https:/ /www.cse.unsw.edu.au/~cs1521/23T3/

https://www.cse.unsw.edu.au/~cs1521/23T3/
https://www.cse.unsw.edu.au/~cs1521/23T3/

The Memory Subsystem

memory subsystem typically provides capability to load or store bytes (not bits)
1 byte == 8 bits (on general purpose modern machines)
each byte has unique address, think of:

memory as implementing a gigantic array of bytes
and the address is the array index

typically, a small (1,2,4,8,...) group of bytes can be loaded/stored in a single operation

general purpose computers typically have complex cache systems to improve memory performance

if we have time we'll look at cache systems a little, late in this course

https://www.cse.unsw.edu.au/~cs1521/23T3/

Virtual Memory - Quick Summary

we'll come back to virtual memory if anyt time left in week 10
operating systems on general purpose computers typically provide virtual memory
virtual memory make it look to every running program that it has entire address space
hugely convenient for multi-process systems
disconnects addresses running programs (processes) use from actual RAM address.
operating system translates (virtual) address a process uses to an physical (actual) RAM address.
translation needs to be really fast - needs to be largely implemented in hardware (silicon)
virtual memory can be several times larger than actual RAM size
multiple processes can be in RAM, allowing fast switching
part of processes can be load into RAM on demand.

provides a mechanism to share memory betwen processes.

https:/ /www.cs d 1521/2313/

https://www.cse.unsw.edu.au/~cs1521/23T3/

Address Size

most modern general purpose computers use 64-bit addresses
CSE servers use 64-bit addresses

some (older) general purpose computers use 32-bit addresses

many special purpose (embedded) CPUs use 32-bit addresses

but some use 64-bit addresses

some use 16-bit addresses

on the MIPS32 machine implemented by mipsy, all addresses are 32-bit
so in COMP1521 assembler we'll be using 32-bit addresses

there are 64-bit MIPS CPUs

https://www.cse.unsw.edu.au/~cs1521/23T3/

Accessing Memory on the MIPS

addresses are 32 bits
only load/store instructions access memory on the MIPS
1 byte (8-bit) loaded/stored with 1b/sb
2 bytes (16-bit) called a half-word, loaded/stored with Lh/sh
4 bytes (32-bits) called a word, loaded/stored with lw/sw
memory address used for load/store instructions is sum of a specified register and a 16-bit constant (often 0)
which is part of the instruction
for sb & sh operations low (least significant) bits of source register are used.
1b/1h assume byte/halfword contains a 8-bit/16-bit signed integer
high 24/16-bits of destination register set to 1 if 8-bit/16-bit integer negative
unsigned equivalents lbu & lhu assume integer is unsigned
high 24/16-bits of destination register always set to 0

signed and unsigned integer representations covered later in course

https://www.cse.unsw.edu.au/~cs1521/23T3/

MIPS Load/Store Instructions

https:/ /www.c:

assembly meaning bit pattern
b7, I(r,) 7, =mem[r +I] 100000ssssstttttIITIIIIIIIIIIIIT
thr, I(r,) 7, =mem[r +I]| 100001ssssstttttIIIIIIIIIIIIIIIT
mem[r +I+1] << 8
lwry, I(r,) 7, =memlr +I]| 100011ssssstttttIIIITIIIIIIIIIIT
mem[r +I+1] << 8|
mem[r +I+2] << 16 |
mem[r +I+3] << 24
sbr, I(r,) memlr +Il=7,& Oxff 101000ssssstttttIITIIIIITIIIIIIT
shr, I(ry) memlr +Il=7r, & Oxff 101001ssssstttttIIIIIIIIIIIIIIIT
mem[r +I+1] =7, >> 8 & Oxff
swry, I(ry) mem[r +Il=7r, & Oxff 101011ssssstttttIIIITIIIIIIIIIIT
mem[r +I+1] =7, >> 8 & Oxff
mem[r +I+2] =7, >> 16 & Oxff
mem[r +I+3] =7, >> 24 & Oxff

https://www.cse.unsw.edu.au/~cs1521/23T3/

Code example: storing and loading a value (no labels)

simple example of load & storing a byte

we normally use directives and labels

1lb & sb require address in a register, but mipsy will do this for us

main:
11 $te, 42
sb $t0, 0x10000000
1b $a0, 0x10000000

store 42 in byte at address 0x10000000

load $a® from same address

i $vo, 1 # print $a0@ which will nows contain 42
syscall

11 $a0, '\n’ # print '\n'

11 $ve, 11

syscall

11 $ve, o # return 0

jr $ra

source code for load_store_no_label.s

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/load_store_no_label.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Assembler Directives

mipsy has directives to initialise memory, and to associate labels with addresses.

