREDICTABLE:
« Execution of SCE must have been preceded by execution of an LLE instruction.

« An RMW sequence executed without intervening events that would cause the SCE to fail must use the same
addressin the LLE and SCE. The address isthe same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL E/SCE semantics. Whether a memory location is

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 262

Store Conditional Word EVA SCE

synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

* Uniprocessor atomicity: To provide atomic RMW on a single processor, al accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, al accesses to the location must be made
with amemory access type of cached coherent.

* |/O System: To provide atomic RMW with acoherent 1/0 system, all accesses to the location must be made with
amemory access type of cached coherent. If the 1/0O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the 1/O reads and writes.

The SCE instruction functions in exactly the same fashion as the SC instruction, except that address translation is per-
formed using the user mode virtual address space mapping in the TLB when accessing an address within a memory
segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are
also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of thisinstruction is specified by the Config5g» field being set to one.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
resultis UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] « 03! || LLbit

Exceptions:
TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:
LLE and SCE are used to atomically update memory locations, as shown below.

Ll:
LLE T1, (T0) # load counter
ADDI T2, Tl, 1 # increment
SCE T2, (TO0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
#

NOP branch-delay slot

263 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Conditional Word EVA SCE

Exceptions between the LLE and SCE cause SCE to fail, so persistent exceptions must be avoided. Some exampl es of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LLE and SCE function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 264

Software Debug Breakpoint SDBBP

31 26 25 6 5 0
SPECIAL2 code - U svecall SDBBP
011100 Y 111111
6 20 6
Format: SDBBP code EJTAG

Purpose: Software Debug Breakpoint
To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpeyccode fi€ld to the value 0x9 (Bp). The code field can be used for passing information to the debug
exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If Debugpy = 0 then
SignalDebugBreakpointException ()
else
SignalDebugModeBreakpointException ()
endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

265 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Doubleword from Floating Point SDC1

31 26 25 21 20 16 15 0
SDC1
111101 base ft offset
6 5 5 16
Format: spcl ft, offset (base) M1PS32

Purpose: Store Doubleword from Floating Point

To store a doubleword from an FPR to memory

Description: memory[GPR[base] + offset] « FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress, o+ 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, # 0° then

SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
datadoubleword <« ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoubleword;; o, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100
StoreMemory (CCA, WORD, datadoublewordgs 35, pAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 266

Store Doubleword from Coprocessor 2 SDC2

267

31 26 25 21 20 16 15 0
SDC2
111110 base rt offset
6 5 5 16
Format: spc2 rt, offset(base) M1PS32

Purpose: Store Doubleword from Coprocessor 2

To store a doubleword from a Coprocessor 2 register to memory

Descﬁptknt memory [GPR [base] + offset] <« CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress, o+ 0 (not doubleword-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
lsw ¢« CPR[2,rt,0]
msw < CPR[2,rt+1,0]
paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, lsw, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100
StoreMemory (CCA, WORD, msw, pAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Doubleword Indexed from Floating Point

31

26 25

21 20

16 15

11 10

SDXC1

COP1X
010011

base

index

fs

00000

SDXC1
001001

6

5

Format: spxcl fs, index(base)

Purpose: Store Doubleword Indexed from Floating Point

To store adoubleword from an FPR to memory (GPR+GPR addressing)

Description: memory[GPR[base] + GPR[index]] ¢« FPR[fs]

The 64-bit doubleword in FPR fsis stored in memory at the location specified by the aligned effective address. The

contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, g # 0 (not doubleword-aligned).

Compatibility and Availability:

SDXC1: Required in al versions of MIPS64 since MIPS64r1. Not available in MIPS32rl. Required by MI1PS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit
FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, Statusgr=0 or 1).

Operation:

vAddr <« GPR[base] + GPR[index]
if vAddr, , # 0° then

SignalException (AddressError)

endif
(pAddr,

datadoubleword ¢« ValueFPR(fs,

CCA)

< AddressTranslation (vAddr,
UNINTERPRETED_DOUBLEWORD)

DATA, STORE)

paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoublewords, o, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100
StoreMemory (CCA, WORD, datadoublewordgs 35, pPAddr, vAddr+4,

Exceptions:

DATA)

6

MIPS64

MIPS32 Release 2

TLB Refill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction, Watch.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

268

Sign-Extend Byte SEB

269

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 " rd SEB BSHFL
011111 00000 10000 100000
6 5 5 5 5 6
Format: SsEB rd, rt MI1PS32 Release 2

Purpose: Sign-Extend Byte
To sign-extend the |east significant byte of GPR rt and store the value into GPR rd.

Description: GPR[rd] <« SignExtend(GPR[rtl,)

The least significant byte from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] « sign_extend(GPR[rtl; o)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equiva
lent instructions aready in the instruction set. The following table shows the instructions providing the equivalent
functions.

Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry, OxFFFF

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Sign-Extend Halfword SEH

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 " rd SEH BSHFL
011111 00000 11000 100000
6 5 5 5 5 6
Format: SsEH rd, rt MI1PS32 Release 2

Purpose: Sign-Extend Halfword
To sign-extend the |east significant halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] <« SignExtend(GPR[rtlis)

Theleast significant halfword from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] <« sign_extend(GPR[rtlis _g)

Exceptions:
Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */

seh tl, tO /* tl1l = lower halfword sign-extended to word */

sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equiva-
lent instructions aready in the instruction set. The following table shows the instructions providing the equivalent

functions.
Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry, OxFFFF

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 270

Store Halfword

271

SH

31 26 25 21 20 16 15 0
SH
101001 base rt offset
6 5 5 16

Format: SH rt, offset (base)

Purpose: Store Halfword
To store a halfword to memory

Description: memory[GPR[base] + offset] ¢« GPR[rt]

MIPS32

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-

tive address. The 16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

pAddr <« pAddrpgrze-1..2 || (pPAddr, xor (ReverseEndian || 0))
bytesel « vAddr; , xor (BigEndianCPU || 0)

dataword ¢ GPRITtlsi_gspyrese1..o || 0°7P¥Fe5et

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Halfword EVA SHE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 SHE
011111 base t offset 0 011101
6 5 5 9 1 6
Format: SHE rt, offset (base) M1PS32

Purpose: Store Halfword EVA
To store a halfword to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SHE instruction functions in exactly the same fashion as the SH instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to one.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.
Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pAddr ¢« pAddrpgrge-1..2 || (PAddr; , xor (ReverseEndian || 0))
bytesel « vAddr; xor (BigEndianCPU || 0)

dataword ¢ GPR[rtlj;_gspytesel..o || p8rbytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Réfill

TLB Invalid

Bus Error

Address Error
Watch

Reserved Instruction

Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 272

Shift Word Left Logical SLL

273

26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 " rd @ SLL
000000 00000 000000
6 5 5 5 5 6
Format. sLL rd, rt, sa MIPS32

Purpose: Shift Word Left Logical
To left-shift aword by a fixed number of hits

Description: GPR[rd] <« GPR[rt] << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

S < sa
temp ¢« GPRIrt] 3;_g)..0 || OF
GPR[rd] ¢« temp

Exceptions:
None

Programming Notes:
SLL r0, r0O, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL rO, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Shift Word Left Logical Variable SLLV

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SLLV
000000 00000 000100
6 5 5 5 5 6
Format. sLLv rd, rt, rs MIPS32

Purpose: Shift Word Left Logical Variable
To left-shift aword by a variable number of bits

Description: GPR[rd] ¢« GPR[rt] << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied hits; the result
word is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s ¢« GPRI[rsl, o
temp — GPR[rt] (31-s)..0 | | OS
GPR[rd] « temp

Exceptions:
None

Programming Notes:

None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 274

Set on Less Than SLT
31 26 25 21 20 16 15 11 10 0
SPECIAL rs " rd 0 SLT
000000 00000 101010
6 5 5 5 5 6
Format. sLT rd, rs, rt MIPS32

275

Purpose: Set on Less Than

To record the result of aless-than comparison

Description: GPR[rd] « (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of the comparison in

GPRrd. If GPRrsislessthan GPR rt, theresult is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:

1f GPR[rs] < GPR[rt]
GPR[rd] « OQCPREEN-1 || 4

else

GPR[rd] « OQCPRLEN

endif

Exceptions:
None

then

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Set on Less Than Immediate SLTI
31 26 25 21 20 16 15 0
SLTI .]
001010 rs rt immediate
6 5 5 16
Format: SLTI rt, rs, immediate M1PS32

Purpose: Set on Less Than Immediate
To record the result of aless-than comparison with a constant

Description: GPR[rt] « (GPR[rs] < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record the Boolean result of

the comparison in GPR rt. If GPR rsislessthan immediate, theresultis 1 (true); otherwise, itis O (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:

if GPR[rs] < sign_extend(immediate)

GPR[rt] « OQCPRREN-1)) 1

else

GPR[rt] « OQCPRLEN

endif

Exceptions:
None

then

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

276

Set on Less Than Immediate Unsigned SLTIU
31 26 25 21 20 16 15 0
SLTIU . "
001011 rs rt immediate
6 5 5 16
Format: SLTIU rt, rs, immediate M1PS32

277

Purpose: Set on Less Than Immediate Unsigned
To record the result of an unsigned less-than comparison with a constant

Description: GPR[rt] « (GPR[rs] < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers and record the Boolean
result of the comparison in GPR rt. If GPR rsisless than immediate, the result is 1 (true); otherwise, it is O (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,

max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then

GPR[rt] ¢ OQCPREEN-1 ||

else

GPR[rt]
endif

Exceptions:

None

«— OGPRLEN

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Set on Less Than Unsigned SLTU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SLTU
000000 00000 101011
6 5 5 5 5 6
Format. sSLTU rd, rs, rt MIPS32

Purpose: Set on Less Than Unsigned
To record the result of an unsigned less-than comparison

Description: GPR[rd] « (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result of the comparisonin
GPRrd. If GPRrsislessthan GPR rt, theresult is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] « OQCPRLEN-1 ||

else
GPR([rd] « OQCPRLEN

endif

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 278

Floating Point Square Root

279

31

26 25

21 20

16 15

11 10

SQRT.fmt

COP1
010001

fmt

00000

fs

fd

SQRT
000100

6

Format: SQRT. fmt
SQORT.S fd, fs
SQRT.D fd, fs

Purpose: Floating Point Square Root

To compute the square root of an FP value

Description: FPR[£d] <« SQRT (FPR[fs])

6

MIPS32
MIPS32

The sguare root of the value in FPR fsis calculated to infinite precision, rounded according to the current rounding

mode in FCSR, and placed into FPR fd. The operand and result are values in format fmt.
If the valuein FPR fs correspondsto — 0, the result is— 0.

Restrictions:

If the valuein FPR fsislessthan 0, an Invalid Operation condition is raised.

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-

DICTABLE.

The operand must be avalue in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(£fd,

Exceptions:

fmt,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

SquareRoot (ValueFPR (fs,

Invalid Operation, Inexact, Unimplemented Operation

fmt)))

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Shift Word Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 " rd @ SRA
000000 00000 000011
6 5 5 5 5 6
Format. SRaA rd, rt, sa MIPS32

Purpose: Shift Word Right Arithmetic
To execute an arithmetic right-shift of aword by a fixed number of bits

Description: GPR[rd] <« GPR[rt] >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

S < sa
temp < (GPR[rtl;1)® || GPRIrtls; ¢
GPR[rd] ¢« temp

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 280

Shift Word Right Arithmetic Variable SRAV

281

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SRAV
000000 00000 000111
6 5 5 5 5 6
Format. SRAV rd, rt, rs MIPS32

Purpose: Shift Word Right Arithmetic Variable
To execute an arithmetic right-shift of aword by a variable number of bits

Description: GPR[rd] <« GPR[rt] >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.
Restrictions:

None

Operation:

s < GPRI[rsl,
temp < (GPR[rtl;1)® || GPRIrtls; ¢
GPR[rd] ¢« temp

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Shift Word Right Logical SRL
31 26 25 22 21 20 16 15 11 10 0
SPECIAL R SRL
000000 000 1y t rd 000010
6 4 1 5 5 6
Format. SRL rd, rt, sa MIPS32

Purpose: Shift Word Right Logical

To execute alogical right-shift of aword by afixed number of bits

Description: GPR[rd] « GPR[rt] >> sa

(logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word

result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

S < sa

temp < 0° || GPR[rtls; o
«— temp

GPR[rd]

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

282

Shift Word Right Logical Variable SRLV
31 26 25 21 20 16 15 11 10 6 0
SPECIAL R SRLV
000000 rs " rd 00 000110
6 5 5 5 4 1 6
Format. SRLvV rd, rt, rs MIPS32

283

Purpose: Shift Word Right Logical Variable

To execute alogical right-shift of aword by a variable number of bits

Description: GPR[rd] ¢« GPR[rt] >> GPR[rs]

(logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word

result is placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPRrs.

Restrictions:

None

Operation:

s < GPRI[rsl, g
temp < 0° || GPR[rtls; o
«— temp

GPR[rd]

Exceptions:
None

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Superscalar No Operation SSNOP

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 1 SLL
000000 00000 00000 00000 00001 000000
6 5 5 5 5 6
Format: ssnNop MIPS32

Purpose: Superscalar No Operation
Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardwareas SLL rO, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On asingle-issue processor, thisinstruction is a NOP that takes an issue slot.

Restrictions:
None

Operation:

None

Exceptions:
None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CPO hazards by converting instructions
into cyclesin a superscalar processor. For example, to insert at least two cycles between an MTCO and an ERET, one
would use the following sequence:

mtcO X,y
ssnop
SsSnop
eret

Based on the normal issues rules of the processor, the MTCO issuesin cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finaly, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 284

Subtract Word SUB

285

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SUB
000000 00000 100010
6 5 5 5 5 6
Format. suB rd, rs, rt MIPS32

Purpose: Subtract Word
To subtract 32-bit integers. If overflow occurs, then trap

Description: GPR[rd] <« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rsto produce a 32-bit result. If the sub-
traction results in 32-bit 2's complement arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

None

Operation:

temp ¢ (GPR[rsls;||GPR[rsls;. o) — (GPR[rtlsq||GPR[rtlz;. o)
if tempsz, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« temps3; g
endif
Exceptions:

Integer Overflow

Programming Notes:
SUBU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Subtract

SUB.fmt

31 26 25 21 20 16 15 11 10 5 0
COP1 suB
010001 ft ft fs fd 000001
6 5 5 5 5 6
Format. suB.fmt
SUB.S fd, fs, MIPS32
SUB.D fd, fs, MIPS32
SUB.PS fd, fs, ft MI1PS64, M| PS32 Release 2
Purpose: Floating Point Subtract
To subtract FP values
Description: FPR[fd] « FPR[fs] — FPR[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPR fs and FPR ft independently, and ORs together any
generated exceptional conditions.

