
COMP1521 23T3 — Virtual Memory

https://www.cse.unsw.edu.au/~cs1521/23T3/

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 1 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/
https://www.cse.unsw.edu.au/~cs1521/23T3/


Introduction to Virtual Memory and Caching

• Short introduction to virtual memory and caching.

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 2 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Memory

General purpose computers typically contain 4-128GB of volatile Random Access Memory (RAM)

Plus a hierarchy of smaller cache memory - on or off the CPU chip.https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 3 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Single Process Resident in RAM without Operating System

• Many small embedded systems run without operating system.

• Single program running, typically written in C, perhaps with some assembler.

• Devices (sensors, switches, …) often wired at particular address.

• E.g motor speed can be set by storing byte at 0x100400.

• Program accesses (any) RAM directly.

• Development and debugging tricky.
• might be done by sending ascii values bit by bit on a single wire

• Widely used for simple micro-controllers.

• Parallelism and exploiting multiple-core CPUs problematic

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 4 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Single Process Resident in RAM with Operating System

• Operating systems need (simple) hardware support.

• Part of RAM (kernel space) must be accessible only in a privileged mode.

• System call enables privileged mode and passes execution to operating system code in kernel space.

• Privileged mode disabled when system call returns.

• Privileged mode could be implemented by a bit in a special register

• If only one process resident in RAM at any time - switching between processes is slow .

• Operating system must write out all RAM used by old process to disk (or flash) and read all memory of new
process from disk.

• OK for some uses, but inefficient in general.

• Little used in modern computing.

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 5 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Multi Processes Resident in RAM without Virtual Memory

• If multiple processes to be resident in RAM operating system can swap execution between them quickly.

• RAM belonging to other processes & operating system operating system must be protected

• Hardware support can limit process accesses to particular segment (region) of RAM.

• BUT program may be loaded anywhere in RAM to run

• Breaks instructions which use absolute addresses, e.g.: lw, sw, jr

• Either programs can’t use absolute memory addresses (relocatable code)

• Or code has to be modified (relocated) before it is run - not possible for all code!

• Major limitation - much better if programs can assume always have same address space

• Little used in modern computing.

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 6 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory

• Big idea - disconnect address processes use from actual RAM address.

• Operating system translates (virtual) address a process uses to an physical (actual) RAM address.

• Convenient for programming/compilers - each process has same virtual view of RAM.

• Can have multiple processes be in RAM, allowing fast switching

• Can load part of processes into RAM on demand.

• Provides a mechanism to share memory betwen processes.

• Address to fetch every instruction to be executed must be translated.

• Address for load/store instructions (e.g. lw, sw) must be translated .

• Translation needs to be really fast - needs to be largely implemented in hardware (silicon).

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 7 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory with One Memory Segment Per Process

Consider a scenario with multiple processes loaded in memory:

• Every process is in a contiguous section of RAM, starting at address base finishing at address limit.

• Each process sees its own address space as [0 .. size - 1]

• Process can be loaded anywhere in memory without change.

• Process accessing memory address a is translated to a + base

• and checked that a + base is < limit to ensure process only access its memory

• Easy to implement in hardware.

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 8 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory with One Memory Segment Per Process

Consider the same scenario, but now we want to add a new process

• The new process doesn’t fit in any of the unused slots (fragmentation).
• Need to move other processes to make a single large slot

• Slow if RAM heavily used.
• Does not allow sharing or loading on demand.
• Limits process address space to size of RAM.
• Little used in modern computing.

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 9 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory with Multiple Memory Segments Per Process

Idea: split process memory over multiple parts of physical memory.

becomes

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 10 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory with Arbitrary-Sized Multiple Memory Segments Per Process

Implications for splitting process memory across physical memory

• each chunk of process address space has its own base

• each chunk of process address space has its own size

• each chunk of process address space has its own memory location

Need a table of process/address information to manage this

With arbitrary sized memory segments hardware support is difficult

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 11 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory with Pages

Big idea: make all segments same size, and make size power of 2

• call each segment of address space a page and make all pages the same size P

• translation of addresses can be implemented with an array

• each process has an array called the page table

• each array element contains the physical address in RAM of that page

• for virtual address V, page_table[V / P] contains physical address of page

• physical pages called frames

• the address will at be at offset V % P in both

• so physical address for V is: page_table[V / P] + V % P

• calculation can be faster/simpler bit operations if P == 2𝑛 , e.g. 4096, 8192, 16384