+F 0O —+Hh T T < M-

.text

.data

.space 18
.align 2
.word 42
.word 1,3,5
.half 2,4,6
.byte 7:5
.float 3.14
.asciiz "abc"

.ascii "abc"

#

H OH ¥ ¥ O BT OB O®H O

following instructions placed in text segment

following objects placed in data segment

int8_t a[18];

align next object on 4-byte addr
int32_t i = 42;

int32_t v[3] = {1,3,5};

int16_t h[3] = {2,4,6};

int8_t b[5] = {7,7,7,7,7};

float f = 3.14;

char s[4] {'a','b','c','\0"'};
char t[3] {'a','b',"'c'};

https://www.cse.unsw.edu.au/~cs1521/23T3/

Code example: storing and loading a value with a label

simple example of load & storing a byte

we normally use directives and labels

1lb & sb require address in a register, but mipsy will do this for us

main:
11 $to,
sb $to,
1b $ao0,
i $vo,
syscall
11 $ao0,
1i $vo,
syscall
11 $vo,
jr $ra

.data

answer:
space 1

42
answer
answer
1

I\nl
11

store 42 in byte at address labelled answer

load $a® from same address

=+

print $a@ which will nows contain 42

print '\n'

return O

set aside 1 byte and associate label answer with its add

a

COM

HESS
/

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/load_store_label.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Code example: storing and loading a value with address in register

simple example of storing & loading a byte

main:
11 $to,
la $t1,
sb $to,
1b $ao0,
1i $vo,
syscall
11 $ao0,
1i $vo,
syscall
11 $vo,
jr $ra

.data

answer:
.Space 1

42
answer
0($t1)
0($t1)
1

I\nl
11

store 42 in byte at address labelled answer
load $a® from same address

print $a0 which will nows contain 42

print '\n'

return 0

set aside 1 byte and associate label answer with its address

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/load_store.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Setting A Register to An Address

Note the 1a (load address) instruction is normally used to set a register to a labelled memory address.

la $t8, start

mipsy converts labels to addresses (numbers) before a program is run,

no real difference between la and 11 instructions

For example, if vec is the label for memory address 0x10000100 then these two instructions are equivalent:

la $t7, vec
1i $t7, 0x10000100

In both cases the constant is encoded as part of the instruction(s).

Neither 1a or 1i access memory!

They are very different to lw etc

https://www.cse.unsw.edu.au/~cs1521/23T3/

Specifying Addresses: Some mipsy short-cuts

mipsy allows the constant which is part of load & store instructions can be omitted in the common case it is 0.

sb $t0, 0($t1) # store $t0 in byte at address in $ti
sb $t0, ($t1) # same

For convenience, MIPSY allows addresses to be specified in a few other ways and will generate appropriate real
MIPS instructions

sb $t0, x # store $t0 in byte at address labelled x
sb $t1, x+15 # store $t1 15 bytes past address labelled x
sb $t2, x($t3) # store $t2 $t3 bytes past address labelled x

These are effectively pseudo-instructions.

You can use these short cuts but won't help you much

Most assemblers have similar short cuts for convenience

https://www.cse.unsw.edu.au/~cs1521/23T3/

MIPSY Memory Layout

Region Address Notes

.text 0x00400000.. instructions only; read-only; cannot expand

.data 0x10000000.. data objects; read/write; can be expanded

.stack Ox7fffffef this address and below; read/write

.ktext 0x80000000.. kernel code; read-only; only accessible in kernel mode
N CEVE 0x90000000.. kernel data; only accessible in kernel mode

https://www.cse.unsw.edu.au/~cs1521/23T3/

Data Structures and MIPS

C data structures and their MIPS representations:

char .. as byte in memory, or register

int .. as 4 bytes in memory, or register

double .. as 8 bytes in memory, or $f? register

arrays ... sequence of bytes in memory, elements accessed by index (calculated on MIPS)
structs ... sequence of bytes in memory, accessed by fields (constant offsets on MIPS)