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-

DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Theresult of SUB.PSis UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register model; it
is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs,

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

fmt) —fue ValueFPR(ft,

fmt))

286

Subtract Unsigned Word SUBU

287

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 SUBU
000000 00000 100011
6 5 5 5 5 6
Format:. sSuBU rd, rs, rt MIPS32

Purpose: Subtract Unsigned Word
To subtract 32-bit integers

Description: GPR[rd] <« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is and
placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[rs] — GPR[rt]
GPR[rd] « temp
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Doubleword Indexed Unaligned from Floating Point SUXC1

31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index fs 0 SUXC1
010011 00000 001101
6 5 5 5 5 6
Format: suxcl fs, index(base) MIPS64, M| PS32 Release 2

Purpose: Store Doubleword Indexed Unaligned from Floating Point
To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(GPR[base] + GPR[index])pgrze-1..3] < FPRI[fs]

The contents of the 64-bit doubleword in FPR fsis stored at the memory location specified by the effective address.
The contents of GPR index and GPR base are added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress, q are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

vAddr ¢« (GPR[base]+GPR[index])¢; 5 || 03

(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
datadoubleword ¢« ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)

paddr ¢« paddr xor ((BigEndianCPU xor ReverseEndian) || 02)
StoreMemory (CCA, WORD, datadoublewords; o, pAddr, vAddr, DATA)
paddr ¢« paddr xor 0b100

StoreMemory (CCA, WORD, datadoublewordgs 35, pAddr, vAddr+4, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 288

SW

Store Word
31 26 25 21 20 16 15 0
SW
101011 base rt offset
6 5 5 16

Format: sw rt, offset (base)

Purpose: Store Word
To store aword to memory

Description: memory[GPR[base] + offset] ¢« GPR[rt]

MIPS32

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr, o # 0% then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

dataword <« GPR[rt]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr,

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

289 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Word from Floating Point

SWC1

31 26 25 21 20 16 15 0
SWC1
111001 base ft offset
6 5 5 16
SWC1l ft, offset (base)

Purpose: Store Word from Floating Point
To store aword from an FPR to memory

Description: memory[GPR[base] + offset] « FPR[ft]

MIPS32

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The

16-hit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress, o= 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset)
if vAddr; # 0° then
SignalException (AddressError)
endif
(pAddr,

CCA)

+ GPR[base]

< AddressTranslation (vAddr,
dataword <« ValueFPR(ft, UNINTERPRETED_WORD)

StoreMemory (CCA, WORD, dataword, pAddr,

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

DATA, STORE)

290

Store Word from Coprocessor 2 SWC2

31 26 25 21 20 16 15 0
SWC2
111010 base rt offset
6 5 5 16
Format: swc2 rt, offset (base) M1PS32

Purpose: Store Word from Coprocessor 2
To store aword from a COP2 register to memory

Descﬁptknt memory [GPR [base] + offset] <« CPR[2,rt,0]

The low 32-bit word from COP2 (Coprocessor 2) register rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

An Address Error exception occurs if EffectiveAddress; g # 0 (not word-aligned).

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
if vAddr; # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)
dataword ¢« CPR[2,rt,0]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Réfill, TLB Invalid, TLB Modified, Address Error, Watch

291 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Word EVA SWE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 SWE
011111 base rt offset 0 011111
6 5 5 9 1 6
Format: SwE rt, offset (base) M1PS32

Purpose: Store Word EVA
To store aword to user mode virtual address space when executing in kernel mode.

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SWE instruction functions in exactly the same fashion as the SW instruction, except that address trandation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume 111, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.
Operation:
vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
Exceptions:
TLB Refill
TLB Invalid
Bus Error
Address Error
Watch
Reserved Instruction

Coprocessor Unusable

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 292

Store Word Left SWL

31 26 25 21 20 16 15 0
SWL
101010 base 1t offset
6 5 5 16
Format: SWL rt, offset (base) MIPS32

Purpose: Store Word Left

To store the most-significant part of a word to an unaligned memory address

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (Eff4dddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word () in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. The same number of the
most-significant (left) bytes from the word in GPR 77 are stored into these bytes of .

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First. SWL stores the most-significant 2 bytes of the low word from
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the unaligned
word.

Figure 4.12 Unaligned Word Store Using SWL and SWR

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address
most — significance — least

I 0 I 1| 2 I 3 I 4 I 56 I 7 I 8 I | Memory: Initial contents

TP [oT7]

Ol 1T [E]JFJ4]| 5|6 | - |After executing SWL $24,2($0)
[71

0 1 E|F PG| H| 6| - |Then after SWR $24,5(%$0)
1°]

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (v4ddr; g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

293 MIPS® Architecture For Programmers Volume lI-A: The MIPS32® Instruction Set, Revision 5.04

Store Word Left SWL

Figure 4.13 Bytes Stored by an SWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <«big-endian 64-bit register
(ITE[T] esewsno [A[e]e[o]e[F]e]n]
3 2 1 0 «littleeendian most — significance — least
most least 32-hit register | E | F | G | H |
— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian Little-endian
byte ordering VvAddry o byte ordering
E F G H 0 i ik | E
i | E F G 1 i i 1TE F
i i | E F 2 i | E F G
i i k | E 3 E F G H

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAAAr < pAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then
pAddr ¢« pAddrpsizp-1..z || 0°
endif
byte ¢« vAddr,; , xor BigEndianCPU?
dataword « 02478*Pvte || GPRIrtl31. 24-g+byte
StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 294

295 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Word Left EVA SWLE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 SWLE
011111 base “ offsct 0 100001
6 5 5 9 1 6
Format: SWLE rt, offset(base) MIPS32

Purpose: Store Word Left EVA

To store the most-significant part of a word to an unaligned user mode virtual address while operating in kernel mode.

Description: memory[GPR[base] + offset] « GPR[rt]

The 9-bit signed offsef is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word () in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. The same number of the
most-significant (left) bytes from the word in GPR 77 are stored into these bytes of .

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of /¥, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWLE stores the most-significant 2 bytes of the low word from
the source register into these 2 bytes in memory. Next, the complementary SWRE stores the remainder of the
unaligned word.

Figure 4.14 Unaligned Word Store Using SWLE and SWRE

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address
most — significance — least

I 0 I 1| 2 I 3 I 4 | 5] 6 | 7 I 8 | | Memory: Initial contents

ETF o]

01 1T E]F]4] 5] 6| .. |After executing SWLE $24,2($0)
["1

| 0 | 1] E | F | G | H 6 | |ThenafterSWRE $24,5(%0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (v4ddr; _g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

The SWLE instruction functions in exactly the same fashion as the SWL instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy,4 field being set to one.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 296

Store Word Left EVA SWLE

Figure 4.15 Bytes Stored by an SWLE Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <«big-endian 64-bit register
|i|j|k || offset (vAddry, o) |A|B|C|D|E|F|G|H|
3 2 1 0 «littleeendian most — significance — least
most least 32-hit register | E | F | G | H |
— significance —

Memory contents after instruction (shaded is unchanged)

Big-endian Little-endian
byte ordering VvAddry o byte ordering
E F G H 0 i ik | E
i | E F G 1 i i 1TE F
i i | E F 2 i | E F G
i i k | E 3 E F G H

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pAddr < pAddrpgrzp-1 2 || (PAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then
pAddr « pAddrpgizpi..2 || 0
endif
byte « vAddr,; o xor BigEndianCPU?
dataword « 024°8%bvte || GPRITtl31, 24-g*byte
StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unus-
able

297 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Word Right SWR

31 26 25 21 20 16 15 0
SWR
101110 base rt offset
6 5 5 16
Format: SWR rt, offset (base) MIPS32

Purpose: Store Word Right

To store the least-significant part of a word to an unaligned memory address

Description: memory[GPR[base] + offset] ¢« GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (Eff4dddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (#) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. The same number of the
least-significant (right) bytes from the word in GPR 7 are stored into these bytes of .

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the
unaligned word.

Figure 4.16 Unaligned Word Store Using SWR and SWL

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

I 0 I 1] 2 I 3 I 4 I 56 I 7 I 8 I | Memory: Initial contents

e T[T

I 0 I 1|12 3fG|[H]|®S I |AfterexecutingSWR $24,5(%0)
I 0 I 1 E[FJG|H]|E®G I |ThenafterSWL $24,2(%0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (v4ddr; g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 298

Store Word Right

Figure 4.17 Bytes Stored by SWR Instruction

Memory contents and byte offsets
0 1 2 3 <«bhig-endian

Initial contents of Dest Register
64-bit register

[[I[A[T] oo [F[s[c[o]e[F o]
3 2 1 0 «littleeendian most — significance — least
most least 32-bit register | E | F | G | H |
— significance —

SWR

Memory contents after instruction (shaded is unchanged)

Restrictions:
None

Operation:

vAddr ¢« sign_extend(offset)

Big-endian Little-endian
byte ordering VvAddry o byte ordering
H | i k1 0 E F G H
G H | k1 1 F G H | I
F G H | I 2 G H | k|
E F G H 3 H | i ko

+ GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAAAr « pAddrpgrze-1. .2 || (pAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then

pAddr ¢« pAddrpsizp-1..z || 0°
endif
byte ¢« vAddr,; , xor BigEndianCPU?
dataword « GPR[rtlsi_gipyte || o8 byte

StoreMemory (CCA, WORD-byte, dataword, pAddr,

Exceptions:

vAddr, DATA)

TLB R€fill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

299 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Word Right EVA SWRE

31 26 25 21 20 16 15 7 6 5 0
SPECIAL3 SWRE
011111 base “ offsct 0 100010
6 5 5 9 1 6
Format: SWRE rt, offset (base) MIPS32

Purpose: Store Word Right EVA

To store the least-significant part of a word to an unaligned user mode virtual address while operating in kernel mode.

Description: memory[GPR[base] + offset] « GPR[rt]

The 9-bit signed offsef is added to the contents of GPR base to form an effective address (Effdddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (#) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing Eff4ddr. The same number of the
least-significant (right) bytes from the word in GPR 77 are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWRE stores the least-significant 2 bytes of the low
word from the source register into these 2 bytes in memory. Next, the complementary SWLE stores the remainder of
the unaligned word.

Figure 4.18 Unaligned Word Store Using SWRE and SWLE

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

I 0 I 1] 2 I 3 I 4 I 56 I 7 I 8 I | Memory: Initial contents

TP [T

I 0 I 123 fJG[H]|ESE I |AfterexecutingSWRE $24,5(%0)
I 0 I 1| E|FJG|H]E® I |ThenafterSWLE $24,2(%$0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (v4ddr; _g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

The LWE instruction functions in exactly the same fashion as the LW instruction, except that address translation is
performed using the user mode virtual address space mapping in the TLB when accessing an address within a mem-
ory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes
are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy,4 field being set to one.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 300

Store Word Right EVA

Figure 4.19 Bytes Stored by SWRE Instruction

Memory contents and byte offsets
0 1 2 3 <«bhig-endian
| i | j | K | | offset (vAddr; o)
3 2 1 0 «littleeendian
most least

— significance —

Initial contents of Dest Register
64-bit register

[~lefelofe]rfe]n]

most — significance — least
[E[Fle]"]

32-bit register

Big-endian

byte ordering VvAddry o
H | i k1 0
G H | k1 1
F G H | I 2
E F G H 3

Restrictions:

Memory contents after instruction (shaded is unchanged)

Little-endian
byte ordering

F G H
GH|I
H|k|
|j k|

I ® M m

SWRE

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured

using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

pPAddr < pAddrpgrze-1. 2 || (PAAdr; , xor ReverseEndian?)
If BigEndianMem = 0 then

pAddr « pAddrpgizpi..2 || 0
endif

byte « vAddr, o xor BigEndianCPU?
dataword ¢ GPR[rtl;;_gspyre || p8rbyte

StoreMemory (CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch, Coprocessor Unusable

301 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Store Word Indexed from Floating Point SWXC1
31 26 25 21 20 16 15 11 10 0
COP1X base index fs 0 SWXC1
010011 00000 001000
6 5 5 5 5 6
Format: swxcl fs, index(base) M1 PS64

Purpose: Store Word Indexed from Floating Point

To store aword from an FPR to memory (GPR+GPR addressing)

Descﬁptknr memory [GPR[base] + GPR[index]] <« FPR[fsg]

The low 32-bit word from FPR fsis stored in memory at the location specified by the aligned effective address. The

contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occursif EffectiveAddress, o+ 0 (not word-aligned).

Compatibility and Availability:

MIPS32 Release 2

SWXCL1: Required in all versions of MIPS64 since MIPS64r1. Not available in MIPS32rl. Required by MI1PS32r2
and subsequent versions of MIPS32. When required, required whenever FPU is present, whether a 32-bit or 64-bit
FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg4=0 or 1, FR=0o0r 1,)

Operation:

vAddr ¢« GPR[base] + GPR[index]
if vAddr; # 0° then

SignalException (AddressError)
endif

(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)

dataword <« ValueFPR(fs, UNINTERPRETED_WORD)

StoreMemory (CCA, WORD, dataword, pAddr, vAddr,

Exceptions:

TLB Réfill, TLB Invaid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

DATA)

302

303

SYNC

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 Stvpe SYNC
000000 00 0000 0000 0000 0 yp 001111
6 15 5 6
Format: sSyNC (stype = 0 implied) M1PS32
SYNC stype MIPS32

Purpose: To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SY NC instruction:

* Completion Barriers

* Ordering Barriers

Smple Description for Completion Barrier:

The barrier affects only uncached and cached coherent loads and stores.

The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

L oads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Detailed Description for Completion Barrier:

Every synchronizable specified memory instruction (loads or stores or both) that occursin the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instructions that occur after the SYNC are allowed to be performed, with respect to any other
processor or coherent 1/0 module.

The barrier does not guarantee the order in which instruction fetches are performed.

A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both |oads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less compl ete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementa-
tion with a lighter-weight barrier to work on another implementation which only implements the stype zero
completion barrier.

A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, acompletion barrier is required on someimplementations on entry to
and exit from Debug Mode to guarantee that memory effects are handled correctly.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

SYNC

SYNC behavior when the stype field is zero:

» A completion barrier that affects preceding loads and stores and subsegquent |oads and stores.

Smple Description for Ordering Barrier:
» Thebarrier affects only uncached and cached coherent loads and stores.

