Floating Point Numbers

- C has three floating point types
 - `float` ... typically 32-bit (lower precision, narrower range)
 - `double` ... typically 64-bit (higher precision, wider range)
 - `long double` ... typically 128-bits (but maybe only 80 bits used)

- Floating point constants, e.g.: `3.14159` `1.0e-9` are `double`

- Reminder: division of 2 ints in C yields an int.
 - but division of double and int in C yields a double.

```c
double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%.6lf\n", d);  // prints 0.571429
// prints in scientific notation
printf("%le\n", d);  // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d);  // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d);  // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%.1lf\n", d);  // prints 0.6
```

source code for float_output.c
Fractions in different Bases

The decimal fraction 0.75 means

\[7 \times 10^{-1} + 5 \times 10^{-2} = 0.7 + 0.05 = 0.75 \]

or equivalently \(75/100 = 0.75 \)

Similarly 0b0.11 means

\[1 \times 2^{-1} + 1 \times 2^{-2} = 0.5 + 0.25 = 0.75 \]

or equivalently \(3/4 = 0.75 \)

Similarly 0x0.C means

\[12 \times 16^{-1} = 0.75 \]

or equivalently \(12/16 = 3/4 = 0.75 \)

Note: We call the \(. \) a radix point rather than a decimal point when we are dealing with other bases.

The algorithm to convert a decimal fraction to another base is:

- take the fractional component and multiply by the base
- the whole number becomes the next digit to the right of the radix point in our fraction.
- repeat this process until the fractional part becomes exhausted or we have sufficient digits
- this process is not guaranteed to terminate.

Converting Decimal Fractions to Binary

For example if we want to convert 0.3125 to base 2

\[0.3125 \times 2 = 0.625 \]
\[0.625 \times 2 = 1.25 \]
\[0.25 \times 2 = 0.5 \]
\[0.5 \times 2 = 1.0 \]

Therefore 0.3125 = 0b0.0101
Exercise 2: Fractions: Decimal → Binary

Convert the following decimal values into binary

- 12.625
- 0.1

Floating Point Numbers

- can have fractional numbers in other bases, e.g. $110.101_2 = 6.625_{10}$
- if we represent floating point numbers with a fixed small number of bits
 - there are only a finite number of bit patterns
 - can only represent a finite subset of reals
- almost all real values will have no exact representation
- value of arithmetic operations may be real with no exact representation
- we must use closest value which can be exactly represented
- this approximation introduces an error into our calculations
- often, does not matter
- sometimes … can be disastrous

Fixed-Point Representation

- fixed-point is a simple trick to represent fractional numbers as integers
 - every value is multiplied by a particular constant, e.g. 1000 and stored as integer
 - so if constant is 1000, could represent 56.125 as an integer (56125)
 - but not 3.141592
- usable for some problems, but not ideal
- used on small embedded processors without silicon floating point
- major limitation is only small range of values can be represented
 - for example with 32 bits, and using 65536 (2^{16}) as constant
 - 16 bits used for integer part
 - 16 bits used for the fraction
 - minimum $2^{-16} \approx 0.000015$
 - maximum $2^{15} \approx 32768$
• you met scientific notation, e.g 6.0221515×10^{23} in physics or other science classes
• we can represent numbers on a computer in a similar way to scientific notation
• but using binary instead of base ten, e.g 10.6875
 $=1010.1011 = 1.0101011 \times 2^{11} = (1 + 43/128) \times 2^3 = 1.3359375 \times 8 = 10.6875$
• allows a much bigger range of values to be represented than fixed point
• using only 8 bits for the exponent, we can represent numbers from $10^{-38} \ldots 10^{+38}$
• using only 11 bits for the exponent, we can represent numbers from $10^{-308} \ldots 10^{+308}$
• leads to numbers close to zero having higher precision (more accurate) which is good

choosing which exponential representation

• exponent notation allows multiple representations for a single value
 • e.g 1.0101011×2^{11} and 10.101011×2^{10}
• having multiple representations would make implementing arithmetic slower on CPU
• better to have only one representation (one bit pattern) representing a value
• decision - use representation with exactly one digit in front of decimal point
 • use 1.0101011×2^{11} not 10.101011×2^{10} or 1010.1011×2^{0}
 • this is called normalization
• weird hack: as we are using binary the first digit must be a one we don’t need to store it
 • as we long we have a separate representation for zero

floating_types.c - print characteristics of floating point types

```c
float f;
double d;
long double l;
printf("float %2lu bytes min=%-12g max=%g\n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g\n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg\n", sizeof l, LDBL_MIN, LDBL_MAX);
```

source code for floating_types.c

```
$ ./floating_types
float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
```
IEEE 754 - history