A char, int or double

can be stored in register if local variable and no pointer to it
otherwise stored on stack if local variable

stored in data segment if global variable

https://www.cse.unsw.edu.au/~cs1521/23T3/

Global/Static Variables

Global and static variables need an appropriate number of bytes allocated in .data segment, using .space:

double val; val: .space 8
char str[20]; str: .space 20
int vec[20]; vec: .space 80

Initialised to 0 by default ... other directives allow initialisation to other values:

int val = 5; val: .word 5
int arr[4] = {9,8,7,6}; arr: .word 9, 8, 7, 6
char msg[7] = "Hello\n"; msg: .asciiz "Hello\n"

https://www.cse.unsw.edu.au/~cs1521/23T3/

add: local variables in registers

C

int main(void) {

int

//

X, Y, Z;
17;

258

X *+Y;

IS

main:
x in $t0O
#y in $t1
z in $t2
1i $te, 17
11 $t1, 25
add $t2, $t1, $to

https://www.cse.unsw.edu.au/~cs1521/23T3/

add variables in memory (uninitialized)

C MIPS (text)

int x, vy, z; main:

int main(void) { 1i $to, 17
w o= 178 la $t1, x
Y = 255 sw $to, ($t1) # x = 17;
Z =X +Vy; 1i $to, 25

} la $t1, y

MIPS (data) sw $to, ($t1) # y = 25;
.data la $t0, x

. w $t1, ($t0)
.space 4 la 3t J

w $t2, ($t6)

v add $t3, $t1, $t2
.Space 4
5 la $to, z
’ sw $t3, 0($t0O) # z = x + y;
.space 4

1i $vo, 1 # syscall 1: print_int

source code for add_memory.s

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/add_memory.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

add variables in memory (initialized)

C MIPS
int x=17; main:
int y=25 la $to, x
int z; w $t1, ($t6)
int main(void) { la $to, y
Z =X +Vy; w $t2, ($t6)
} add $t3, $t1, $t2
MIPS data e iy
sw $t3, 0($t0O) # z = x + y;
.data source code for add_memory_initializeds
X:
.word 17
y:
.word 25
78

.space 4

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/add_memory_initialized.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

add variables in memory (array)

C MIPS text
int x[] = {17,25,0}; main:
int main(void) { la $tO, x
x[2] = x[0] + x[1]; lw $t1, o($te)
} w $t2, 4($to)

add $t3, $t1, $t2 # z = x + y;
sw $t3, 8($t0)

1i $vo, 1 # syscall 1: print_int
lw $a0, 8($t0) #

syscall # printf("%d", z);

1i $a06, '\n' #

syscall # putchar('\n');

1i $vo, o

jr $ra # return 0;

.data

x: .word 17, 25, 0O # int x[] = {17, 25, 0}

source code for add_memory_array.s

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/add_memory_array.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Address of C 1-d Array Elements - Code

double array[10];
for (int i = 0; i < 10; i++) {
printf("&sarray[%d]=%p\n", i, &array[i]);
}
printf("\nExample computation for address of array element\n");
uintptr_t a = (uintptr_t)&array[0];

printf("&array[0] + 7 * sizeof (double) = 0x%lx\n", a + 7 * sizeof (double));
printf("&sarray[0] + 7 * %lx = 0x%1lx\n", sizeof (double), a + 7 * sizeof (d
printf("0x%lx + 7 * %lx = 0x%lx\n", a, sizeof (double), a + 7 * sizeof (double)
printf("sarray[7] = %p\n", &array[7]);

source code for array_element_address.c

this code uses types covered later in the course

https://www.cse.unsw.edu.au/

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/array_element_address.c
https://www.cse.unsw.edu.au/~cs1521/23T3/

Address of C 1-d Array Elements - Output

$ dcc array_element_address.c -o array_element_address
$./array_element_address
Garray[0]=0x7fffdd841deo
array[1]=0x7fffdd841d08
array[2]=0x7fffdd841d10
garray[3]=0x7fffdd841d18
array[4]=0x7fffdd841d20
garray[5]=0x7fffdd841d28
array[6]=0x7fffdd841d30
garray[7]=0x7fffdd841d38
array[8]=0x7fffdd841d40
Garray[9]=0x7fffdd841d48

Example computation for address of array element

garray[0] + 7 * sizeof (double) = Ox7fffdd841d38
Garray[0] + 7 % 8 = Ox7fffdd841d38
Ox7fffdd841de0 + 7 * 8 = Ox7fffdd841d38
array[7] = Ox7fffdd841d38

https://www.cse.unsw.edu.au/~cs1521/23T3/

store value in array element — example 1

C

int x[10];

int main(void) {
// sizeof x[0] == &4
x[3] = 17;