» The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

* Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Detailed Description for Ordering Barrier:

» Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the |oad/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

» If any memory instruction before the SY NC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

» Thebarrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as |oads and stores. That

is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 304

SYNC

Table 4.7 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype

305

field..
Table 4.7 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field
Younger
Olderinstructions instructions Olderinstructions
which must reach | which must reach which must be
the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes Compliance
0x0 SYNC Loads, Stores Loads, Stores Loads, Stores Required
or
SYNCO
0x4 SYNC_WMB Stores Stores Optional
or
SYNC4
0x10 SYNC_MB Loads, Stores Loads, Stores Optional
or
SYNC 16
0x11| SYNC_ACQUIRE Loads Loads, Stores Optional
or
SYNC 17
0x12| SYNC_RELEASE Loads, Stores Stores Optional
or
SYNC 18
0x13 SYNC_RMB Loads Loads Optional
or
SYNC 19
0x1-0x3, 0x5-0xF Implementation-Spe-
cific and Vendor
Specific Sync Types
0x14 - Ox1F RESERVED Reserved for MIPS
Technologies for
future extension of
the architecture.
Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent 1/0 system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of aload on processor A has been determined with respect to processor or coherent I/0O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

SYNC

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent 1/0 module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent 1/0 modules capable of storing to the [ocation.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of |oading from the location.

Coherent 1/0 module: A coherent 1/0 module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
storesto locations with a memory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:
None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; thisis known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share datain parallel programs.

When al processors observe the effects of loads and storesin program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actionsin the programs. For such a system, SYNC
has the same effect as a NOP. Executing SY NC on such a system is not necessary, but neither isit an error.

If amultiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or storein the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at |east one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share datain parallel programs for that system.)

The behavior of aload or store using one memory access type is UNPREDICTABLE if aload or store was previ-

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 306

307

SYNC

ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not ater this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B

SW R1, DATA # change shared DATA value

LI R2, 1

SYNC # Perform DATA store before performing FLAG store
SwW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)

LI R2, 1
1: Lw R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in amultiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SY NC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared datais valid.

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the
hardware does not perform the barrier behavior expected by the software, the system may fail.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Synchronize Caches to Make Instruction Writes Effective SYNCI

31 26 25 21 20 16 15 0
REGIMM SYNCI
000001 base 11111 offset
6 5 5 16
Format: SYNCI offset (base) M1PS32 Release 2

Purpose: Synchronize Cachesto Make Instruction Writes Effective
To synchronize all caches to make instruction writes effective.

Description:

Thisinstruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction isrequired for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as abyproduct of thisinstruc-
tion. Thisinstruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of TLBS.
Thisinstruction never causes Execute-Inhibit nor Read-1nhibit exceptions.

A Cache Error exception may occur as a byproduct of thisinstruction. For example, if awriteback operation detects a
cache or bus error during the processing of the operation, that error isreported viaa Cache Error exception. Similarly,
aBus Error Exception may occur if abus operation invoked by thisinstruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It isimplementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.In multiprocessor implementations where instruction caches are not coher-
ently maintained by hardware, the SYNCI instruction may optionally affect all coherent icaches within the system. If
the effective address uses a coherent Cacheability and Coherency Attribute (CCA), then the operation may be global-
ized, meaning it is broadcast to all of the coherent instruction caches within the system. If the effective address does
not use one of the coherent CCAs, there is no broadcast of the SYNCI operation. If multiple levels of caches are to be
affected by one SYNCI instruction, all of the affected cache levels must be processed in the same manner - either all
affected cache levels use the globalized behavior or al affected cache levels use the non-globalized behavior.

In multiprocessor implementations where instruction caches are coherently maintained by hardware, the SYNCI
instruction should behave as a NOP instruction.
Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were previously locked with the CACHE instruction. If cor-
rect software operation depends on the state of alocked line, the CACHE instruction must be used to synchronize the
caches.

The SYNCI instruction acts on the current processor at a minimum. It is implementation specific whether it affects

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 308

Synchronize Caches to Make Instruction Writes Effective SYNCI

the caches on other processors in a multiprocessor system, except as required to perform the operation on the current
processor (as might be the case if multiple processors share an L2 or L3 cache).

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
seguence is not followed.

Operation:

vaddr ¢« GPR[base] + sign_extend(offset)

SynchronizeCacheLines (vaddr) /* Operate on all caches */
Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception

TLB Invalid Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after
the new instruction stream is written to make those changes effective. Note that the SYNCI instruction could be
replaced with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and
that the JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC
instruction is required between the final SYNCI instruction in the loop and the instruction that clears instruction haz-

ards.
/ *
* This routine makes changes to the instruction stream effective to the
* hardware. It should be called after the instruction stream is written.

* On return, the new instructions are effective.

* Inputs:
* a0 = Start address of new instruction stream
* al = Size, in bytes, of new instruction stream
*/
beqg al, zero, 20f /* If size==0, */
nop /* branch around */
addu al, a0, al /* Calculate end address + 1 */
rdhwr vO0, HW_SYNCI_Step /* Get step size for SYNCI from new */
/* Release 2 instruction */
beg v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */
10: synci 0 (a0) /* Synchronize all caches around address */
addu a0, a0, vO /* Add step size in delay slot */
sltu vl, a0, al /* Compare current with end address */
bne vl, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */
20: jr.hb ra /* Return, clearing instruction hazards */
nop

309 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

System Call SYSCALL
31 26 25 0
SPECIAL code SYSCALL
000000 001100

6

Format. syscaLL

Purpose: System Call
To cause a System Call exception

Description:

20

6

MIPS32

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading

the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (SystemCall)

Exceptions:
System Call

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

310

Trap if Equal TEQ

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " code TEQ
000000 110100
6 5 5 10 6
Format: TEQ rs, rt MIPS32

Purpose: Trap if Equal
To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsis equal to GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None
Operation:
if GPR[rs] = GPR[rt] then
SignalException (Trap)
endif
Exceptions:
Trap

311 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Trap if Equal Immediate

TEQI

MIPS32

31 26 25 21 20 16 15 0
REGIMM TEQI o
000001 rs 01100 immediate
6 5 5 16
Format: TEQI rs, immediate

Purpose: Trap if Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs]

immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis equal to immediate,
then take a Trap exception.

Restrictions:
None

Operation:

if GPR[rs] =
endif

Exceptions:
Trap

sign_extend (immediate)
SignalException (Trap)

then

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

312

Trap if Greater or Equal TGE

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " code TGE
000000 110000
6 5 5 10 6
Format: TGE rs, rt MIPS32

Purpose: Trap if Greater or Equal
To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsis greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException (Trap)
endif

Exceptions:
Trap

313 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Trap if Greater or Equal Immediate

TGEI

MIPS32

31 26 25 21 20 16 15 0
REGIMM TGEI o
000001 rs 01000 immediate
6 5 5 16
Format: TGEI rs, immediate

Purpose: Trap if Greater or Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs]

> immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis greater than or equal

to immediate, then take a Trap exception.

Restrictions:
None

Operation:

if GPR[rs] = sign_extend(immediate) then

SignalException (Trap)

endif

Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

314

Trap if Greater or Equal Immediate Unsigned TGEIU

315

31 26 25 21 20 16 15 0
REGIMM TGEIU o
000001 rs 01001 immediate
6 5 5 16
Format: TGEIU rs, immediate M1PS32

Purpose: Trap if Greater or Equal Immediate Unsigned
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] > immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rsis greater
than or equal to immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None
Operation:
if (0 || GPR[rs]) 2 (0 || sign_extend(immediate)) then
SignalException (Trap)
endif
Exceptions:
Trap

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Trap if Greater or Equal Unsigned

TGEU

MIPS32

31 26 25 21 20 16 15 0
SPECIAL rs " code TGEU
000000 110001
6 5 5 10 6

Format: TGEU rs, rt

Purpose: Trap if Greater or Equal Unsigned

To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rsis greater than or equa to GPR rt, then

take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None
Operation:
if (0 || GPR[rs])
SignalException (Trap)
endif
Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

(0 || GPR[rt]) then

316

317 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

TLB Invalidate TLBINV

31 26 25 24 6 5 0
COPO CcO 0 TLBINV
010000 1 000 0000 0000 0000 0000 000011
6 1 19 6
Format: TLBINV MIPS32

Purpose: TLB Invalidate

TLBINV invalidates a set of TLB entries based on ASID and Index match. The virtual addressisignored in the entry
match. TLB entries which have their G bit set to 1 are not modified.

Implementation of the TLBINV instruction is optional. The implementation of thisinstruction is indicated by the IE
field in Config4.

Implementation of EntryHIgyny field is required for implementation of TLBGINV instruction.
Support for TLBINV isrecommend for implementations supporting VTLB/FTLB type of MMU.

Description:

On execution of the TLBINV instruction, the set of TLB entries with matching ASID are marked invalid, excluding
those TLB entries which have their G bit set to 1.

The EntryHlagp field has to be set to the appropriate ASID value before executing the TLBINV instruction.

Behavior of the TLBINV instruction applies to all applicable TLB entries and is unaffected by the setting of the
Wired register.

For JTLB-based MMU (Configyt=1):

All matching entriesin the JTLB are invalidated. Index is unused.

For VTLB/FTLB -based MMU (Configy1=4):

A TLBINV with Index set in VTLB range causes all matching entries in the VTLB to be invalidated.

A TLBINV with Index set in FTLB range causes all matching entriesin the single corresponding FTLB set to be
invalidated.

If TLB invalidate walk isimplemented in software (Config4,z=2), then software must do these steps to flush the
entire MMU:

1. oneTLBINV instruction is executed with an index in VTLB range (invalidates all matching VTLB entries)
2. aTLBINV instruction is executed for each FTLB set (invalidates all matching entriesin FTLB set)

If TLB invalidate walk isimplemented in hardware (Config4,z=3), then software must do these steps to flush the
entire MMU:

1. oneTLBINV instruction is executed (invalidates all matching entriesin both FTLB & VTLB). In this case,
Index is unused.

Restrictions:

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 318

TLB Invalidate TLBINV

319

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (For the case of Configyt=4).

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if (Configyp=1 or (Configyr=4 & Cconfigd;z=2 & Index <Configlyyy stze-1))
startnum <« 0 -
endnum <« Configlyy stze-1
endif B
// treating VTLB and FTLB as one array
if (Configyp=4 & Configdig=2 & Index > Configlyny srzm-1)
startnum <« start of selected FTLB set //_implementation specific
endnum < end of selected FTLB set - 1 //implementation specifc
endif

if (Configyr=4 & Configdg=3))

startnum < 0

endnum ¢« Configlyyy grze-1 + ((Configdpripyays + 2) * Configdpripsets)
endif

for (i = startnum to endnum)
if (TLB[i].ASID = EntryHi,grp & TLB[i].G = 0)

TLB[i] VPN2_invalid « 1
endif
endfor

Exceptions:
Coprocessor Unusable

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

TLB Invalidate Flush TLBINVF

31 26 25 24 6 5 0
COPO CcO 0 TLBINVF
010000 1 000 0000 0000 0000 0000 000100
6 1 19 6
Format. TLBINVF MIPS32

Purpose: TLB Invalidate Flush

TLBINVF invalidates a set of TLB entries based on Index match. The virtual address and ASID are ignored in the
entry match.

Implementation of the TLBINVF instruction is optional. The implementation of thisinstruction isindicated by the |IE
field in Config4.

Implementation of the EntryHIEHINV field is required for implementation of TLBINV and TLBINVF instructions.
Support for TLBINVF is recommend for implementations supporting VTLB/FTLB type of MMU.

Description:

On execution of the TLBINVF instruction, all entries within range of Index are invalidated.

Behavior of the TLBINVF instruction applies to all applicable TLB entries and is unaffected by the setting of the
Wired register.

For JTLB-based MMU (Configy1=1):

TLBINVF causes all entriesin the JTLB to be invalidated. Index is unused.

For VTLB/FTLB-based MMU (Configy1=4):

TLBINVF with Index in VTLB range causes all entriesin the VTLB to beinvalidated.

TLBINVF with Index in FTLB range causes all entriesin the single corresponding set in the FTLB to be invali-
dated.

If TLB invalidate walk isimplemented in software (Config4,z=2), then software must do these steps to flush the
entire MMU:

1. oneTLBINV instruction is executed with an index in VTLB range (invalidates all VTLB entries)
2. aTLBINV instruction is executed for each FTLB set (invalidates all entriesin FTLB set)

If TLB invalidate walk isimplemented in hardware (Config4,g=3), then software must do these stepsto flush the
entire MMU:

1. oneTLBINV instruction is executed (invalidates all entriesin both FTLB & VTLB). In thiscase, Index is
unused.
Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (Config4,g=2).

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 320

Operation:

if (Configyp=1 or (Configyp=4 & Configd;z=2 & Index < Configlyy stze-1))
startnum < 0 B
endnum « Configlyny stzE-1
endif B
// treating VTLB and FTLB as one array
if (Configyr=4 & configdg=2 & Index > Configlyny srzm-1)
startnum <« start of selected FTLB set //_implementation specific
endnum <« end of selected FTLB set - 1 //implementation specifc
endif

if (Configyr=4 & configd;g=3))
startnum < 0
endnum ¢« Configlyyy grze-1 +((Configdpripways + 2) * Configdprrpsets)

endif
for (i = startnum to endnum)
TLB[1] VPN2_invalid « 1
endfor
Exceptions:

Coprocessor Unusable

321 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Probe TLB for Matching Entry TLBP

31 26 25 24 6 5 0
COPO CcO 0 TLBP
010000 1 000 0000 0000 0000 0000 001000
6 1 19 6
Format. TLBP MIPS32

Purpose: Probe TLB for Matching Entry
To find amatching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write. In Release 3 of the Architecture, multiple TLB matches may be
reported on either TLB write or TLB probe.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Index « 1 || UNPREDICTABLE>!
for i in 0...TLBEntries-1
if ((TLB[ilypyy and not (TLB[ilygek)) =
(EntryHiypyy and not (TLB[1ilyaek))) and
((TLB[ilg = 1) or (TLB[ilagrp = EntryHipgip))then
Index « i
endif
endfor

Exceptions:
Coprocessor Unusable
Machine Check

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 322

Read Indexed TLB Entry TLBR

323

31 26 25 24 6 5 0
COPO CcO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format. TLBR MIPS32

Purpose: Read Indexed TLB Entry
To read an entry from the TLB.

Description:

The EntryHi, EntryLoO, EntryLol, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
In Release 3 of the Architecture, multiple TLB matches may be detected on a TLBR.

In an implementation supporting TLB entry invalidation (Config4,z = 2 or Config4,g = 3), reading an invalidated
TLB entry causes 0 to be written to EntryHi, EntryLoO, EntryLol registers and the PageMaskyas register field.

Note that the value written to the EntryHi, EntryLo0O, and EntryLo1l registers may be different from that originally
written to the TLB viathese registersin that:

» Thevauereturned in the VPN2 field of the EntryHi register may havethose bits set to zero corresponding to the
one bitsin the Mask field of the TLB entry (the least-significant bit of VPN2 corresponds to the least-significant
bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed after aTLB
entry iswritten and then read.

