https:/ /www.cse.unsw.edu.au/~cs1521/24T1/

https://www.cse.unsw.edu.au/~cs1521/24T1/
https://www.cse.unsw.edu.au/~cs1521/24T1/

10 types of students

There are only 10 types of students ...

those that understand binary

those that don't understand binary

https://www.cse.unsw.edu.au/~cs1521/24T1/

Decimal Representation

Can interpret decimal number 4705 as:
4x10%4+7x10% 40 x 10 +5 x 10°

The base or radix is 10 ... digits - 9

Place values:

1000 100 10 1
103 102 10! 109

Write number as 4705,

Note use of subscript to denote base

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Representation in Other Bases

base 10 is an arbitrary choice
can use any base
e.g. could use base 7

Place values:

343 49 7 1
[GAY G C

Write number as 1216, and interpret as:
IXTP4+2x T2+ 1x T 4+6 x 70 == 454,

COMP1. — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Binary Representation

Modern computing uses binary numbers

because digital devices can easily produce high or low level voltages which can represent 1 or 0.

The base or radix is 2
Digits @ and 1

Place values:

23 22 21 20

Write number as 1011, and interpret as:
Ix2240x22+1x2M+1x20==11,

https://www.cse.unsw.edu.au/~cs1521/24T1/

Converting between Binary and Decimal

Example: Convert 1101, to Decimal:

Example: Convert 29 to Binary:

https://www.cse.unsw.edu.au/~cs1521/24T1/

Hexadecimal Representation

Binary numbers hard for humans to read — too many digits!
Conversion to decimal awkward and hides bit values

Solution: write numbers in hexadecimal!

The base or radix is 16 ... digits 0, 1, 2, 3, 4,5,6,7,8,9,A,B,C, D, E, F

Place values:

4096 256 16 1
163 162 16' 16°

Write number as 3AF'1,4 and interpret as:
3 x 163 +10 x 162 + 15 x 16! 4+ 1 x 16° == 15089,

in C, @x prefix denotes hexadecimal, e.g. 0x3AF1

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Octal & Binary C constants

Octal (based 8) representation used to be popular for binary numbers
Similar advantages to hexadecimal
in Ca leading ® denotes octal, e.g. 07563

binary constants were only recently added to C - some C compilers will not recognize them
printf("%d", 0x2A); // prints 42
printf("%d", 052); // prints 42
printf("%d", 0b101010); // might compile and print 42

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Binary Constants

In hexadecimal, each digit represents 4 bits

0100 1000 1111 1616 1611 1160 1601 0111
0x 4 8 F A B C 9 7

In octal, each digit represents 3 bits

01 001 0600 111 116 161 611 1106 016 010 111
0 1 1 0 7 6 5 3 6 2 2 7

In binary, each digit represents 1 bit

0b01001060611111610160111160010010111

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Binary to Hexadecimal

Example: Convert 1011111000101001, to Hex:

Example: Convert 101111010111005 to Hex:

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Hexadecimal to Binary

Reverse the previous process ...

Convert each hex digit into equivalent 4-bit binary representation

Example: Convert AD5 4 to Binary:

https://www.cse.unsw.edu.au/~cs1521/24T1/

Unsigned integers

The unsigned int data type

on cse machines is 32 bits, storing values in the range 0 .. 2%2-1

max
value

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Signed integers

The int data type

on cse machines is 32 bits, storing values in the range -2°' .. 2%

max
value

min
value

1311 [0]

https://www.cse.unsw.edu.au/~cs1521/24T1/

Representing Negative Integers

modern computers almost always use two’'s complement to represent integers
positive integers and zero represented in obvious way
negative integers represented in clever way to make arithmetic in silicon fast/simpler

for an n-bit binary number the representation of —bis 2™ — b

e.g. in 8-bit two’s complement —5 is represented as 28 — 5 == 11111011,

https://www.cse.unsw.edu.au/~cs1521/24T1/

Code example: printing all 8 bit twos complement bit patterns

Some simple code to examine all 8 bit twos complement bit patterns
for (int i = -128; i < 128; i++) {

printf("%4d ", i);

print_bits(i, 8);

printf("\n");
}

source code for 8_bit_twos_complement.c

$ dcc 8_bit_twos_complement.c print_bits.c -o 8_bit_twos_complement

source code for print_bits.c source code for print_bits.h

https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/8_bit_twos_complement.c
https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/print_bits.c
https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/print_bits.h
https://www.cse.unsw.edu.au/~cs1521/24T1/

Code example: printing all 8 bit twos complement bit patterns

$./8_bit_twos_complement

-128
-127
-126

=3
=2
=1l

w N

125
126
127

10000000
10000001
10000010

11111101
11111110
11111111
00000000
00000001
00000010
00000011

01111101
01111110
01111111

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Code example: printing bits of int

int a = 0;

printf("Enter an int: ");

scanf("%d", &a);