MIPS

main:
1i $to, 3

each array element is 4 bytes
mul $to, $to, 4

la $t1, x

add $t2, $t1, $to

i $t3, 17

sw $t3, 0($t2)
.data

X: .space 40

https://www.cse.unsw.edu.au/~cs1521/23T3/

store value in array element - example 2

C MIPS

#tinclude <stdint.h> main:
1i $te, 13
intl6_t x[30];

each array element is 2 bytes

int main(void) { mul $to, $to, 2
// sizeof x[0] == 2 la $t1, x
x[13] = 23; add $t2, $t1, $to
h i $t3, 23
sh $t3, 0($t2)
.data

X: .space 60

https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing Array: C to simplified C

C

int main(void) {
int i = 0;
while (i < 5) {
printf("%d\n", numbers[i]);
i++;
}
return 0;

}

source code for print5.c

Simplified C

int main(void) {
int i = 0;

loop:

if (i >= 5) goto end;
printf("%d", numbers[i]);
printf("%c", '\n');
i++;
goto loop;
end:
return 0;

}

source code for print5.simple.c

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/print5.c
https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/print5.simple.c
https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing Array: MIPS

print array of ints

1 in $tO

main:
11 $to, o # int i = 0;

loop:
bge $t0, 5, end # if (i >= 5) goto end;
la $t1, numbers # int j = numbers[i];

mul $t2, $toO, 4
add $t3, $t2, $t1

w $a0, 0($t3) # printf("%d", j);
i $vo, 1

syscall

11 $a0, '\n' # printf("%c", '\n');
11 $ve, 11

syscall

addi $to, $to, 1 # i++

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/print5.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing Array: MIPS (continued)

end:
1i $vo, O # return 0
jr $ra
.data
numbers: # int numbers[10] = { 3, 9, 27, 81, 243};

.word 3, 9, 27, 81, 243

source code for print5.s

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/print5.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Reading and Printing 10 Numbers #1
¢ MIPS

int i = 0;

while (i < 10) { i e,

loop0O:
printf("Enter a number: "); 2
) bge $to,
scanf("%d", &numbers[i]);
. la $ao,
ie+; .
} 1i $vo,
source code for read1o.c syscall
11 $vo,
syscall
mul $t1,
la $t2,
add $t3,
sw $vo,
addi $to,
b loopo®

endo:

ww.cse.unsw.edu.au /-

(0

10, endo
string0
A

5

$to, 4
numbers
$t1, $t2
($t3)
$to, 1

while (i < 10) {

#

H OHF ¥ O BT OB OB =

printf("Enter a nu

scanf("%d", &numbe

calculate &numbers

store entered numb

S

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/read10.c
https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/read10.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Reading and Printing 10 Numbers #2

C MIPS
i=0;
while (i < 10) {

printf("%d\n", numbers[i]);

SIREE =

11
loopl:

bge

mul

}

source code for read10.c la

add
Tw
1i

$to,

$to,
$t1,
$t2,
$t3,
$ao,
$ve,

syscall

11
11

$ao,
$vo,

syscall
addi $to, $to, 1
b
endl:

loopl

0

10, end1l
$t0, 4
numbers
$t1, $t2
($t3)

1

|\n|

11

#
#
#
#
#
#

while (i < 10) {

calculate &number

load numbers[i] i
printf("%d", numb

printf("%c", '\n'

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/read10.c
https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/read10.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Address of C 2-d Array Elements - Code

int array[X][Y];
printf("sizeof array[2][3] = %lu\n", sizeof array[2][3]);
printf("sizeof array[1] = %lu\n", sizeof array[1]);
printf("sizeof array = %lu\n", sizeof array);
printf("&array=%p\n", &array);
for (int x = 0; x < X; x++) {

printf("&sarray[%d]=%p\n", x, &array[x]);

for (int y = 0; y < Y; y++) {

printf("&array[%d][%d]1=%p\n", x, y, &array[x][y]l);

}

source code for 2d_array_element_address.c

this code uses types covered later in the course

https://www.cse.unsw.edu.au/

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/2d_array_element_address.c
https://www.cse.unsw.edu.au/~cs1521/23T3/