» Thevauereturned in the PEN field of the EntryLoO and EntryL ol registers may have those bits set to zero cor-
responding to the one bitsin the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
after aTLB entry iswritten and then read.

* Thevaluereturned in the G bit in both the EntryLoO and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bitsin EntryLoO and EntryLol when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ¢ Index
if i > (TLBEntries - 1) then
UNDEFINED
endif
if ((Configd;g = 2 or Configd(y = 3) and TLB[ilypn2 invalia = 1) then
Pagemasky,cx < 0 -
EntryHi < 0
EntryLol « 0

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

EntryLoO <« 0
EntryHiggmyw ¢ 1

else
PageMasky,gx ¢ TLB[ilyagk
EntryHi «
(TLB[ilypyy and not TLB[ilu.sx) || # Masking implem dependent
0% || TLBIilasmp
EntryLol « 02 ||
(TLB[i]ppy; and not TLB[ila.ex) || # Masking mplem dependent
TLB[ile; || TLBI[ilpy || TLBI[ilyy || TLBI[ilg
EntryLo0 « 072 ||
(TLB[ilppyg and not TLB[ily.ec) || # Masking mplem dependent
TLB[ileo || TLBIilpg || TLBIilye || TLBIilg
endif
Exceptions:

Coprocessor Unusable
Machine Check

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 324

Write Indexed TLB Entry TLBWI
31 26 25 24 0
COPO CO 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6
Format: TLBWI MIPS32

Purpose: Write Indexed TLB Entry
To write or invalidate a TLB entry indexed by the Index register.

Description:

If Config4 g < 2 or EntryHigny=0:

The TLB entry pointed to by the Index register iswritten from the contents of the EntryHi, EntryLo0O, EntryLo1,
and PageMask registers. It isimplementation dependent whether multiple TLB matches are detected on a

TLBWI. In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write. The information written to the TLB entry may be different

from that in the EntryHi, EntryLoO, and EntryLol registers, in that:

* Thevaluewritten to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
one hitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or
zeroed during a TLB write.

» Thevaluewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero correspond-
ing to the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to
the least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or
zeroed during a TLB write.

» Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol
registers.

If Configd e > 1 and EntryHigya=1:

The TLB entry pointed to by the Index register hasits VPN2 field marked asinvalid. This causes the entry to be

ignored on TLB matches for memory accesses. No Machine Check is generated.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ¢« Index

if (Config4(y = 2 or Configd;y = 3) then
TLB[ilypnz_invalia < O

(EntryHIgyyy=1) then

if

TLB[i]
break

endif

endif

325

VPN2_invalid <1

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

TLB[i]yask ¢ PageMasky,qx

TLB[ilypyy ¢ EntryHiypy, and not PageMasky.q, # Implementation dependent
TLB[i]agrp ¢ EntryHigrp

TLB[i]lg ¢ EntryLolg and EntryLoOg

TLB[ilppy; ¢ EntryLolppy and not PageMasky,.x # Implementation dependent
TLB[i]q; ¢ EntryLolg

TLB[i]p; ¢« EntryLolp

TLB[i]y; ¢ EntryLoly

TLB[ilppyo ¢ EntryLoOppy and not PageMasky,qx # Implementation dependent
TLB[ilcp ¢ EntryLoOg

TLB[ilpy ¢ EntryLoOp

TLB[ilyo ¢ EntryLoOy

Exceptions:
Coprocessor Unusable
Machine Check

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 326

Write Random TLB Entry

327

TLBWR

31 26 25 24 0
COPO CcO 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6
Format: TLBWR

Purpose: Write Random TLB Entry

To write a TLB entry indexed by the Random register.

Description:

MIPS32

The TLB entry pointed to by the Random register iswritten from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR.
In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLoO, and EntryLo1 registers, in that:

The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a

TLB write.

The value written to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a

TLB write.

The single G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLo1 regis-

ters.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i < Random
if (Config4;g = 2 or Config4;y = 3) then
TLBl1ilyenz_invalia < O
endif
TLB[i]yask ¢ PageMasky,gx
TLB[ilypyy ¢ EntryHiypy, and not PageMasky,qr # Implementation dependent
TLB[1]agrp ¢ EntryHixgp
TLB[i]g ¢ EntryLolg and EntryLoOg
TLB[ilpry1 ¢ EntryLolppy and not PageMasky,qx # Implementation dependent
TLB[i]q; ¢ EntryLolg
TLB([i]p; ¢« EntryLolp
TLB([i]y; ¢« EntryLoly
TLB[i]ppyo ¢ EntryLoOppy and not PageMasky,qx # Implementation dependent
TLB[i]cp ¢ EntryLoO¢
TLB[i]lpy ¢ EntryLoOp
TLB[ilyo ¢ EntryLoOy

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Exceptions:
Coprocessor Unusable
Machine Check

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 328

Trap if Less Than TLT

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " code TLT
000000 110010
6 5 5 10 6
Format: TLT rs, rt MIPS32

Purpose: Trapif Less Than
To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rsand GPR rt as signed integers; if GPR rsislessthan GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException (Trap)
endif

Exceptions:
Trap

329 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Trap if Less Than Immediate

TLTI

MIPS32

31 26 25 21 20 16 15 0
REGIMM LTI o
000001 rs 01010 immediate
6 5 5 16
Format: TLTI rs, immediate

Purpose: Trap if Less Than Immediate
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsislessthan immediate,
then take a Trap exception.

Restrictions:
None

Operation:

if GPR[rs] < sign_extend(immediate) then

SignalException (Trap)

endif

Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

330

Trap if Less Than Immediate Unsigned TLTIU

31 26 25 21 20 16 15 0
REGIMM TLTIU . .
000001 rs 01011 immediate
6 5 5 16
Format: TLTIU rs, immediate M1PS32

Purpose: Trap if Less Than Immediate Unsigned
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rsis less than
immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None
Operation:
if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException (Trap)
endif
Exceptions:
Trap

331 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Trap if Less Than Unsigned

31 26 25

21 20

16 15

TLTU

SPECIAL
000000

rs

rt

code

TLTU
110011

6

Format. TLTU rs, rt

Purpose: Trapif Less Than Unsigned
To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

10

MIPS32

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt, then take a Trap

exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None
Operation:
if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException (Trap)
endif
Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

332

Trap if Not Equal TNE

31 26 25 21 20 16 15 6 5 0
SPECIAL rs " code TNE
000000 110110
6 5 5 10 6
Format:. TNE rs, rt MIPS32

Purpose: Trapif Not Equal
To compare GPRs and do a conditional trap

Description: if GPR[rs] # GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rsis not equal to GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] # GPR[rt] then
SignalException (Trap)
endif

Exceptions:
Trap

333 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Trap if Not Equal Immediate TNEI
31 26 25 21 20 16 15 0
REGIMM TNEI . .
000001 rs 01110 mmediate
6 5 5 16
Format: TNEI rs, immediate M1PS32

Purpose: Trap if Not Equal Immediate
To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] # immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rsis not equal to imme-
diate, then take a Trap exception.

Restrictions:
None

Operation:

if GPR[rs] # sign_extend(immediate) then

SignalException (Trap)

endif

Exceptions:
Trap

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

334

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt

335

31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 s ” TRUNC.L
010001 00000 001001
6 5 5 5 5 6

Format: TRUNC.L.fmt
TRUNC.L.S fd, fs MI1PS64, MI1PS32 Release 2
TRUNC.L.D fd, fs MI1PS64, MI1PS32 Release 2
Purpose: Floating Point Truncate to Long Fixed Point

To convert an FP value to 64-hit fixed point, rounding toward zero

Description: FPR[£d] <« convert_and_round (FPR[fs])

Thevaluein FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2% to 283-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 2821, iswritten to fd.

Restrictions:

Thefieldsfs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR(fd, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions;
Unimplemented Operation, Invalid Operation, Inexact

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Floating Point Truncate to Word Fixed Point

31

26 25

21 20

16 15

11 10

TRUNC.W.fmt

COP1
010001

fmt

00000

fs

fd

TRUNC.W
001101

Format. TRUNC.W.fmt
TRUNC.W.S fd,
TRUNC.W.D fd,

Purpose: Floating Point Truncate to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: FPR[£d] <« convert_and_round (FPR[fs])

6

MIPS32
MIPS32

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). Theresult is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -2 to 23-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231-1, iswritten to fd.

Restrictions:

Thefields fs and fd must specify valid FPRs; fsfor type fmt and fd for word fixed point; if they are not valid, the result

isUNPREDICTABLE.

The operand must be avaluein format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt (ValueFPR(fs,

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

fmt) ,

fmt, W))

336

Enter Standby Mode WAIT

337

31 26 25 24 6 5 0
COPO CO . WAIT
010000 1 I mplementati on-dependent code 100000
6 1 19 6
Format: warT MI1PS32

Purpose: Enter Standby Mode
Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usualy involving a lower power mode.
Software may use the code bits of the instruction to communicate additional information to the processor, and the
processor may use this information as control for the lower power mode. A value of zero for code bits is the default
and must be valid in al implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and enter-
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request
occurs, and execution continues with the instruction following the WAIT instruction. It isimplementati on-dependent
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause
of the restart.The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).
Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter implementation dependent lower power mode
I+l:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Write to GPR in Previous Shadow Set

WRPGPR

31 26 25 21 20 16 15 11 10 0
COPO WRPGPR f d 0
0100 00 01 110 000 0000 0000
6 5 5 5 11
Format: WRPGPR rd, rt MI1PS32 Release2

Purpose: Writeto GPR in Previous Shadow Set
To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtlpgg, rd] « GPR[rt]

The contents of the current GPR rt is moved to the shadow GPR register specified by SRSCtlpgg (signifying the pre-

vious shadow set number) and rd (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

SGPR[SRSCt1lpgg,

Exceptions:

Coprocessor Unusable

Reserved Instruction

rd] ¢« GPR[rt]

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

338

Word Swap Bytes Within Halfwords WSBH

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL3 0 " rd WSBH BSHFL
011111 00000 00010 100000
6 5 5 5 5 6
Format. wsSBH rd, rt MI1PS32 Release2

Purpose: Word Swap Bytes Within Halfwords
To swap the bytes within each halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] <« SwapBytesWithinHalfwords (GPR[rt])
Within each halfword of GPR rt the bytes are swapped, and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] < GPR[rl,; 1 || GPRIrlsy a4 || GPRITXl; o || GPRIrlis. g

Exceptions:
Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of aword value can be converted using the following sequence:

1w t0, 0(al) /* Read word value */
wsbh t0, tO0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */

wsbh t0, tO0 /* Convert endiannes of the halfwords */

seh tl, tO /* tl = lower halfword sign-extended to word */

sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

339 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Exclusive OR

31 26 25

21 20

16 15

11

10

XOR

SPECIAL
000000

rs

rt

rd

00000

XOR
100110

6

Format. XOR rd,

rs,

Purpose: Exclusive OR
To do abitwise logical Exclusive OR

5

rt

Description: GPR[rd] <« GPR[rs] XOR GPR[rt]

6

MIPS32

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into

GPR rd.

Restrictions:
None

Operation:

GPR[rd] ¢« GPR[rs] xor GPR[rt]

Exceptions:
None

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

340

Exclusive OR Immediate XORI
31 26 25 21 20 16 15 0
XORI .]
001110 rs rt immediate
6 5 5 16
Format: XORI rt, rs, immediate M1PS32

341

Purpose: Exclusive OR Immediate
To do a bitwise logical Exclusive OR with a constant

Description: GPR[rt] <« GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt]

Exceptions:
None

«— GPR[rs] xor zero_extend(immediate)

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Appendix A

Instruction Bit Encodings

A.l Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book in italics.

When encoding an instruction, the primary opcode field is encoded first. Most opcode values completely specify an
instruction that has an immediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class are
further specified by valuesin other fields. For instance, opcode REGIMM specifies the immediate instruction class,
which includes conditional branch and trap immediate instructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS32® |SA.

Figure A.1 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31..29 of the
opcodefield are listed in the leftmost columns of the table. Bits 28..26 of the opcode field are listed along the topmost
rows of the table. Both decimal and binary values are given, with the first three bits designating the row, and the last
three bits designating the column.

Aninstruction’s encoding is found at the intersection of arow (bits 31..29) and column (bits 28..26) value. For

instance, the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Sim-
ilarly, the opcode value for EX2 is 64 (decimal), or 110100 (binary).

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 342

Instruction Bit Encodings

Figure A.1 Sample Bit Encoding Table

31 26 25 21 20 16 15 0

opcode rs rt immediate

5 5 16

Binary encoding of
opcode (28..26)

Decimal encoding of
* opcode (28..26)

opcode bits 28..26 \

0 1 2 3 4 5 6 ~ 7 *
bits 31..29 000 001 010 011 100 101 110 111
o | ooo
001
010
011 EX1
100
101
110 EX2
111

—%

~N| o] o] M| W[N]

Binary encoding of

)) opcode (31..29)
Decimal encoding of

opcode (31..29)

Tables A.2 through A.20 describe the encoding used for the MIPS32 I SA. Table A.1 describes the meaning of the
symbols used in the tables.

Table A.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

) (Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

B Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPSISA level or anew revision of the Architecture. Executing such an instruction must cause a
Reserved Instruction Exception.

\% Operation or field codes marked with this symbol represent instructions which were only legal if
64-hit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
arelegal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor
instruction encodings for a coprocessor to which accessis allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which accessis not allowed).

343 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

A.2 Instruction Bit Encoding Tables

Table A.1 Symbols Used in the Instruction Encoding Tables (Continued)

Symbol Meaning

A Instructions formerly marked V in some earlier versions of manuals, corrected and marked A in
revision 5.03. Legal on MIPS64r1 but not MIPS32r1; in release 2 and above, legal in both M1PS64
and MIPS32, in particular even when running in “ 32-bit FPU Register File mode’, FR=0, as well
asFR=1.

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, MIPS Technologies will assist the partner in selecting
appropriate encodings if requested by the partner. The partner is not required to consult with MIPS
Technologies when one of these encodings is used. If no instruction is encoded with this value,
executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings
or coprocessor instruction encodings for a coprocessor to which accessis allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which accessis
not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MI1PS optional Module or Appli-
cation Specific Extensions. If the Module/ASE is not implemented, executing such an instruction
must cause a Reserved Instruction Exception.

) Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 | SA. Software should avoid using these operation or field codes.

@ Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table A.2 MIPS32 Encoding of the Opcode Field

’W bits 28..26

0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0] 000 | SPECIALS | REGIMM & J JAL BEQ BNE BLEZ BGTZ
1| oo1 ADDI ADDIU STl SLTIU ANDI ORI XORI LUl
2| o010 | copos COP13 COP2 85 coP1xt BEQL ¢ BNEL ¢ BLEZL ¢ BGTZL ¢
3| our B B B B SPECIAL23 | JALXe MSAes |SPECIAL3? 5@
4 | 100 LB LH LwL Lw LBU LHU LWR B
5 | 101 SB SH SWL sw B B SWR CACHE
6 | 110 LL LwC1 LWC2 6 PREF B LDC1 LDC2 6 B
7 | 11 sC Swc1 SWC2 6 * B sbc1 Sbc2 e B

1. In Release 1 of the Architecture, the COP1X opcode was called COP3, and was available as another user-available
coprocessor. In Release 2 of the Architecture, afull 64-bit floating point unit is available with 32-bit CPUs, and the
COP1X opcode is reserved for that purpose on al Release 2 CPUs. 32-bit implementations of Release 1 of the
architecture are strongly discouraged from using this opcode for a user-available coprocessor as doing so will limit
the potential for an upgrade path for the FPU.

2. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved Instruction Exception for this opcode.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 344

Instruction Bit Encodings

345

Table A.3 MIPS32 SPECIAL Opcode Encoding of Function Field

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 S MOVCI & SRL & SRA SLLV LSAe SRLV & SRAV
1 | oo1 JR? JALR? Movz MOVN SYSCALL BREAK * SYNC
2 | o10 MFHI MTHI MFLO MTLO B B B
3 | o11 MULT MULTU DIV DIVU B B B
4 | 100 ADD ADDU SUB SUBU AND OR XOR NOR
5 | 101 * * SLT SLTU B B B B
6 | 110 TGE TGEU TLT TLTU TEQ x TNE *
71111 B * B B B * B B
1. Specific encodings of thert, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, EHB and
PAUSE functions.
2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB
Table A.4 MIPS32 REGIMM Encoding of rt Field
W bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| oo BLTZ BGEZ BLTZL ¢ BGEZL ¢ o . # €
1| o1 TGEI TGEIU TLTI TLTIU TEQI TNEI *
2| 10 BLTZAL BGEZAL BLTZALL ¢ | BGEZALL ¢ * . *
3| 11 # # « £ € * SYNCI @
Table A.5 MIPS32 SPECIAL2 Encoding of Function Field
’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 MADD MADDU MUL 0 MSUB MSUBU) [}
1 | oo1 € 0) 0 0)) 0
2 | o10 0 [}) 0 0 [)) 0
3| o11 [} [}) 0 [})) [}
4 | 100 cLz cLO) 0 B B) [}
5 | 101 0 [}) 0 [})) [}
6 | 110 0 0) 0 0)) 0
7 | 111 0 0)) 0)) SDBBP o

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

A.2 Instruction Bit Encoding Tables

Table A.6 MIPS32 SPECIAL3! Encoding of Function Field for Release 2 of the Architecture

function | hits2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0|000| EXT® B B B INS® B B B
1 (001 € € € * € € * *
2 | 010 € € € € € € € €
3| 011 € LWLE LWRE CACHEE SBE SHE SCE SWE
4 | 100 | BSHFL ®& SWLE SWRE PREFE B * ® *
5| 101 LBUE LHUE * * LBE LHE LLE LWE
6 | 110 € € * # € ® * *
7| 111 € * * RDHWR & € * * *

1. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved | nstruction Exception for this opcode and all function field values shown above.

Table A.7 MIPS32 MOVCI Encoding of tf Bit

tf bit 16

0 1
MOVF MOVT

Table A.8 MIPS32! SRL Encoding of Shift/Rotate

R bit 21

0 1
SRL ROTR

1. Release 2 of the Architecture
added the ROTR instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as an
SRL

Table A.9 MIPS32! SRLV Encoding of Shift/Rotate

R bit 6

0 1
SRLV ROTRV

1. Release 2 of the Architecture
added the ROTRV instruction.
Implementations of Release 1 of
the Architecture ignored bit 6
and treated the instruction as an
SRLV

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 346

Instruction Bit Encodings

Table A.10 MIPS32 BSHFL Encoding of sa Field?!

sa bits 8..6
0 1 2 3 4 5 6 7
bits 10..9 000 001 010 011 100 101 110 111
0| 00 WSBH
1| o1
2| 10 SEB
3| 11 SEH
1. The safield is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved I nstruction exception.
Table A.11 MIPS32 COPO Encoding of rs Field
’T bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFCO B € MTCO B * *
1| o1 € * RDPGPR ® | MFMCO?! 6@ € WRPGPR @ *
2| 10
3| 1 cos

1. Release 2 of the Architecture added the MFM CO function, which is further decoded asthe DI (bit 5= 0) and El (bit
5=1) instructions.

Table A.12 MIPS32 COPO Encoding of Function Field When rs=CO

’W bits 2.0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 # TLBR TLBWI TLBINV TLBINVF ® TLBWR *
1 001 TLBP € € € € € S
2 | o010 € * ® * * * * *
3 | 011 ERET * #* * * #* #* DERET o
4 | 100 WAIT * # P - - - .
5 101 € ® ® * * * % #
6 | 110 ® ® * * ® s « .
7|11 I . « " . %

347

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

A.2 Instruction Bit Encoding Tables

Table A.13 MIPS32 COP1 Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC1 B CFC1 MFHC1 & MTC1 B CTC1 MTHC1 &
1| 01 BC1§ BC1ANY2 | BC1ANY4 BZV ¢ % * * BNZ.V ¢
deV deV
2|10 S3é D3 # ¢ W 3§ Ld PS 3 i
3 11 BZBe BZHe BZ.W e BZDe BNZ.B ¢ BNZHe BNZ.W ¢ BNZ.D e
Table A.14 MIPS32 COP1 Encoding of Function Field When rs=S
W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | ooo ADD SuB MUL DIV SQRT ABS MOV NEG
1| 001 | ROUNDLV | TRUNCLYV CEILLV FLOOR.L V ROUND.W TRUNC.W CEIL.W FLOOR.W
2 | 010 # MOVCF & Movz MOVN # RECIP A RSQRT A #
3 | 011 * * * * RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 | 100 # CVT.D ® ® CVT.W CVTLV CVT.PSV ®
5 | 101 % ® ® % % % ® ®
C.F C.UN C.EQ C.UEQ Cc.oLT C.ULT C.OLE C.ULE
6 | 110 CABS.F eV CABS.UN eV CABS.EQeV | CABS.UEQ¢eV | CABS.OLT eV | CABS.ULT ¢V | CABS.OLE ¢V | CABS.ULE &V
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
7 111 CABS.SF eV | CABS.NGLE ¢V | CABS.SEQ ¢V | CABS.NGL &V CABS.LT eV | CABS.NGE eV | CABS.LEeV | CABS.NGT eV
Table A.15 MIPS32 COP1 Encoding of Function Field When rs=D
'W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | ooo ADD SuB MUL DIV SQRT ABS MOV NEG
1| oo1 ROUND.L V TRUNC.LV CEILLV FLOOR.L V ROUND.W TRUNC.W CEIL.W FLOOR.W
2 | 010 * MOVCF & MOvz MOVN * RECIP A RSQRT A #
3] 011 * * * * RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4| 100 CVTS * * * CVT.W CVTLV p -
5 | 101 * * #* #* #* * #* #*
C.F C.UN C.EQ C.UEQ C.oLT c.uLT C.OLE C.ULE
6 | 110 CABS.F eV CABS.UN eV CABS.EQeV | CABS.UEQ¢eV | CABS.OLT eV | CABS.ULT ¢V | CABS.OLE ¢V | CABS.ULE &V
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
7 111 CABS.SF eV | CABS.NGLE ¢V | CABS.SEQ €V | CABS.NGL &V CABS.LT eV | CABS.NGEeV | CABS.LEeV | CABS.NGT eV

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

348

Instruction Bit Encodings

Table A.16 MIPS32 COP1 Encoding of Function Field When rs=W or L1

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 N * *
1| 001 ® ® #
2 | 010 * * * * * * * *
3 | o11 * % % % N N N
4 | 100 CVTS CVT.D * # CVT.PS.PW gV
5 | 101 * # * % %
6 110 * ® ® % % # # #
7 | 111 * * -
1. Format type L islegal only if 64-bit floating point operations are enabled.
Table A.17 MIPS32 COP1 Encoding of Function Field When rs=pst
’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 ADD V SUB V MUL V * * ABS V MOV V NEG V
1 001 * * * * * * * *
2 | 010 ® MOVCF &V MOVZ V MOVN V * * ® ®
3 | o11 ADDR &V * MULR eV * RECIP2 eV RECIP1 eV RSQRT1eV | RSQRT2eV
4| 100 | CVTSPUV * * * CVT.PW.PS eV * * *
5| 101 | cvTSPLV * * * PLLPSV PLU.PS V PULPSV PUU.PSV
CFV C.UNV CEQV C.UEQV COLTV CULTV C.OLEV C.ULEV
6 | 110 | CABS.FeV | CABS.UNeV | CABS.EQeV | CABS.UEQeV | CABS.OLT eV | CABS.ULT €V | CABS.OLE eV | CABS.ULE eV
CSFV C.NGLE V C.SEQV CNGLV CLTV C.NGEV CLEV CNGTV
7 | 111 | CABS.SFeV |CABS.NGLEeV | CABS.SEQ eV | CABS.NGLeV | CABS.LTeV | CABS.NGEeV | CABS.LEeV | CABS.NGT eV

1. Format type PSislegal only if 64-bit floating point operations are enabled.

349

Table A.18 MIPS32 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

tf bit 16
0 1
MOVFE.fmt MOVT.fmt

A.3 Floating Point Unit Instruction Format Encodings

Table A.19 MIPS32 COP2 Encoding of rs Field

rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 00 MFC2 6 B CFC26 MFHC2 6@ MTC2 6 B CTC26 MTHC2 6@
1 01 BC26 * * * # ® % *
2 10
3 11 C2 03

Table A.20 MIPS32 COP1X Encoding of Function Field

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 LWXC1 A LDXC1 A * * * LUXC1V * *
1 | 001 SWXC1 A SDXC1 A ® # * SUXC1V # PREFX A
2 | 010 * * * # * # % %
3 011 * * * * * * ALNV.PS V *
4 100 MADD.S A MADD.D A * * # * MADD.PS V *
5 101 MSUB.S A MSUB.D A # * * * MSUB.PS V *
6 | 110 | NMADD.SA | NMADD.D A * # * * NMADD.PS V #
7 111 | NMSUB.SA | NMSUB.D A # # * ® NMSUB.PS V *

A.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. Thisinformation is atabular pre-
sentation of the encodings described in tables Table A.13 and Table A.20 above.

Table A.21 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field
(bits 25..21 of COP1 | (bits 2..0 of COP1X
opcode) opcode)
Decimal Hex Decimal Hex Mnemonic Name Bit Width Data Type
0.15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.
16 10 0 0 S Single 32 Floating Point
17 11 1 1 D Double 64 Floating Point
18..19 12..13 2.3 2.3 Reserved for future use by the architecture.
20 14 4 4 w Word 32 Fixed Point
21 15 5 5 L Long 64 Fixed Point
22 16 6 6 PS Paired Single 2x 32 Floating Point
23 17 7 7 Reserved for future use by the architecture.
24.31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 350

Instruction Bit Encodings

351 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

A.3 Floating Point Unit Instruction Format Encodings

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 352

Appendix B

Misaligned Memory Accesses

Prior to Release 5 the MIPS architectures® require “natural” alignment of memory operands for most memory opera-
tions. Instructions such as LWL and LWR are provided so that unaligned accesses can be performed viainstruction
seguences. As of Release 5 of the Architecture the MSA (MIPS SIMD Architecture) supports 128 hit vector memory
accesses, and does NOT require these MSA vector load and store instructions to be naturally aligned. The behavior,
semantics, and architecture specifications of such misaligned accesses are described in this appendix.

B.1 Terminology

This document uses the following terminology:

“Unaligned” and “misaligned” are used genericaly refer to any memory value not naturally aligned.

Theterm “split” is used to refer to operations which cross important boundaries, whether architectural (e.g.
“page split” or “segment split”) or microarchitectural (e.g. “cache line split”).

The MIPS Architecture specifications have contained, since its beginning, special so-called Unaligned Load and
Store instructions such as LWL/LWR and SWL/SWR (Load Word L eft/Right, etc.)

* When necessary, we will call these “explicit unaligned memory access instructions’, as distinct from
“instructions that permit implicit misaligned memory accesses’, such as MSA vector loads and stores.

e Butwhereit is obvious from the context what we are talking about, we may say simply “unaligned” rather
than the longer “explicit unaligned memory accessinstructions’, and “misaligned” rather than “instructions
that permit implicit misaligned memory accesses’.

Release 5 of the MIPS Architecture defines instructions, the MSA vector loads and stores, which may be aligned
(e.g.128-hits on a 128 bit boundary), partially aligned (e.g. “element aligned”, see below), or misaligned. These
may be called verbosely “instructions that permit implicit misaligned memory accesses”.

e Misalignment is dynamic, known only when the address is computed (rather than static, explicit in the
instruction asit isfor LWL/LWR, etc.). We distinguish accesses for which the alignment is not yet known
(“potentialy misaligned”), from those whose alignment is known to be misaligned (“ actually misaligned”),
and from those for which the alignment is known to be naturally aligned (“actually aligned”).

E.g. LL/SC ingtructions are never potentially misaligned., i.e. are always actually aligned (if they do not
trap). MSA vector |oads and stores are potentially misaligned, although the programmer or compiler may
arrange so that particular instances will never be actually misaligned.

1. For example, see: MIPS® Architecture For Programmers, Volume |-A: Introduction to the MIPS32® Architecture,
Document Number MD00082, Revision 3.50, September 20, 2012, http: //www.mips.com/auth/MD00082-2B-
MIPS32INT-AFP-03.50.pdf; sections2.8.6.4 “Addressing Alignment Constraints” and 2.8.6.5 “Unaligned Loads and
Stores’ on page 38.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 353

B.2 Hardware versus software support for misaligned memory accesses

B.2 Hardware versus software support for misaligned memory accesses

Processors that implement versions of the MIPS Architectures prior to Release 5 require “natural” alignment of mem-
ory operands for most memory operations. apart from unaligned load and store instructions such as LWL/LWR and
SWL/SWR, al memory accesses that are not naturally aligned are required to signal an Address Error Exception.

Systems that implement Release 5 or higher of the MIPS Architectures require support for misaligned memory oper-
ands for the following instructions:

* MSA (MIPS SIMD Architecture) vector loads and stores (128-bit quantities)

In Release 5 all misaligned memory accesses other than MSA continue to produce the Address Error Exception with
the appropriate ErrorCode.