• this is simple enough to implement in hardware (silicon)
https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 12 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Address Mapping

If 𝑃 == 2𝑛 , then some bits (offset) are the same in virtual and physical address

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 13 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory with pages - Lazy Loading

A side-effect of this type of virtual → physical address mapping

• don’t need to load all of process’s pages up-front

• start with a small memory ”footprint” (e.g. main + stack top)

• load new process address pages into memory as needed

• grow up to the size of the (available) physical memory

The strategy of …

• dividing process memory space into fixed-size pages

• on-demand loading of process pages into physical memory

is what is generally meant by virtual memory

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 14 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory

4096 bytes is a common pages/frame size, but sizes 512 to 262144 bytes used

With 4GB memory, would have ≈ 1 million × 4KB frames

Each frame can hold one page of process address space

Leads to a memory layout like this (with L total pages of physical memory):

When a process completes, all of its frames are released for re-use

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 15 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory - Loading Pages

Consider a new process commencing execution …

• initially has zero pages loaded

• load page containing code for main()

• load page for main()’s stack frame

• load other pages when process references address within page

Do we ever need to load all process pages at once?

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 16 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory - Working Sets

From observations of running programs …

• in any given window of time, process typically access only a small subset of their pages

• often called locality of reference

• subset of pages called the working set

Implications:

• if each process has a relatively small working set,
can hold pages for many active processes in memory at same time

• if only need to hold some of process’s pages in memory,
process address space can be larger than physical memory

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 17 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory - Loading Pages

We say that we ”load” pages into physical memory

But where are they loaded from?

• code is loaded from the executable file stored on disk into read-only pages

• some data (e.g. C strings) also loaded into read-only pages

• initialised data (C global/static variables) also loaded from executable file

• pages for uninitialised data (heap, stack) are zero-ed

• prevents information leaking from other processes

• results in uninitialised local (stack) variables often containing 0

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 18 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory - Loading Pages

We can imagine that a process’s address space …

• exists on disk for the duration of the process’s execution

• and only some parts of it are in memory at any given time

Transferring pages between disk↔memory is very expensive

• need to ensure minimal reading from / writing to disk
https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 19 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory - Handling Page Faults

An access to a page which is not-loaded in RAM is called a page fault.

Where do we load it in RAM?

First need to check for a free frame

• need a way of quickly identifying free frames

• commonly handled via a free list

What if there are currently no free page frames, possibilities:

• suspend the requesting process until a page is freed

• replace one of the currently loaded/used pages

Suspending requires the operating system to

• mark the process as unable to run until page available

• switch to running another process

• mark the process as able to run when page availablehttps://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 20 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Virtual Memory - Read-only Pages

Virtual memory allows sharing of read-only pages (e.g. for library code)

• several processes include same frame in virtual address space

• allows all running programs to use same pages for e.g. C library code (printf)

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 21 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Memory Management Hardware

Address translation is very important/frequent

• provide specialised hardware (MMU) to do it efficiently

• sometimes located on CPU chip, sometimes separate

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 22 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Cache Memory

Cache memory = small*, fast memory* close to CPU

Small = MB, Fast = 5 × 𝑅𝐴𝑀
https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 23 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/


Cache Memory

• cache memory makes memory accesses (e.g. lw, sw) faster
• cache memory implemented entirely in silicon typically on same chip as CPU
• independent of virtual memory (works with physical address)
• holds small blocks of RAM that are have been recently used

• cache blocks also called cache lines

• typical size of cache blocks (line) 64 bytes
• CPU hardware (silicon) when loading or storing adddress first looks in cache

• if block containing address is there, cache is used
• for load operations value in cache is used
• for store operations value in cache is changed
• in both cases, much faster than access RAM

• if not, block containing address is fetched from RAM into cache
• possibly evicting an existing cache block

• which may require writing (flushing) its contents to RAM

• cache replacement strategies have similar issues to virtual memory
• modern CPU may have multiple (3+) levels of caching

https://www.cse.unsw.edu.au/~cs1521/23T3/ COMP1521 23T3 — Virtual Memory 24 / 24

https://www.cse.unsw.edu.au/~cs1521/23T3/