Address of 2-d C Array Elements - Output

$ dcc 2d_array_element_address.c -o 2d_array_element_address
$./2d_array_element_address
sizeof array[2][3] = 4
sizeof array[1] = 16

sizeof array = 48
Garray=0x7ffd93bb16co
sarray[0]=0x7ffd93bb16c0O
array[0][0]=0x7ffd93bb16cO
array[0][1]=0x7ffd93bbl6c4
array[0][2]=0x7ffd93bb16c8
garray[0][3]=0x7ffd93bbl6cc
array[1]=0x7ffd93bb16d0
array[1][0]=0x7ffd93bb16d0O
&array[1][1]=0x7ffd93bb16d4
&array[1][2]=0x7ffd93bb16d8
sarray[1][3]1=0x7ffd93bbl6dc
array[2]=0x7ffd93bb16e0
array[2][0]=0x7ffd93bb16e0
array[2][1]=0x7ffd93bbl6e4
array[2][2]=0x7ffd93bb16e8
array[2][3]=0x7ffd93bbl6ec

https://www.cse.unsw.edu.au/~cs1521/23T3/

Computing sum of 2-d Array : C
Assume we have a 2d-array:

int32_t matrix[6]1[5];

We can sum its value like this in C
int row, col, sum = 0;
// row-by-row
for (row = 0; row < 6; row++) {
// col-by-col within row
for (col = 0; col < 5; row++) {

sum += matrix[row][col];

MIPS directives for an equivalent 2d-array

.data
matrix:

.space 120 # 6 * 5 == 30 array elements each 4 bytes

https://www.cse.unsw.edu.au/~cs1521/23T3/

Computing sum of 2-d Array : MIPS

11 $te, o # sum = 0
11 $t1, o # row = 0

loopl: bge $t1, 6, endl # if (row >= 6) break
11 $t2, o # col = 0

loop2: bge $t2, 5, end2 # if (col >= 5) break

la $t3, matrix

mul $t4, $t1, 20 # tl = row*rowsize
mul $t5, $t2, &4 # t2 = colxintsize
add $t6, $t3, $t4 # offset = tO+t1
add $t7, $t6, $t5 # offset = tO+t1
w $t5, 0($t7) # t0 = *(matrix+offset)
add $to, $to, $t5 # sum += tO
addi $t2, $t2, 1 # col++
j loop2
end2: addi $t1, $t1, 1 # row++

j loopl

https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing 2-d Array: C to simplified C

C Simplified C
int main(void) { int main(void) {
int i = 0; int i = 0;
while (i < 3) { loopl:
int j = 0; if (i >= 3) goto end1;
while (j < 5) { int j = 0;
printf("%d", numbers[i][j]); loop2:
printf("%c", ' '); if (j >= 5) goto end2;
J+; printf("%d", numbers[i][j]);
} printf("%c", ' ');
printf("%c", '\n'); J++;
i++; goto loop2;
} end2:
return 0; printf("%c", '\n');
} ie+;

source code for print2d.c

goto loopl;

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/print2d.c
https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/print2d.simple.c
https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing 2-d Array: MIPS

print a 2d array

1 in $t0
3 in $t1
$t2..$t6 used for calculations
main:
1i $to, o # int 1 = 0;
loopl:
bge $t0, 3, endl # if (i >= 3) goto endil;
i $t1, o # int j = 0;
loop2:
bge $t1, 5, end2 # if (j >= 5) goto end2;
la $t2, numbers # printf("%d", numbers[i][j])

mul $t3, $to, 20
add $t4, $t3, $t2
mul $t5, $t1, 4
add $t6, $t5, $t4
w $a0, 0($t6)
i $ve, 1
syscall

source code for print2d.s

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/print2d.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing 2-d Array: MIPS (continued)

1i $a0, ' # printf("%c", ' ');
i $ve, 11
syscall
addi $t1, $t1, 1 # J+;
b loop2 # goto loop2;
end2:
1i $a0, '\n' # printf("%c", '\n');
1i $vo, 11
syscall
addi $to, $to, 1 # i++
b Tloopl # goto loopl
endl:
11 $vo, 0 # return 0
jr $ra
.data

int numbers[3]1[5] = {{3,9,27,81,243},{4,16,64,256,1024},{5,25,125,625,3125}};
numbers:
.word 3, 9, 27, 81, 243, 4, 16, 64, 256, 1024, 5, 25, 125, 625, 3125

source code for print2ds

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/print2d.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Alignment