- 1970s Intel building microprocessors (single-chip CPUs)
- 1976 Intel developing coprocessor (separate chip) for floating-point arithmetic
- Intel asked William Kahan, University of California to design format
- other manufacturers didn’t want to be left out
- IEEE 754 standard working group formed
- Kahan and others produced well-designed robust specification
- accepted by manufacturers who begin using it for new architectures
- IEEE 754 standard released in 1985 (update to standard in 2008)
- today, almost all computers use IEEE 754

IEEE 754 standard

- C floats almost always IEEE 754 single precision (binary32)
- C double almost always IEEE 754 double precision (binary64)
- C long double might be IEEE 754 (binary128)
- IEEE 754 representation has 3 parts: sign, fraction and exponent
- numbers have form $sign \times fraction \times 2^{exponent}$, where $sign$ is +/-
- $fraction$ always has 1 digit before decimal point (normalized)
- $exponent$ is stored as positive number by adding constant value (bias)

Internal structure of floating point values

- Single precision
- 32-bit format: 1 bit for sign, 8 bits for exponent, 23 bits for fraction
- Double precision
- 64-bit format: 1 bit for sign, 11 bits for exponent, 52 bits for fraction
Floating Point Numbers

Example of normalising the fraction part in binary:

- \(1010.1011\) is normalized as \(1.0101011 \times 2^0\)
- \(1010.1011 = 10 + 11/16 = 10.6875\)
- \(1.0101011 \times 2^0 = (1 + 43/128) \times 2^3 = 1.3359375 \times 8 = 10.6875\)

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

- if exponent is 8-bits, then the bias = \(2^{8-1} - 1 = 127\)
- valid bit patterns for exponent are 00000001 .. 11111110
- these correspond to exponent values of -126 .. 127

Example (single-precision):

\[
150.75 = 10010110.11
\]

// normalise fraction, compute exponent

\[
= 1.001011011 \times 2^7
\]

// sign bit = 0

// exponent = 10000110

// fraction = 001011011000000000000000

= 010000110001011011000000000000000

Distribution of Floating Point Numbers

- floating point numbers not evenly distributed
- representations get further apart as values get bigger
 - this works well for most calculations
 - but can cause weird bugs
- double (IEEE 754 64 bit) has 52-bit fractions so:
 - between \(2^n\) and \(2^{n+1}\) there are \(2^{52}\) doubles evenly spaced
 - e.g. in the interval \(2^{-52}\) and \(2^{-41}\) there are \(2^{52}\) doubles
 - and in the interval between 1 and 2 there are \(2^{52}\) doubles
 - and in the interval between \(2^n\) and \(2^{n+1}\) there are \(2^{52}\)
 - near 0.001 - doubles are about 0.0000000000000000002 apart
 - near 1000 - doubles are about 0.0000000000002 apart
 - near 1000000000000000 - doubles are about 0.25 apart
 - above \(2^{53}\) - doubles are more than 1 apart
IEEE-754 Single Precision example: 0.15625

0.15625 is represented in IEEE-754 single-precision by these bits:
00111110001000000000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0111100</td>
<td>01000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0

raw exponent = 01111100 binary
= 124 decimal

actual exponent = 124 - exponent_bias
= 124 - 127
= -3

number = +1.01000000000000000000000 binary * 2**-3
= 1.25 decimal * 2**-3
= 1.25 * 0.125
= 0.15625

source code for explain_float_representation.c

https://www.cse.unsw.edu.au/~cs1521/24T1/ COMP1521 24T1 — Floating-Point Numbers

IEEE-754 Single Precision example: -0.125

$./explain_float_representation -0.125

-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0111100</td>
<td>00000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1

raw exponent = 01111100 binary
= 124 decimal

actual exponent = 124 - exponent_bias
= 124 - 127
= -3

number = -1.00000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125

IEEE-754 Single Precision example: 150.75

$./explain_float_representation 150.75

150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000110</td>
<td>00101101100000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0

raw exponent = 10000110 binary
= 134 decimal

actual exponent = 134 - exponent_bias
= 134 - 127
= 7

number = +1.00101101100000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= 150.75
IEEE-754 Single Precision example: -96.125

