COMP1521 23T3 — Floating-Point Numbers

https://www.cse.unsw.edu.au/~cs1521/23T3/
Floating Point Numbers

- C has three floating point types
 - `float` ... typically 32-bit (lower precision, narrower range)
 - `double` ... typically 64-bit (higher precision, wider range)
 - `long double` ... typically 128-bits (but maybe only 80 bits used)

- Floating point constants, e.g: `3.14159 1.0e-9` are `double`

- Reminder: division of 2 ints in C yields an int.
 - but division of double and int in C yields a double.
```c
double d = 4/7.0;
// prints in decimal with (default) 6 decimal places
printf("%lf\n", d);  // prints 0.571429
// prints in scientific notation
printf("%le\n", d);  // prints 5.714286e-01
// picks best of decimal and scientific notation
printf("%lg\n", d);  // prints 0.571429
// prints in decimal with 9 decimal places
printf("%.9lf\n", d);  // prints 0.571428571
// prints in decimal with 1 decimal place and field width of 5
printf("%10.1lf\n", d);  // prints 0.6
```

source code for float_output.c

https://www.cse.unsw.edu.au/~cs1521/23T3/
Floating Point Numbers

- can have fractional numbers in other bases, e.g.: $110.101_2 = 6.625_{10}$
- if we represent floating point numbers with a fixed small number of bits
 - there are only a finite number of bit patterns
 - can only represent a finite subset of reals
- almost all real values will have no exact representation
- value of arithmetic operations may be real with no exact representation
- we must use closest value which can be exactly represented
- this approximation introduces an error into our calculations
- often, does not matter
- sometimes ... can be disastrous
Fixed-Point Representation

- fixed-point is a simple trick to represent fractional numbers as integers
 - every value is multiplied by a particular constant, e.g. 1000 and stored as integer
 - so if constant is 1000, could represent 56.125 as an integer (56125)
 - but not 3.141592

- usable for some problems, but not ideal

- used on small embedded processors without silicon floating point

- major limitation is only small range of values can be represented
 - for example with 32 bits, and using 65536 (2^{16}) as constant
 - 16 bits used for integer part
 - 16 bits used for the fraction
 - minimum $2^{-16} \approx 0.000015$
 - maximum $2^{15} \approx 32768
you met scientific notation, e.g 6.0221515×10^{23} in physics or other science classes

we can represent numbers on a computer in a similar way to scientific notation

but using binary instead of base ten, e.g $1.0101011 \times 2^{11.2} = 1.3359375 \times 8 = 10.6875$

allows a much bigger range of values to be represented than fixed point

using only 8 bits for the exponent, we can represent numbers from 10^{-38} .. 10^{38}

using only 11 bits for the exponent, we can represent numbers from 10^{-308} .. 10^{308}

leads to numbers close to zero having higher precision (more accurate) which is good
choosing which exponentional representation

- exponent notation allows multiple representations for a single value
 - e.g. $1.0101011 \times 2^{112} = 10.6875$ and $10.101011 \times 2^{102} = 10.6875$

- having multiple representations would make implementing arithmetic slower on CPU

- better to have only one representation (one bit pattern) representing a value

- decision - use representation with exactly one digit in front of decimal point
 - use 1.0101011×2^{112} not 10.101011×2^{102} or 1010.1011×2^{02}
 - this is called normalization

- weird hack: as we are using binary the first digit must be a one we don’t need to store it
 - as we long we have a separate representation for zero
```c
float f;
double d;
long double l;

printf("float %2lu bytes min=%-12g max=%g \n", sizeof f, FLT_MIN, FLT_MAX);
printf("double %2lu bytes min=%-12g max=%g \n", sizeof d, DBL_MIN, DBL_MAX);
printf("long double %2lu bytes min=%-12Lg max=%Lg \n", sizeof l, LDBL_MIN, LDBL_MAX);
```