C standard requires simple types of size N bytes to be stored only at addresses which are divisible by N

if int is 4 bytes, must be stored at address divisible by 4
if ‘double is 8 bytes, must be stored at address divisible by 8

compound types (arrays, structs) must be aligned so their components are aligned

MIPS requires this alignment

on other architectures aligned access faster

https://www.cse.unsw.edu.au/~cs1521/23T3/

Example C with unaligned accesses

char bytes[32];

int *i = (int =*)&bytes[1];

// illegal store - not aligned on a 4-byte boundary
*1 = 42;

printf("%d\n", *i);

source code for unalign.c

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/unalign.c
https://www.cse.unsw.edu.au/~cs1521/23T3/

Example MIPS with unaligned accesses

.data
data will be aligned on a 4-byte boundary
most likely on at least a 128-byte boundary

but safer to just add a .align directive

.align 2
.Space 1
vl: .space 1
v2: .space 4
v3: .space 2
V4: .space 4
.space 1
.align 2 # ensure e is on a 4 (2*%2) byte boundary
v5: .space 4
.space 1

v6: .word ® # word directive aligns on 4 byte boundary

source code for unalign.s

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/unalign.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Example MIPS with unaligned accesses

11 $to, 1

sb $t@, vl # will succeed because no alignment needed
sh $t0, vl # will fail because v1 is not 2-byte aligned
sw $t0, vl # will fail because vl is not 4-byte aligned
sh $t0, v2 # will succeeed because v2 is 2-byte aligned
sw $t0, v2 # will fail because v2 is not 4-byte aligned
sh $t0, v3 # will succeeed because v3 is 2-byte aligned
sw $t0, v3 # will fail because v3 is not 4-byte aligned
sh $t0, v4 # will succeeed because v& is 2-byte aligned
sw $t0, v4 # will succeeed because v4 is 4-byte aligned
sw $t0, v5 # will succeeed because v5 is 4-byte aligned
sw $t0, v6 # will succeeed because v6 is 4-byte aligned

11 $vo, 0
jr $ra # return

source code for unalign.s

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/unalign.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Structs in MIPS

Offset

0 id

4 family

24 given

44 | program

48 wam struct _student {
int id;
char family[20];
char given[20];
int program;
double wam;

https:/ /www.cse.unsw.edu.au/~cs1521/23T3/ COMP1921 2313 — MIPS Data

https://www.cse.unsw.edu.au/~cs1521/23T3/

Implementing Structs in MIPS

C struct definitions effectively define a new type.

// new type called "struct student"
struct student {...};

// new type called student_t
typedef struct student student_t;

Instances of structures can be created by allocating space:

sizeof(Student) == 56

stul: # student_t stul;
.space 56

stu2: # student_t stu2;
.space 56

stu:

.space 4 # student_t =*stu;

https://www.cse.unsw.edu.au/~cs1521/23T3/

Implementing Structs in MIPS

Accessing structure components is by offset, not name

1i $t0 5012345
la $t1, stul

sw $t0, 0($t1) # stul.id = 5012345;
1i $te, 3778

sw $t0, 44($t1) # stul.program = 3778;
la $t2, stu2 # stu = &stu2;

1i $te, 3707

sw $t0, 44($t2) # stu->program = 3707;

1i $t0, 5034567
sw $tO, 0($t2) # stu->id = 5034567;

https://www.cse.unsw.edu.au/~cs1521/23T3/

Implementing Pointers in MIPS

int i;

int *p;

p = &answer;

L = g

// prints 42
printf("%d\n", 1i);

*p = 27;

// prints 27
printf("%d\n", answer);

source code for pointer.c

MIPS

la $to,
w $t1,
move $a0,
1i $vo,
syscall
11 $ao0,
1i $vo,
syscall
11 $t2,
sw $t2,
w $ao,
11 $vo,
syscall
1i $ao0,

11 $vo,

answer
($t0)
$t1

1

I\nl
11

27
($t0)

answer
1

l\nl
11

#
#
#

p = &answer;

i=*p;

printf("%d\n", i);

printf("%c",

*p = 27;

++

"\n');

printf("%d\n", answer);

printf("%c",

‘\n');

ww.cse.unsw.edu.au /-

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/pointer.c
https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/pointer.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Example - Accessing Struct within Array within Struct (main)