In particular, misalignment support iSNOT provided for the unaligned memory accesses, LWL/LWR and SWL/SWR.
Nor isit provided for LL/SC. Nor for MIPS64 LDL/LDR and SDL/SDR, and LLD/SCD. Nor for the EVA versions
LWLE/SWLE, LWRE/SWRE, LLE/SCE. All such instructions continue to produce the Address Error Exception if
misaligned.

Note the phrasing “ Systems that implement Release 5 or higher” . Processor hardware may provide varying degrees of
support for misaligned accesses, producing the Address Error Exception in certain cases. The software Address Error
Exception handler may then emulate the required misaligned memory access support in software. The term “systems
that implement Release 5 or higher” includes such systems that combine hardware and software support. The proces-
sor in such asystem by itself may not be fully Release 5 compliant because it does not support all misaligned memory
references, but the combination of hardware and exception handler software may be.

Here are some examples of processor hardware providing varying degrees of support for misaligned accesses. The
examples are named so that the different implementations can be discussed.

Full Misaligned Support:
Some processors may implement all the required misaligned memory access support in hardware.

Trap (and Emulate) All Misaligneds:
E.g. it is permitted for a processor implementation to produce the Address Error Exception for all misaligned
accesses. |.e. with the appropriate exception handler software,

Trap (and Emulate) All Splits:
Intra-Cache-Line Misaligneds Support:
more accurately: Misaligneds within aligned 64B regions Support:
E.g. it is permitted for an implementation to perform misaligned accesses that fall entirely within acachelinein
hardware, but to produce the Address Error Exception for all cache line splits and page splits.

Trap (and Emulate Page) Splits:
I ntra-Page Misaligneds Support:
more accurately: Misaligneds within aligned 4K B regions Support:
E.g. itis permitted for a processor implementation to perform cache line splitsin hardware, but to produce the
Address Error Exception for page splits.

Distinct misaligned handling by memory type:
E.g. an implementation may perform misaligned accesses as described above for WB (Writeback) memory, but
may produce the Address Error Exception for al misaligned accesses involving the UC memory type.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 354

Misaligned Memory Accesses

Other mixes of hardware and software support are possible.

It is expected that Full Misaligned Support and Trap and Emulate Page Splits will be the most common imple-
mentations.

In general, actually misaligned memory accesses may be significantly slower than actually aligned memory accesses,
even if an implementation provides Full Misaligned Support in hardware. Programmers and compilers shoild avoid

actually misaligned memory accesses. Potentially but not actually misaligned memory accesses should suffer no per-
rformance penalty.

B.3 Detecting misaligned support

It is sufficient to check that MSA is present, as defined by the appropriate reference manual?: i.e. support for mis-
aligned MSA vector load and store instructionsis required if the Config3 MSAP bit is set(CPO Register 16, Select 3,
bit 28).

The need for software to emulate misaligned support as described in the previous section must be detected by an
implementation specific manner, and is not defined by the Architecture.

B.4 Misaligned semantics

B.4.1 Misaligned Fundamental Rules: Single Thread Atomic, but not Multi-thread

The following principles are fundamental for the other architecture rules relating to misaligned support.

Architecture Rule B-1: Misaligned memory accesses are atomic with respect to a single thread (with limited
exceptions noted in other rules).

E.g. all interrupts and exceptions are delivered either completely before or completely after amisaligned (split) mem-
ory access. Such an exception handler is not entered with part of a misaligned load destination register written, and
part unwritten. Similarly, it is not entered with part of a misaligned store memory destination written, and part unwrit-
ten.

E.g. uncorrectable ECC errors that occur halfway through a split store may violate single thread atomicity.

Hardware page table walking is not considered to covered by single thread atomicity.

Architecture Rule B-2: Memory accesses that are actually misaligned are not guaranteed to be atomic as observed
from other threads, processors, and I/O devices.

B.4.2 Permissions and misaligned memory accesses

Architecture Rule B-3: It must be permitted to access every byte specified by amemory access.

Architecture Rule B-4: ItisNOT required that permissions, etc., be uniform across all bytes.

2. E.g. MIPS® Architecture for Programmers, Volume 1V-j: The MIPS32® SIMD Architecture Module, Document Number
MDO00866, 2013; or the corresponding documents for other M1PS Architectures such as Ml

355 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

B.4 Misaligned semantics

This appliesto al memory accesses, but in particular applies to misaligned split accesses, which can cross page
boundaries and/or other boundaries that have different permissions. It *1S* permitted for amisaligned, in particular a
page split memory access, to cross permission boundaries, as long as the access is permitted by permissions on both
sides of the boundary. I.e. it isnot required that the permissions be identical, for all parts, just that all parts are permit-
ted.

ArchitectureRuleB-5: If any part of the misaligned memory accessis not permitted, then the entire access must take
the appropriate exception.

Architecture Rule B-6: If multiple exceptions arise for a given part of a misaligned memory access, then the same
prioritization rules apply as for a non-misaligned memory access.

Architecture Rule B-7: If different exceptions are mandated for different parts of a split misaligned access, it is
UNPREDICTABLE which takes priority and is actually delivered. But at |east one of them must be delivered.

E.g. if amisaligned load is a page split, and one part of the load isto a page marked read-only, while the other isto a
page marked invalid, the entire access must take the TLB Invalid Exception. The destination register will NOT be par-
tially written.

E.g. if amisaligned storeis a page split, and one part of the store is to a page marked writable, while the other part is
to a page marked read-only, the entire store must take the TLB Modified Exception. It isNOT permitted to write part
of the access to memory, but not the other part.

E.g. if amisaligned memory accessis a page split, and part isin the TLB and the other part isnot - if software TLB
miss handling is enabled then none of the access shall be performed before the TLB Refill Exception is entered.

E.g. if amisaligned load is a page split, and one part of the load is to a page marked read-only, while the other isto a
page marked read-write, the entire access is permitted. |.e. a hardware implementation MUST perform the entire
access. A hardware/software implementation may perform the access or take an Address Error Exception, but if it
takes an Address Error Exception trap no part of the access may have been performed on arrival to the trap handler.

B.4.3 Misaligned Memory Accesses Past the End of Memory

Architecture Rule B-8: Misaligned memory accesses past the end of virtual memory are permitted, and behave asif
afirst partial access was done from the starting address to the virtual address limit, and a second partial access was
done from the low virtual address for the remaining bytes.

E.g. an N byte misaligned memory access (N=16 for 128-bit MSA) starting M bytes below the end of the virtual
address space “VMax” will access M bytesin the range [VMax-M+1,VMax], and in addition will access N-M bytes
starting at the lowest virtual address “VMin”, the range [VMin, VMin+N-M-1].

E.g. for 32 bit virtual addresses, VMin=0 and VMax = 23%-1, and an N byte access beginning M bytes below the top
of the virtual address space expands to two separate accesses as follows: 232 - M = [232-M,232-1] U [0, 0+ N - M]

E.g. for 64 bit virtual addresses, VMin=0 and VMax = 2641, andan N byte access beginning M bytes below the top
of the virtual address space expands to two separate accesses as follows: 264 —M = [264-M,264—1] U [0, 0+ N = M]

Similarly, both 32 and 64 bit accesses can cross the corresponding signed boundaries, e.g. from, Ox7FFF_FFFF to
0x8000_0000 or from Ox7FFF_FFFF_FFFF_FFFF to 0x8000_0000_0000_0000.

Architecture Rule B-9: Beyond the wrapping at 32 or 64 bits mentioned, above, thereis no special handling of
accesses that cross MIPS segment boundaries, or which exceeed SEGBITS within a MIPS segment.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 356

Misaligned Memory Accesses

357

E.g. a16 byte MSA access may begin in xuseg with asingle byte at address Ox3FFF_FFFF_FFFF_FFFF and crossto
Xsseg, e.g. 15 bytes starting from 0x4000_000_0000_0000 - assuming consistent permissions and CCASs.

ArchitectureRule B-10: Misaligned memory accesses must signal Address Error Exception if any part of the access
would lie outside the physical address space.

E.g. if in an unmapped segment such as kseg0, and the start of the misaligned is below the PABITS limit, but the
access size crosses the PABITS limit.

B.4.4 TLBs and Misaligned Memory Accesses

A specific case of rules stated above:

Architecture Rule B-11: if any part of amisaligned memory access involves a TLB miss, then none of the access
shall be performed before the TLB miss handling exception is entered.

Here “performed” the actual store, changing memory or cache data values, or the actual load, writing a destination
register, or load side effects related to memory mapped |/O. It does not refer to microarchitectural side effects such as
changing cache line state from M in another processor to Slocally, nor to TLB state.

Note: this rules does NOT disallow emulating misaligned memory accesses viaatrap handler that performs the
access abyte at atime, even though a TLB miss may occur for alater byte after an earlier byte has been written. Such
atrap handler isemulating the entire misaligned. A TLB missin the emulation code will return to the emulation code,
not to the original misaligned memory instruction.

However, this rule DOES disallow handling permissions errors in this manner. Write permission must be checked in
advance for all parts of a page split store.

Architecture Rule B-12: Misaligned memory accesses are not atomic with respect to hardware page table walking
for TLB miss handling (asis added in MIPS Release 5).

Overall, TLBs, in particular hardware page table walking, are not considered to be part of “single thread atomicity”,
and hardware page table walks are not ordered with the memory accesses of the loads and stores that trigger them.

E.g. the different parts of asplit may occur at different times, and speculatively. If another processor is modifying the
page tables without performing a TLB shootdown, the TLB entries found for a split may not have both occurred in
memory at the same time.

E.g. on an exception triggered by amisaligned access, it is UNPREDICTABLE which TLB entriesfor apage split are
in the TLB: both, one but not the other, or none.

I mplementations must provide mechanisms to accommodate all parts of amisaligned load or storein order to guaran-
tee forward progress. E.g. a certain minimum number of TLB entries may be required for the split parts of amis-
aligned memory access, and/or associated software TLB miss handlers or hardware TLB miss page table walkers.
Other such mechanisms may not require extra TLB entries.

ArchitectureRule B-13: Misaligned memory accesses are not atomic with respect to setting of PTE access and dirty

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

B.4 Misaligned semantics

bits.

E.g. if ahardware page table walker sets PTE dirty bit for both parts of a page split misaligned store, then it may be
possible to observe one bit being set while the other is still not set.

ArchitectureRule B-14: Misaligned memory accessesthat affect any part of the page tablesin memory that are used
in performing the virtual to physical address translation of any part of the split access are UNPREDICTABLE.

E.g. asplit store that writes one of its own PTEs - whether the hardware page table walker PTE, or whatever data
structure a software PTE miss handler uses. (This means that a simple Address Error Exception handler can imple-
ment misaligneds without having to check page table addresses.)

B.4.5 Memory Types and Misaligned Memory Accesses

Architecture Rule B-15: Misaligned memory accesses are defined and are expected to be used for the following
CCAs. WB (Writeback) and UCA (Uncached Accelerated), i.e. write combining.

Architecture Rule B-16: Misaligned memory accesses are defined for UC. Instructions that are potentially
misaligned, but which are not actually misaligned, may safely be used with UC memory including MMIO. But
instructions which are actually misaligned should not be used with MMIO - their results may be UNPREDICTABLE
or wWorse.

Misaligned memory accesses are defined for the UC (Uncached) memory type, but their use is recommended only for
ordinary uncached memory, DRAM or SRAM. The use of misaligned memory accesses s discouraged for uncached
memory mapped I/0 (MMIO) where accesses have side effects, because the specification of misaligned memory
accesses does not specify the order or the atomicity in which the parts of the misaligned access are performed, which
it makesit very difficult to use these accesses to control memory-mapped 1/O devices with side effects.

Architecture Rule B-17: Misaligned memory accesses that cross two different CCA memory types are
UNPREDICTABLE. (Reasons for this may include crossing of page boundaries, segment boundaries, etc.)

Architecture Rule B-18: Misaligned memory accesses that cross page boundaries, but with the same memory type
in both pages, are permitted.

ArchitectureRule B-19: Misaligned memory accessesthat cross segment boundaries are well defined, so long asthe
memory typesin both segments are the same and are otherwise permitted.

B.4.6 Misaligneds, Memory Ordering, and Coherence

This section discusses single and multithread atomicity and multithread memory ordering for misaligned memory
accesses. But the overall Misaligned Memory A ccesses specification, does not address issues for potentially but not
actually misaligned memory references. Documents such as the M1PS Coherence Protocol Specification define such

behavior.3

B.4.6.1 Misaligneds are Single Thread Atomic

Recall the first fundamental rule of misaligned support, single-thread atomicity:

3. E.g. MIPS Coherence Protocol Specification (AFP Version), Document Number MDQ0605, Revision 0.100. June
25, 2008. Updates and revisions of this document are pending.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04 358

Misaligned Memory Accesses

359

Architecture Rule B-1: “Misaligned memory accesses are atomic with respect to a single thread (with limited
exceptions noted in other rules).” on page 355.

E.g. all interrupts and exceptions are delivered either completely before or completely after amisaligned (split) mem-
ory access. Such an exception handler is not entered with part of a misaligned load destination register written, and
part unwritten. Similarly, it is not entered with part of a misaligned store memory destination written, and part unwrit-
ten.

Architecture Rule B-20: However, an implementation may not be able to enforce single thread atomicity for certain
error conditions.

ArchitectureRuleB-21: E.g. singlethread atomicity for amisaligned, cacheline or page split store, MAY beviolated
when an uncorrectable ECC error detected when performing alater part of amisaligned, when an part has already been
performed, updating memory or cache.

Architecture Rule B-22: Nevertheless, implementations should avoid violating single thread atomicity whenever
possible, even for error conditions.

Here are some exceptional or error conditions for which violating single thread atomicity for misaligneds is NOT
acceptable: any event involving instruction access rather than data access, Debug data breakpoints, Watch address
match, Address Error, TLB Réfill, TLB Invalid, TLB Modified, Cache Error on load or LL, Bus Error on load or LL.

Machine Check Exceptions (a) are implementation dependent, (b) could potentially include a wide number of
processor internal inconsistencies. However, at the time of writing the only Machine Check Exceptionsthat are defined
are (a) detection of multiple matching entriesin the TLB, and (b) inconsistencies in memory data structures
encountered by the hardware page walker page table. Neither of these should cause a violation of single thread
atomicity for misaligneds. In general, no errors related to virtual memory addresses should cause violations of single
thread atomicity.

Architecture Rule B-23: Reset (Cold Reset) and Soft Reset are not required to respect single thread atomicity for
misaligned memory accesses. E.g. Reset may be delivered when a storeis only partly performed.