$./floating_types

float 4 bytes min=1.17549e-38 max=3.40282e+38
double 8 bytes min=2.22507e-308 max=1.79769e+308
long double 16 bytes min=3.3621e-4932 max=1.18973e+4932
• 1970s Intel building microprocessors (single-chip CPUs)
• 1976 Intel developing coprocessor (separate chip) for floating-point arithmetic
• Intel asked William Kahan, University of California to design format
• other manufacturers didn’t want to be left out
• IEEE 754 standard working group formed
• Kahan and others produced well-designed robust specification
• accepted by manufacturers who begin using it for new architectures
• IEEE 754 standard released in 1985 (update to standard in 2008)
• today, almost all computers use IEEE 754
• C floats almost always IEEE 754 single precision (binary32)
• C double almost always IEEE 754 double precision (binary64)
• C long double might be IEEE 754 (binary128)
• IEEE 754 representation has 3 parts: sign, fraction and exponent
• numbers have form $sign \ fraction \times 2^{exponent}$, where $sign$ is +/-
• $fraction$ always has 1 digit before decimal point (normalized)
• $exponent$ is stored as positive number by adding constant value (bias)
Example of normalising the fraction part in binary:

- 1010.1011 is normalized as 1.0101011×2^{11}
- $1010.1011 = 10 + 11/16 = 10.6875$
- $1.0101011 \times 2^{11} = (1 + 43/128) \times 2^3 = 1.3359375 \times 8 = 10.6875$

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

- if exponent is 8-bits, then the bias = $2^{8-1} - 1 = 127$
- valid bit patterns for exponent are $00000001 .. 11111110$
- these correspond to exponent values of $-126 .. 127$
Internal structure of floating point values

![Diagram of single precision float]

- **Single Precision**
 - 32 bits total
 - 1 bit sign
 - 8 bits exponent
 - 23 bits fraction

![Diagram of double precision float]

- **Double Precision**
 - 64 bits total
 - 1 bit sign
 - 11 bits exponent
 - 52 bits fraction
Distribution of Floating Point Numbers

- floating point numbers not evenly distributed
- representations get further apart as values get bigger
 - this works well for most calculations
 - but can cause weird bugs
- double (IEEE 754 64 bit) has 52-bit fractions so:
 - between 2^n and 2^{n+1} there are 2^{52} doubles evenly spaced
 - e.g. in the interval 2^{-42} and 2^{-43} there are 2^{52} doubles
 - and in the interval between 1 and 2 there are 2^{52} doubles
 - and in the interval between 2^{42} and 2^{43} there are 2^{52}
 - near 0.001 - doubles are about 0.0000000000000000002 apart
 - near 1000 - doubles are about 0.0000000000000000002 apart
 - near 1000000000000000 - doubles are about 0.25 apart
 - above 2^{53} - doubles are more than 1 apart
0.15625 is represented in IEEE-754 single-precision by these bits:

```
00111110001000000000000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0111100</td>
<td>01000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0

sign = +

raw exponent = 0111100 binary
 = 124 decimal

actual exponent = 124 - exponent_bias
 = 124 - 127
 = -3

number = +1.01000000000000000000000 binary * 2**-3
 = 1.25 decimal * 2**-3
 = 1.25 * 0.125
 = 0.15625
$./explain_float_representation -0.125

-0.125 is represented as a float (IEEE-754 single-precision) by these bits:
10111110000000000000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0111100</td>
<td>00000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1
sign = -
raw exponent = 0111100 binary
= 124 decimal
actual exponent = 124 - exponent_bias
= 124 - 127
= -3

number = -1.00000000000000000000000000000000 binary * 2**-3
= -1 decimal * 2**-3
= -1 * 0.125
= -0.125
IEEE-754 Single Precision example: 150.75

$./explain_float_representation 150.75
150.75 is represented in IEEE-754 single-precision by these bits:
01000011000101101100000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000110</td>
<td>00101101100000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0
sign = +
raw exponent = 10000110 binary
= 134 decimal
actual exponent = 134 - exponent_bias
= 134 - 127
= 7
number = +1.0010110110000000000000 binary * 2**7
= 1.17773 decimal * 2**7
= 1.17773 * 128
= 150.75
IEEE-754 Single Precision example: -96.125

$./explain_float_representation -96.125

-96.125 is represented in IEEE-754 single-precision by these bits:

```
110000101100000001000000000000000
```

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10000101</td>
<td>100000001000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 1

sign = -

raw exponent = 10000101 binary

= 133 decimal

actual exponent = 133 - exponent_bias

= 133 - 127

= 6

number = $-1.100000001000000000000000$ binary $\times 2^{6}$

= -1.50195 decimal $\times 2^{6}$

= -1.50195×64

= -96.125
$./explain_float_representation 00111101110011001100110011001101
sign bit = 0
sign = +
raw exponent = 01111011 binary
= 123 decimal
actual exponent = 123 - exponent_bias
= 123 - 127
= -4
number = +1.10011001100110011001101 binary * 2**-4
= 1.6 decimal * 2**-4
= 1.6 * 0.0625
= 0.1
IEEE 754 has a representation for +/- infinity
- propagates sensibly through calculations

double x = 1.0/0.0;
printf("%lf\n", x); // prints inf
printf("%lf\n", -x); // prints -inf
printf("%lf\n", x - 1); // prints inf
printf("%lf\n", 2 * atan(x)); // prints 3.141593
printf("%d\n", 42 < x); // prints 1 (true)
printf("%d\n", x == INFINITY); // prints 1 (true)
C (IEEE-754) has a representation for invalid results:
- NaN (not a number)
- ensures errors propagates sensibly through calculations

```c
double x = 0.0/0.0;
printf("%lf\n", x); // prints nan
printf("%lf\n", x - 1); // prints nan
printf("%d\n", x == x); // prints 0 (false)
printf("%d\n", isnan(x)); // prints 1 (true)
```

source code for nan.c

https://www.cse.unsw.edu.au/~cs1521/23T3/COMP1521.23T3 Floating-Point Numbers
$./explain_float_representation inf
inf is represented in IEEE-754 single-precision by these bits:
01111111100000000000000000000000

<table>
<thead>
<tr>
<th>sign</th>
<th>exponent</th>
<th>fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11111111</td>
<td>000000000000000000000000</td>
</tr>
</tbody>
</table>

sign bit = 0

sign = +

raw exponent = 11111111 binary
 = 255 decimal

number = +inf
$./explain_float_representation 01111111110000000000000000000000
sign bit = 0
sign = +
raw exponent = 11111111 binary
= 255 decimal
number = NaN
double a, b;
a = 0.1;
b = 1 - (a + a + a + a + a + a + a + a + a + a);
if (b != 0) { // better would be fabs(b) > 0.000001
 printf("1 != 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1\n");
}
printf("b = %g\n", b); // prints 1.11022e-16

• do not use == and != with floating point values
• instead check if values are close

source code for double_imprecision.c

https://www.cse.unsw.edu.au/~cs1521/23T3/
Consequences of most reals not having exact representations

double x = 0.000000011;
double y = (1 - cos(x)) / (x * x);
// correct answer y = ~0.5
// prints y = 0.917540
printf("y = %lf\n", y);
// division of similar approximate value
// produces large error
// sometimes called catastrophic cancellation
printf("%g\n", 1 - cos(x)); // prints 1.11022e-16
printf("%g\n", x * x); // prints 1.21e-16

source code for double_catastrophe.c
Another reason not to use == with floating point values

```c
if (d == d) {
    printf("d == d is true\n");
} else {
    // will be executed if d is a NaN
    printf("d == d is not true\n");
}
if (d == d + 1) {
    // may be executed if d is large
    // because closest possible representation for d + 1
    // is also closest possible representation for d
    printf("d == d + 1 is true\n");
} else {
    printf("d == d + 1 is false\n");
}
```

source code for `double_not_always.c`
Another reason not to use `==` with floating point values

```bash
$ dcc double_not_always.c -o double_not_always
$ ./double_not_always 42.3
  d = 42.3
  d == d is true
  d == d + 1 is false
$ ./double_not_always 4200000000000000000
  d = 4.2e+18
  d == d is true
  d == d + 1 is true
$ ./double_not_always NaN
  d = nan
  d == d is not true
  d == d + 1 is false
```

because closest possible representation for `d + 1` is also closest possible representation for `d`

(source code for double_not_always.c)

https://www.cse.unsw.edu.au/~cs1521/23T3/COMP1521.23T3-Floating-Point-Numbers
Consequences of most reals not having exact representations

```c
// loop looks to print 10 numbers but actually never terminates
double d = 9007199254740990;
while (d < 9007199254741000) {
    printf("%lf\n", d); // always prints 9007199254740992.000000
    // 9007199254740993 can not be represented as a double
    // closest double is 9007199254740992.0
    // so 9007199254740992.0 + 1 = 9007199254740992.0
    d = d + 1;
}
```

- 9007199254740993 is $2^{53} + 1$
 - it is smallest integer which can not be represented exactly as a double
- The closest double to 9007199254740993 is 9007199254740992.0
- aside: 9007199254740993 can not be represented by a int32_t
 - it can be represented by int64_t
Convert the following floating point numbers to decimal.
Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000