// simple example of accessing struct within array within struct
#include <stdio.h>
#define MAX_POLYGON 6
struct point {
int x;
int y;
fie
struct polygon {
int degree;
struct point vertices[MAX_POLYGON]; // C also allows variable size array here
g
void print_last_vertex(struct polygon =*p);
struct polygon triangle = {3, {{0,0}, {3,0}, {0,4}}};

source code for struct_array.c

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/struct_array.c
https://www.cse.unsw.edu.au/~cs1521/23T3/

Example - Accessing Struct within Array within Struct (main)

int main(void) {
print_last_vertex(&triangle); // prints 0,4

return 0;
}
R D S e
main:
push $ra
la $a0, triangle
jal print_last_vertex # print_last_vertex(&triangle);
1i $vo, 0
pop $ra

jr $ra

source code for struct_array.s

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/struct_array.c
https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/struct_array.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Example - Accessing Struct within Array within Struct (C)

void print_last_vertex(struct polygon *p) {
printf("%d", p->vertices[p->degree - 1].x);
putchar(',"');
printf("%d", p->vertices[p->degree - 1].y);
putchar('\n');

}

source code for struct_array.c

void print_last_vertex(struct polygon *p) {
int n = p->degree - 1;
struct point *last = &(p->vertices[n]);
printf("%d", last->x);
putchar(',"');
printf("%d", last->y);
putchar('\n');

}

source code for struct_arraysimple.c

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/struct_array.c
https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/struct_array.simple.c
https://www.cse.unsw.edu.au/~cs1521/23T3/

Example - Accessing Struct within Array within Struct (MIPS)

print_last_vertex:
$a0: p
$t0: n
$tl1: last
$t2..$t5: temporaries
1w $t2, OFFSET_POLYGON_DEGREE($a®) # int n = p->degree - 1;
addi $to, $t2, -1
addi $t3, $a0, OFFSET_POLYGON_VERTICES # calculate &(p->vertices[n])
mul $t4, $tO, SIZEOF_POINT
add $t1, $t3, $ts

1w $a@, OFFSET_POINT_X($t1) # printf("%d", last->x);
i $vo, 1

syscall

1i $a0, ', # putchar(',');

i $ve, 11

syscall

1w $a@, OFFSET_POINT_Y($t1) # printf("%d", last->y);
i $vo, 1

syscall

1i $a0, '\n' # putchar('\n');

1i $vo, 11

syscall

jr $ra

source code for struct_arrays.

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/struct_array.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing Array with Pointers: C to simplified C

C

int main(void) {

int *p = &numbers[0];

int *q = &numbers[4];

while (p <= q) {
printf("%d\n", *p);
p++;

}

return 0;

}

source code for pointers.c

Simplified C

int main(void) {
int *p = &numbers[0];
int *q = &numbers[4];
loop:
if (p > q) goto end;
int j = *p;
printf("%d", j);
printf("%c", '\n');
pt+;
goto loop;
end:

return 0;

}

source code for pointers.simple.c

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/pointer5.c
https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/pointer5.simple.c
https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing Array with Pointers: MIPS

p in $t0, q in $t1

main:
la $t0, numbers # int *p = &numbers[0];
la $t0, numbers # int *q = Snumbers[4];
addi $t1, $to, 16

loop:
bgt ¢$t0, $t1, end # if (p > q) goto end;
w $a0, 0($t0) # int j = =*p;
i $vo, 1
syscall
11 $a0, '\n' # printf("%c", '\n');
i $ve, 11
syscall
addi $to, $to, & # p++
b loop # goto loop

end:

source code for pointers.s
https://www.cse.unsw.edu.au/

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/pointer5.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

Printing Array with Pointers: MIPS - faster

this is closer to the code a compiler might produce
p in $tO
g in $t1
main:
la $t0, numbers # int *p = &Snumbers[0];

addi $t1, $to, 16 # int *q = &numbers[4];
loop:

lw $a0, ($to0) # printf("%d", =*p);

i $vo, 1

syscall

1i $a0, '\n' # printf("%c", '\n');

1i $vo, 11

syscall

addi $to, $to, & # p++

E=3

ble $to, $t1, Toop if (p <= q) goto loop;

source code for pointers.fasters

https://www.cse.unsw.edu.au/

https://cgi.cse.unsw.edu.au/~cs1521/23T3//topic/mips_data/code/pointer5.faster.s
https://www.cse.unsw.edu.au/~cs1521/23T3/