However, implementations are encouraged to make Reset and, in particular, Soft Reset, single instruction atomic
whenever possible. E.g. a Soft Reset may be delivered to a processor that is not hung, when amisaligned storeisonly
partially performed. If possible, the rest of the misaligned store should be performed. However, if the processor is
stays hung with the misaligned store only partially performed, then the hang should time out and reset handling be
compl eted.

Non-Maskable Interrupt (NMI) is required to respect single thread atomicity for misaligned memory accesses, since
NMIs are defined to only be delivered at instruction boundaries.

B.4.6.2 Misaligneds are not Multithread/Multiprocessor Atomic

Recall the second fundamental rule of misaligneds - lack of multiprocessor atomicity:

Architecture Rule B-2: “Memory accesses that are actually misaligned are not guaranteed to be atomic as observed
from other threads, processors, and I/O devices.” on page 355.

Therulesin this section provide further detail.

ArchitectureRule B-24: Instructionsthat are potentially but not actually misaligned memory accesses but which are
not actually misaligned may be atomic, as observed from other threads, processors, or 1/0 devices.

The overall Misaligned Memory Accesses specification, does not address issues for potentially but not actually mis-
aligned memory references. Documents such as the M1PS Coherence Protocol Specification define such behavior

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

B.5 Pseudocode

ArchitectureRRule B-25: Actually misaligned memory accesses may be performed more than one part. The order of
these parts is not defined.

Architecture Rule B-26: 1t is UNPREDICTABLE and implementation dependent how many parts may be used to
implement an actually misaligned memory access.

E.g. apage split store may be performed as two separate accesses, one for the low part, and one for the high part.
E.g. amisaligned access that is not split may be performed as a single access.
E.g. or amisaligned access - any misaligned access, not necessarily a split - may be performed a byte at atime.

Although most of this section has been emphasizing behavior that software cannot rely on, we can make the follow-
ing guarantees:

Architecture Rule B-27: every byte written in amisaligned store will be written once and only once.

ArchitectureRuleB-28: amisaligned storewill not be observed to write any bytesthat are not specified: in particul ar,
it will not do aread of memory that includes part of a split, merge, and then write the old and new data back.

Note the term “observed” in the rule above. E.g. memory and cache systems using word or line oriented ECC may
perform read-modify-write in order to write a subword such as a byte. However, such ECC RMWs are atomic from
the point of view of other processors, and do not affect bytes not written.

B.4.6.3 Misaligneds and Multiprocessor Memory Ordering

Preceding sections have defined misaligned memory accesses as having single thread atomicity but not multithread
atomicity. Furthermore, there are issues related to memory ordering overall:

Architecture Rule B-29: Instructionsthat are potentially but not actually misaligned memory accesses comply with
the MIPS Architecture rules for memory consistency, memory ordering, and synchronization.

This section Misaligned Memory Accesses, does not address issues for potentially but not actually misaligned mem-
ory references. Documents such as the MIPS Coherence Protocol Specification define such behavior.

Architecture Rule B-30: Although actually misaligned memory references may be split into several smaller
references, as described in previous sections, these smaller references behave as described for any memory references
in documents such as the M1PS Coherence Protocol Specification. In particular, misaligned subcomponent references
respect the ordering and compl etion types of the SYNC instruction, legal and illegal sequences described in that
document.

B.5 Pseudocode

Pseudocode can be convenient for describing the operation of instructions. Pseudocode is not necessarily afull speci-
fication, since it may not express al error conditions, all parallelism, or al non-determinism - all behavior left up to
the implementation. Also, pseudocode may overspecify an operation, and appear to make guarantees that software
should not rely on.

Thefirst stage pseudocode provides functions LoadPossiblyMisaligned and StorePossiblyMisaligned

that interface with other pseudocode viavirtual address vaddr, the memory request size nbytes (=16 for 128b
MSA), and arrays of byte data inbytes [nbytes] and inbytes [nbytes].

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 360

Misaligned Memory Accesses

The byte datais assumed to be permuted as required by the Big and Little endian byte ordering modes as required by
the different instructions - thus permitting the pseudocode for misalignment support to be separated from the endian-
ness considerations. |.e. outbytes[0] containsthe value that amisaligned store will write to address vAddr+0, and
soon.

The simplest thing that could possibly work would be to operate as follows:
for i in 0 .. nbytes-1
(pAddr, CCA) ¢« AddressTranslation (vAddr+i, DATA, LOAD)
inbytes[i] ¢« LoadRawMemory (CCA, nbytes, pAddr, vAddr+i, DATA)
endfor

for i in 0 .. nbytes-1
(pAddr, CCA) ¢« AddressTranslation (vAddr+i, DATA, STORE)
StoreRawMemory (CCA, 1, outbytes[i], pAddr, vAddr+i, DATA)
endfor

but this simplest possible pseudocode does not express the atomicity constraints and certain checks.

B.5.1 Pseudocode distinguishing Actually Aligned from Actually Misaligned

Thetop level pseudocode functions L oadPossi blyMisaligned/StorePossiblyMisaligned take different paths depending
on whether actually aligned or actually misaligned - to reflect the fact that aligned and misaligned have different
semantics, different atomicity properties, etc.

Figure B.1 LoadPossiblyMisaligned / StorePossiblyMisaligned pseudocode

inbytes[nbytes] ¢« LoadPossiblyMisaligned(vaddr, nbytes)
if naturally_aligned(vaddr,nbytes)
return LoadAligned(vaddr,nbytes)
else
return LoadMisaligned (caddr,nbytes)
endfunction LoadPossiblyMisaligned

StorePossiblyMisaligned (vaddr, outbytes[nbytes])
if naturally_aligned(vaddr,nbytes)
StoreAligned (vaddr,nbytes)
else
StoreMisaligned (caddr, nbytes)
endfunction StorePossiblyMisaligned

B.5.2 Actually Aligned

The aigned cases are very simple, and are defined to be a single standard operation from the existing pseudocode rep-
ertoire (except for byte swapping), reflecting the fact that actually aligned memory operations may have certain atom-
icity propertiesin both single and multithread situations.

Figure B.2 LoadAligned / StoreAligned pseudocode
inbytes[nbytes] ¢« LoadAligned(vaddr, nbytes)
assert naturally_aligned(vaddr,nbytes)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
return inbytes[] ¢« LoadRawMemory (CCA, nbytes, pAddr, vAddr, DATA)
endfunction LoadAligned

361 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

StoreAligned (vaddr, outbytes[nbytes])
assert naturally aligned(vaddr,nbytes)
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
StoreRawMemory (CCA, nbytes, outbytes, pAddr, vAddr, DATA)
endfunction StoreAligned

B.5.3 Byte Swapping

B.5 Pseudocode

The existing pseudocode uses functions LoadMemory and StoreMemory to access memory, which are declared but
not defined. These functions implicitly perform any byteswapping needed by the Big and Little endian modes of the
MIPS processor, which is acceptable for naturally aligned scalar data memory load and store operations. However,
with vector operations and misaligned support, it is necessary to assemble the bytes from a memory load instruction,
and only then to byteswap them - i.e.byteswapping must be exposed in the pseudocode. And conversely for stores.

Figure B.3 LoadRawMemory Pseudocode Function

MemElem ¢« LoadRawMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* like the original pseudocode LoadMemory, except no byteswapping */

/* MemElem: A vector of AccessLength bytes, in memory order.
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadRawMemory

Figure B.4 StoreRawMemory Pseudocode Function

StoreRawMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* 1like the original pseudocode StoreMemory, except no byteswapping */

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference.

/* AccessLength: Length, in bytes, of access */

/* MemElem: A vector of AccessLength bytes, in memory order.

/* pAddr: physical address */

/* VAddr: virtual address */

endfunction StoreRawMemory
Helper functions for byte swapping according to endianness:

Figure B.5 Byteswapping pseudocode functions

outbytes[nbytes] <« ByteReverse(inbytes[nbytes], nbytes)

for i in 0 .. nbytes-1
outbytes [nbytes-i] <« inbytes[i]
endfor

return outbytes]|]
endfunction ByteReverse

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

362

Misaligned Memory Accesses

363

outbytes [nbytes] ¢« ByteSwapIfNeeded (inbytes[nbytes], nbytes)
if BigEndianCPU then
return ByteReverse (inbytes)
else
return inbytes
endfunction ByteSwapIfNeeded

B.5.4 Pseudocode Expressing Most General Misaligned Semantics

The misaligned cases have fewer constraints and more implementation freedom. The very general pseudocode below
makes explicit some of the architectural rules that software can rely on, as well as many things that software should
NOT rely on: lack of atomicity both between and within splits, etc. However, we emphasize that only the behavior
guaranteed by the architecture rules should be relied on.

Figure B.6 LoadMisaligned most general pseudocode

inbytes [nbytes] < LoadMisaligned(vaddr, nbytes)
if any part of [vaddr,vaddr+nbytes) lies outside valid virtual address range
then SignalException(...)
for i in 0 .. nbytes-1
(pAddr[i], CCA[i]) <« AddressTranslation (vAddr+i, DATA, LOAD)
if any pAddr[i] is invalid or not permitted then SignalException(...)
if any CCA[i] !'= CCA[]j], where i, j are in [0,nbytes) then UNPREDICTABLE
loop // in any order, and possibly in parallel
pick an arbitrary subset S of [0,nbytes) that has not yet been loaded
load inbytes[S] from memory with the corresponding CCA[i], pAddr([i], vAddr+i
remove S from consideration
until set of byte numbers remaining unloaded is empty.
return inbytes][]
endfunction LoadMisaligned
// ...similarly for StoreMisaligned...

B.5.5 Example Pseudocode for Possible Implementations

This section provides alternative implementations of LoadMisaligned and StoreMisaligned that emphasize
some of the permitted behaviors.

It is emphasized that these are not specifications, just examples. Examples to emphasize that particular implementa-
tions of misaligneds may be permitted. But these examples should not be relied on. Only the guarantees of the archi-
tecture rules should be relied on. The most general pseudocode seeks to express these in the most general possible
form.

B.5.5.1 Example Byte-by-byte Pseudocode

The simplest possible implementation is to operate byte by byte. Here presented more formally than above, because
the separate byte loads and stores expresses the desired lack of guaranteed atomicity (whereas for

{Load, Store}PossiblyMisaligned the separate byte loads and stores would not express possible guarantees of
atomicity). Similarly, the pseudocode translates the addresses twice, afirst pass to check if there are any permissions
errors, asecond pass to actually use ordinary stores. UNPREDICTABLE behavior if the trand ations change between
the two passes.

This pseudocode tries to indicate that it is permissible to use such a 2-phase approach in an exception handler to emu-
late misaligneds in software. It is not acceptable to use asingle pass of byte by byte stores, unless split stores half per-

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

B.6 Misalignment and MSA vector memory accesses

formed can be withdrawn, transactionally. But it is not required to save the translations of thefirst passto reuse in the
second pass (which would be extremely slow). If virtual addresses translations or

Figure B.7 Byte-by-byte pseudocode for LoadMisaligned / StoreMisaligned

inbytes[nbytes] ¢« LoadMisaligned(vaddr, nbytes)

for i in 0 .. nbytes-1
(phl.pAddr[i], phl.CCA[i]) ¢« AddressTranslation (vAddr+i, DATA, LOAD)
/* ... checks ... */
for i in 0 .. nbytes-1
(ph2.pAddr[i], ph2.CCA[i]) ¢« AddressTranslation (vAddr+i, DATA, LOAD)
if phl.pAddr[i] != ph2.addr or phl.CCA[i] != ph2.CCA[i] then UNPREDICTABLE

inbytes[i] ¢« LoadRawMemory (ph2.CCA[i], nbytes, ph2.pAddr[i], vAddr+i, DATA)
return inbytes|]
endfunction LoadMisaligned

StoreMisaligned (vaddr, outbytes|[nbytes])

for i in 0 .. nbytes-1
(phl.pAddr[i], phl.CCA[i]) ¢« AddressTranslation (vAddr+i, DATA, LOAD)
/* ... checks ... */
for i in 0 .. nbytes-1
(ph2.pAddr[i], ph2[i].CCA) ¢« AddressTranslation (vAddr+i, DATA, LOAD)
if phl.pAddr[i] != ph2.addr or phl.CCA[i] != ph2.CCA[i] then UNPREDICTABLE

StoreRawMemory (ph2[i] .CCA, nbytes, outbytes[i], ph2.pAddr([i], vAddr+i, DATA)
endfunction StoreMisaligned

B.5.5.2 Example Pseudocode Handling Splits and non-Splits Separately
A more aggressive implementation, which is probably the preferred implementation on typical hardware, may:
» if amisaligned request is not split, it is performed as a single operation

» whereasif itissplititisperformed as two separate operations, with cache line and page splits handled separately.

B.6 Misalignment and MSA vector memory accesses

B.6.1 Semantics

Misalignment support is defined by Release 5 of the MIPS Architecture only for MSA (MIPS SIMD Architecture)*
vector load and store instructions, including Vector Load (LD.df), Vector Load Indexed (LDX.df), Vector Store
(ST.df) and Vector Store Indexed (STX.df). Each vector load and store has associated with it a data format, “.df”,
which can be byte/halfword/word/doubleword (B/H/W/D) (8/16/32/64 bits). The data format defines the vector ele-
ment size.

The dataformat is used to determine Big-endian versus Little-endian byte swapping, and also influences multiproces-
sor atomicity as described here.

4. MIPS® Architecture Reference Manual, Volume IV-j: The MIPS32® SIMD, Architecture Module. Document Number
MDO00867, Revision 1.05, June 21, 2013.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 364

Misaligned Memory Accesses

365

Architecture Rule B-31: Vector memory reference instructions are single thread atomic, as defined above.
Architecture Rule B-32: Vector memory reference instructions have element atomicity.

If the vector isaligned on the element boundary, i.e. if the vector addressis =0 modulo 2, 4, 8 for H/W/D respectively,
then for the purposes of multiprocessor memory ordering the vector memory reference instruction can be considered
a set of vector element memory operations. The vector element memory operations may be performed in any order,
but each vector element operation, since naturally aligned, has the atomicity of the corresponding scalar.

On MIPS32r5 16 and 32 bit scalar accesses are defined to be atomic, so e.g. each of the 32-hit elements of word vec-
tor loaded using LD.W would be atomic. However, on MIPS32r5 64 hit accesses are not defined to be atomic, so
LD.D would not have element atomicity.

On MIPSB4r5 16, 32, ad 64 bit scalar accesses are atomic. So vector LD.H, LD.W, LD.D, and the corresponding
stores would be element atomic.