// sizeof returns number of bytes, a byte has 8 bits
int n_bits = 8 * sizeof a;

print_bits(a, n_bits);

printf("\n");

source code for print_bits_of_int.c

$ dcc print_bits_of_int.c print_bits.c -o print_bits_of_int
$./print_bits_of_int

Enter an int: 42

000000000000000000000000001010106

$./print_bits_of_int

Enter an int: -42

111112111212111211121112111111101011060

COMP1521 24T1 — Integers

https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/print_bits_of_int.c
https://www.cse.unsw.edu.au/~cs1521/24T1/

Code example: printing bits of int

$./print_bits_of_int

Enter an int: 0
00000000000000000000000000000000
$./print_bits_of_int

Enter an int: 1
00000000000000000000000000000001
$./print_bits_of_int

Enter an int: -1
1111171171212121212117127121212111111
$./print_bits_of_int

Enter an int: 2147483647
01111112121122172112211211211121111
$./print_bits_of_int

Enter an int: -2147483648
10000000000000000000000000000000

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Bits in Bytes in Words

Many hardware operations works with bytes: 1 byte == 8 bits
C's sizeof gives you number of bytes used for variable or type
sizeof variable - returns number of bytes to store variable
sizeof (type) - returns number of bytes to store type

On CSE servers, C types have these sizes

char =1 byte = 8 bits, 42 is 00101010

short = 2 bytes = 16 bits, 42 is 0000000000101010

int = 4 bytes = 32 bits, 42 is 00000000000000000000000000101010
double = 8 bytes = 64 bits, 42 = ?

above are common sizes but not universal on a small embedded CPU
sizeof (int) might be 2 (bytes)

https://www.cse.unsw.edu.au/~cs1521/24T1/

Code example: integer_types.c - exploring integer types

We can use sizeof and limits.h to explore the range of values

which can be represented by standard C integer types on our machine...

$ dcc integer_types.c -o integer_types

$./integer_types

Type Bytes Bits

char

signed char
unsigned char
short

unsigned short
int

unsigned int
long

unsigned long
long long
unsigned long long

1

© ™K~ NN R R

8
8
8

16

16

32

32

64

64

64

64

COMP1521 24T1 — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Code example: integer_types.c - exploring integer types

Type

char

signed char
unsigned char
short

unsigned short
int

unsigned int
long

unsigned long
long long
unsigned long long

source code for integer_types.c

Min

-128

-128

(0]

-32768

(0]
2147483648
(0]

Max

127

127

255

32767
65535
2147483647
4294967295

-9223372036854775808 9223372036854775807
0 18446744073709551615
-9223372036854775808 9223372036854775807
0 18446744073709551615

COMP1521 24T1 — Integers

https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/integer_types.c
https://www.cse.unsw.edu.au/~cs1521/24T1/

stdint.h - integer types with guaranteed sizes

#include <stdint.h>

to get below integer types (and more) with guaranteed sizes

we will use these heavily in COMP1521

int8_t
uint8_t
intl6_t
uinti6_t
int32_t
uint32_t
int64_t
uint64_t

source code for stdint.c

i1;
i2;
13g
i4;
i5;
i6;
i7;
i8;

/7
//
//
//
//
//
//
/7
//
//

range of values for type

minimum maximum
-128 127

0 255

-32768 32767

0 65535
-2147483648 2147483647
0 4294967295

-9223372036854775808 9223372036854775807
0 18446744073709551615

https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/stdint.c
https://www.cse.unsw.edu.au/~cs1521/24T1/

Code example: char_bug.c

Common C bug:

char c; // c should be declared int (int16_t would work, int is better)
while ((c = getchar()) != EOF) {
putchar(c);

Typically stdio.h contains:
#define EOF -1

most platforms: char is signed (-128.127)

loop will incorrectly exit for a byte containing OxFF
rare platforms: char is unsigned (0..255)

loop will never exit

source code for char_bug.c

COMP1. — Integers

https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/char_bug.c
https://www.cse.unsw.edu.au/~cs1521/24T1/

Endian-ness

The bytes of a multi-byte (2 byte, 4 byte, ...) quantity can be stored in various orders.
Endian-ness is the order.

Two common orders: big-endian & little-endian

big-endian - most significant byte at the smallest memory address.

little-endian - least significant byte at the smallest memory address.

Most modern general-purpose computers little-endian

Endian-ness configurable on some architectures e.g ARM

COMP1. — Integers

https://www.cse.unsw.edu.au/~cs1521/24T1/

Testing Endian-ness

C MIPS
uint8_t b; lbu $a0, u # b = *»(uint8_t *)&u;
uint32_t u; i $vo, 1 # printf("%d", a0);
u = 0x03040506; syscall
// load first byte of u 1i $a06, '\n' # printf("%c", '\n');
b = x(uint8_t *)&u; i $vo, 11
// prints 6 if little-endian syscall
// and 3 if big-endian 1i $vo, 0 # return 0
printf("%d\n", b); jr $ra
s doremine .data
u:

.word 0x3040506 #u = 0x03040506;

source code for endians

COMP1521 24T1 — Integers

https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/endian.c
https://cgi.cse.unsw.edu.au/~cs1521/24T1//topic/integers/code/endian.s
https://www.cse.unsw.edu.au/~cs1521/24T1/