$./explain_float_representation -96.125
-96.125 is represented in IEEE-754 single-precision by these bits:
110001011100000001000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000101</td>
<td>10000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1
sign = -
raw exponent = 1000101 binary
= 133 decimal
actual exponent = 133 - exponent_bias
= 133 - 127
= 6
number = -1.10000000000000000000000 binary * 2**6
= -1.50195 decimal * 2**6
= -1.50195 * 64
= -96.125

IEEE-754 Single Precision exploring bit patterns #1

$./explain_float_representation 00111101110011001100110011001101
sign bit = 0
sign = +
raw exponent = 0111011 binary
= 123 decimal
actual exponent = 123 - exponent_bias
= 123 - 127
= -4
number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1

infinity.c: exploring infinity

- IEEE 754 has a representation for +/- infinity
- propagates sensibly through calculations

```c
double x = 1.0/0.0;
printf("%lf\n", x); // prints inf
printf("%lf\n", -x); // prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
```

source code for infinity.c
C (IEEE-754) has a representation for invalid results:
- NaN (not a number)
- ensures errors propagate sensibly through calculations

```c
double x = 0.0/0.0;
printf("%lf\n", x);  // prints nan
printf("%lf\n", x - 1);  // prints nan
printf("%d\n", x == x);  // prints 0 (false)
printf("%d\n", isnan(x));  // prints 1 (true)
```

source code for nan.c

IEEE-754 Single Precision example: inf

```
$ ./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111000000000000000000000000
sign | exponent | fraction
  0 | 11111111 | 000000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
               = 255 decimal
number = +inf
```

IEEE-754 Single Precision exploring bit patterns #2

```
$ ./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
               = 255 decimal
number = NaN
```
Consequences of most reals not having exact representations

```c
double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b == 0) {
  // better would be fabs(b) > 0.000001
  printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16
```

- do not use == and != with floating point values
- instead check if values are close

```c
double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.11022e-16
printf("%g\n", x * x); // prints 1.21e-16
```

Another reason not to use == with floating point values

```c
if (d == d) {
  printf("d == d is true\n");
} else {
  // will be executed if d is a NaN
  printf("d == d is not true\n");
}
if (d == d + 1) {
  // may be executed if d is large
  // because closest possible representation for d + 1
  // is also closest possible representation for d
  printf("d == d + 1 is true\n");
} else {
  printf("d == d + 1 is false\n");
}
```
Another reason not to use == with floating point values

$ gcc double_not_always.c -o double_not_always
$./double_not_always 42.3

d = 42.3

d == d is true

d == d + 1 is false

$ gcc double_not_always 4200000000000000000

d = 4.2e+18

d == d is true

d == d + 1 is true

$ gcc double_not_always NaN

d = nan

d == d is not true

d == d + 1 is false

because closest possible representation for d + 1 is also closest possible representation for d

source code for double_not_always.c

Consequences of most reals not having exact representations

// loop looks to print 10 numbers but actually never terminates

double d = 9007199254740990;
while (d < 9007199254741000) {
 printf("%lf\n", d); // always prints 9007199254740992.000000
 // 9007199254740993 can not be represented as a double
 // closest double is 9007199254740992.0
 // so 9007199254740992.0 + 1 = 9007199254740992.0
 d = d + 1;
}

source code for double_disaster.c

• 9007199254740993 is $2^{53} + 1$
 it is smallest integer which can not be represented exactly as a double
• The closest double to 9007199254740993 is 9007199254740992.0
• aside: 9007199254740993 can not be represented by a int32_t
 it can be represented by int64_t

Exercise: Floating point → Decimal

Convert the following floating point numbers to decimal.

Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000