All of the rulesin sections B.4.2 “Permissions and misaligned memory accesses’, B.4.4 “TLBsand Misaligned
Memory Accesses’, B.4.5 “Memory Types and Misaligned Memory Accesses’, and B.4.6.1 “Misaligneds are
Single Thread Atomic” apply to the vector load or store instructions as awhole.

E.g. amisaligned vector load instruction will never leave its vector destination register half written, if part of a page
split succeeds and the other part takes an exception. It is either al done, or not at all.

E.g. misaligned vector memory references that partly fall outside the virtual address space are UNPREDICTABLE.

However, the multiprocessor and multithread oriented rules of section B.4.6.2 “Misaligneds are not Multithread/
Multiprocessor Atomic” and B.4.6.3 “Misaligneds and Multiprocessor Memory Ordering” do NOT apply to the vec-
tor memory reference instruction as awhole. These rules only apply to vector el ement accesses.

Infact, al of therules of B.4 “Misaligned semantics” apply to all vector element accesses - except where “overrid-
den” for the vector as awhole.

E.g. amisaligned vector memory reference that crosses a memory type boundary, e.g. which is page split between
WB and UCA CCAs, isUNPREDICTABLE. Even though, if the vector aswholeis vector element aligned, no vector
element crosses such a boundary, so that if the vector element memory accesses were considered individually, each
would be predictable.

B.6.2 Pseudocode for MSA memory operations with misalignment

The MSA specification uses the following pseudocode functions to access memory:

Figure B.8 LoadTYPEVector / StoreTYPEVector used by MSA specification

function LoadTYPEVector(ts, a, n)
/* Implementation defined
load ts, a vector of n TYPE elements
from virtual address a.
*x/
endfunction LoadTYPEVector

function StoreTYPEVector(tt, a, n)
/* Implementation defined
store tt, a vector of n TYPE elements
to virtual address a.

MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

B.6 Misalignment and MSA vector memory accesses

*/
endfunction StoreTYPEVector

where TYPE = Byte, Halfword, Word, Doubleword,
e.g. LoadByteVector, LoadHalfwordVector, etc.

These can be expressed in terms of the misaligned pseudocode operations as follows - passing the TY PE (Byte, Half-

word, Word, DoubleWord) as a parameter:

Figure B.9 Pseudocode for LoadVector

function LoadVector (vregdest, vAddr, nelem, TYPE)
vector_wide_assertions (vAddr, nelem, TYPE)

for all i in 0 to nelem-1 do /* in any order, any combination */
rawtmp[i] ¢ LoadPossiblyMisaligned(vAddr + i*sizeof (TYPE),

bstmp[i] <« ByteSwapIfNeeded(rawtmp[i], sizeof (TYPE))
/* vregdest.TYPE[i] ¢« bstmp[i] */
vregdestyp; s (TYPE) *i+nbits (TYPE)-1..nbits (TYPE)*i = LSTtmp[i]
endfor
endfunction LoadVector

Figure B.10 Pseudocode for StoreVector

function StoreVector (vregsrc, vAddr, nelem, TYPE)
vector_wide_assertions (vAddr, nelem, TYPE)
for i in 0 .. nelem-1 /* in any order, any combination */

bstmp[i] < VregsrC,p;iig(rypE)*i+nbits (TYPE)-1..nbits (TYPE)*i
rawtmp[i] ¢ ByteSwapIfNeeded(rawtmp[i], sizeof (TYPE))

StorePossiblyMisaligned(vAddr + i*sizeof (TYPE), sizeof (TYPE)

endfor
endfunction StoreVector

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04

sizeof (TYPE)

)

)

366

Misaligned Memory Accesses

367 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Appendix C

Revision History

Revision

Date

Description

0.90

November 1, 2000

Internal review copy of reorganized and updated architecture documentation.

0.91

November 15, 2000

Internal review copy of reorganized and updated architecture documentation.

0.92

December 15, 2000

Changesin thisrevision:

 Correct sign in description of MSUBU.

» Update JR and JALR instructions to reflect the changes required by
MIPS16.

0.95

March 12, 2001

Update for second external review release

1.00

August 29, 2002

Update based on all review feedback:

» Add missing optional select field syntax in mtcO/mfcO instruction descrip-
tions.

 Correct the PREF instruction description to acknowledge that the Prepare-
ForStore function does, in fact, modify architectural state.

» To provide additional flexibility for Coprocessor 2 implementations, extend
the sel field for DMFCO, DMTCO, MFCO, and MTCO to be 8 bits.

» Update the PREF instruction to note that it may not update the state of a
locked cacheline.

» Remove obviously incorrect documentation in DIV and DIVU with regard
to putting smaller numbersin register rt.

* Fix the description for MFC2 to reflect data movement from the coproces-
sor 2 register to the GPR, rather than the other way around.

 Correct the pseudo code for LDC1, LDC2, SDC1, and SDC2 for a MIPS32
implementation to show the required word swapping.

* Indicate that the operation of the CACHE instruction is UNPREDICTABLE
if the cache line containing the instruction is the target of an invalidate or
writeback invalidate.

* Indicate that an Index Load Tag or Index Store Tag operation of the CACHE
instruction must not cause a cache error exception.

» Maketheentireright half of the MFC2, MTC2, CFC2, CTC2, DMFC2, and
DMTC2 instructions implementation dependent, thereby acknowledging
that these fields can be used in any way by a Coprocessor 2 implementation.

 Clean up the definitions of LL, SC, LLD, and SCD.

» Add awarning that software should not use non-zero values of the stype
field of the SYNC instruction.

» Update the compatibility and subsetting rules to capture the current require-
ments.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 368

Revision History

Revision Date

Description

1.90 September 1, 2002 Merge the MIPS Architecture Release 2 changesin for thefirst release of a
Release 2 processor. Changes in this revision include:

All new Release 2 instructions have been included: DI, EHB, EI, EXT, INS,
JALR.HB, JR.HB, MFHC1, MFHC2, MTHC1, MTHC2, RDHWR,
RDPGPR, ROTR, ROTRV, SEB, SEH, SYNCI, WRPGPR, WSBH.

The following instruction definitions changed to reflect Release 2 of the
Architecture: DERET, ERET, JAL, JALR, JR, SRL, SRLV

With support for 64-bit FPUs on 32-bit CPUsin Release 2, all floating point
instructions that were previously implemented by M1PS64 processors have
been modified to reflect support on either MIPS32 or M1PS64 processorsin
Release 2.

All pseudo-code functions have been updated, and the
Are64BitFPOperationsEnabled function was added.

Update the instruction encoding tables for Release 2.

2.00 June 9, 2003 Continue with updates to merge Release 2 changes into the document.
Changesin thisrevision include:

Correct the target GPR (from rd to rt) in the SLTI and SLTIU instructions.
This appears to be a day-one bug.

Correct CPR number, and missing data movement in the pseudocode for the
MTCO instruction.

Add note to indicate that the CACHE instruction does not take Address
Error Exceptions due to mis-aligned effective addresses.

Update SRL, ROTR, SRLV, ROTRV, DSRL, DROTR, DSRLV, DROTRV,
DSRL 32, and DROTR32 ingtructions to reflect a 1-bit, rather than a 4-bit
decode of shift vs. rotate function.

Add programming note to the PrepareForStore PREF hint to indicate that it
cannot be used alone to create a bzero-like operation.

Add note to the PREF and PREFX instruction indicating that they may
cause Bus Error and Cache Error exceptions, athough thisistypically lim-
ited to systems with high-reliability requirements.

Update the SYNCI instruction to indicate that it should not modify the state
of alocked cacheline.

Establish specific rules for when multiple TLB matches can be reported (on
writes only). This makes software handling easier.

2.50 July 1, 2005 Changesin thisrevision:

369 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

Correct figure label in LWR instruction (it was incorrectly specified as
LWL).

Update al filesto FrameMaker 7.1.

Include support for implementation-dependent hardware registers via
RDHWR.

Indicate that it is implementation-dependent whether prefetch instructions
cause EJTAG data breakpoint exceptions on an address match, and suggest
that the preferred implementation is not to cause an exception.

Correct the MIPS32 pseudocode for the LDC1, LDXC1, LUXC1, SDC1,
SDXC1, and SUXC1 instructions to reflect the Release 2 ability to have a
64-bit FPU on a 32-bit CPU. The correction simplifies the code by using the
ValueFPR and StoreFPR functions, which correctly implement the Release
2 access to the FPRs.

Add an explicit recommendation that al cache operations that require an
index be done by converting the index to a kseg0 address before performing
the cache operation.

Expand on restrictions on the PREF instruction in cases where the effective
address has an uncached coherency attribute.

Revision

Date

Description

2.60

June 25, 2008

Changesin thisrevision:

» Applied the new B0.01 template.

» Update RDHWR description with the UserLocal register.
 added PAUSE instruction

* Ordering SYNCs

» CMP behavior of CACHE, PREF*, SYNCI

* CVT.SPL, CVT.S.PU are non-arithmetic (no exceptions)
* *MADD.fmt & *MSUB fmt are non-fused.

* varioustypos fixed

2.61

July 10, 2008

» Revision History file was incorrectly copied from Volume I11.
» Removed index conditional text from PAUSE instruction description.
» SYNC instruction - added additional format “SYNC stype”

2.62

January 2, 2009

* LWC1, LWXCL - added statement that upper word in 64bit registers are
UNDEFINED.

* CVT.SPL and CVT.S.PU descriptions were still incorrectly listing |IEEE
exceptions.

» Typoin CFC1 Description.

« CCResisaccessed through $3 for RDHWR, not $4.

3.00

March 25, 2010

» JALX instruction description added.
 Sub-setting rules updated for JALX.

3.01

June 01, 2010

» Copyright page updated.
 User mode instructions not alowed to produce UNDEFINED results, only
UNPREDICTABLE results.

3.02

March 21, 2011

» RECIP, RSQRT instructions do not require 64-bit FPU.

* MADD/MSUB/NMADD/NMSUB psuedo-code was incorrect for PS for-

mat check.

3.50

September 20, 2012

* Added EVA load/store instructions: LBE, LBUE, LHE, LHUE, LWE, SBE,

SHE, SWE, CACHEE, PREFE, LLE, SCE, LWLE, LWRE, SWLE, SWRE.

e TLBWI - can be used to invalidate the VPN2 field of a TLB entry.
» FCSR.MAC2008 hit affects intermediate rounding in MADD fmt,

MSUB fmt, NMADD fmt and NMSUB.fmt.

* FCSR.ABS2008 bit defines whether ABS fmt and NEG fmt are arithmetic

or not (how they deal with QNAN inputs).

351

October 20, 2012

e CACHE and SYNCI ignore RI and XI exceptions.
» CVT, CEIL, FLOOR, ROUND, TRUNC to integer can’t generate FP-Over-

flow exception.

5.00

December 14, 2012

* R5 changes: DSP and MT ASEs -> Modules
« NMADD.fmt, NMSUB fmt - for IEEE2008 negate portion is arithmetic.

5.01

December 15, 2012

» No technical content changes:
» Update logos on Cover.
» Update copyright page.

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 370

Revision History

Revision Date Description

5.02 April 22, 2013 » Fix: Figure 2.26 Are64BitFPOperationsEnabled Pseudcode Function -
“Enabled” was missing.

* R5 changeretroactive to R3: removed FCSR.MCA 2008 bit: no architectural
support for fused multiply add with no intermediate rounding. Appliesto
MADD fmt, MSUB fmt, NMADD fmt, NMSUB fmt.

* Clarification: referencesto “ 16 FP registers mode” changed to “the FR=0
32-bit register model”; specifically, paired single (PS) instructions and long
(L) format instructions have UNPREDICTABLE resultsif FR=0, aswell as
LUXC1land SUXC1.

* Clarification: C.cond fmt instruction page: cond bits 2..1 specify the com-
parison, cond bit O specifies ordered versus unordered, while cond bit 3
specifies signalling versus non-signalling.

* R5 change: UFR (User mode FR change): CFC1, CTC1 changes.

5.03 August 21, 2013 + Resolved inconsistencies with regards to the availability of instructionsin
MIPS32r2: MADD fmt family (MADD.S, MADD.D, NMADD.S,
NMADD.D, MSUB.S, MSUB.D, NMSUB,S, NMSUB.D), RECIPfmt fam-
ily (RECIPS, RECIPD, RSQRT.S, RSQRT.D), and indexed FP loads and
stores (LWXC1, LDXC1, SWXC1, SDXC1). The appendix section A.2
“Instruction Bit Encoding Tables’, shared between Volume | and Volume |1
of the ARM, was updated, in particular the new upright delta A mark is
added to Table A.2 “ Symbols Used in the Instruction Encoding Tables’,
replacing theinverse deltamarking V for theseinstructions. Similar updates
made to microMIPS's corresponding sections. Instruction set descriptions
and pseudocode in Volume |1, Basic Instruction Set Architecture, updated.
These instructions are required in MIPS32r2 if an FPU isimplemented. .

» Misaligned memory access support for MSA: see Volume |1, Appendix B
“Misaligned Memory Accesses’.

» Has2008 isisrequired as of release 5 - Table 5.4, “FIR Register Descrip-
tions’.

» ABS2008 and NAN2008 fields of Table 5.7 “FCSR RegisterField Descrip-
tions” were optional in release 3 and could be R/W , but as of release 5 are
required, read-only, and preset by hardware.

» FPU FCSR.FS Flush Subnormals/ Flush to Zero behaviour is made consis-
tent with M SA behaviour, in MSACSR.FS: Table 5.7, “FCSR Register Field
Descriptions’, updated. New section 5.8.1.4 “Alternate Flush to Zero
Underflow Handling”.

» Volumel, Section 2.2 “Compliance ad Subsetting” noted that the L format
isrequired in MIPS FPUs, to be consistent with Table 5.4 “FIR Register
Field Definitions” .

» Noted that UFR and UNFR can only be written with the value 0 from
GPR[0]. See section 5.6.5 “ User accessible FPU Register model con-
trol (UFR, CP1 Control Register 1)” and section 5.6.5 “User accessi-
ble Negated FPU Register model control (UNFR, CP1 Control
Register 4)”

5.04 December 11, 2013 LLSC Related Changes

* Added ERETNC. New.

» Modified SC handling: refined, added, and elaborated cases where SC can
fail or was UNPREDICTABLE.

XPA Related Changes

* Added MTHCO, MFHCO to access extensions. All new.

» Modified MTCO for MIPS32 to zero out the extended bits which are write-
able. Thisisto support compatibility of XPA hardware with non XPA soft-
ware. In pseudo-code, added registers that are impacted.

* MTHCO and MFHCO - Added RI conditions.

371 MIPS® Architecture For Programmers Volume II-A: The MIPS32® Instruction Set, Revision 5.04

MIPS® Architecture For Programmers Volume 1I-A: The MIPS32® Instruction Set, Revision 5.04 372

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

