
COMP1521 23T3 — Files

https://www.cse.unsw.edu.au/~cs1521/223T32T3/

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 1 / 68

Operating system - What Does it Do.

• Operating system sits between the user and the hardware.

• Operating system effectively provides a virtual machine to each user.

• This virtual machine is much simpler than a real machine

• much easier for user to write code
• difficult (bug-prone) code implemented by operating system

• The virtual machine interface can stay the same across different hardware.

• much easier for user to write portable code which works on different hardware

• Operating systems can coordinate/share access to resources between users.

• Operating systems can provide privileges/security.

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 2 / 68

Operating System - What Does it Need from Hardware.

• needs hardware to provide a privileged mode
• code running in privileged mode can access all hardware and memory
• code running in privileged mode has unlimited access to memory

• needs hardware to provide a non-privileged mode which:
• code running in non-privileged mode can not access hardware directly
• code running in non-privileged mode has limited access to memory
• provides mechanism to make requests to operating system

• operating system (kernel) code runs in privileged mode

• operating system runs user code in non-privileged mode

• with memory access restrictions so user code can only memory allocated to it

• user code can make requests to operating system called system calls
• a system call transfers execution to operating system code in privileged mode
• at completion of request operating system (usually) returns execution back to user code in non-privileged mode

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 3 / 68

System Call - What is It

• system call allow programs to request hardware operations

• system call transfers execution to OS code in privileged mode
• includes arguments specifying details of request being made
• OS checks operation is valid & permitted
• OS carries out operation
• transfers execution back to user code in non-privileged mode

• different operating system have different system calls
• e.g Linux system calls very different Windows system calls

• Linux provides 400+ system calls

• examples of operations that might be provided by system call:
• read or write bytes to a file
• request more memory
• create a process (run a program)
• terminate a process
• send information via a network

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 4 / 68

System Calls in mipsy

• mipsy provides a virtual machine which can execute MIPS programs

• mipsy also provides a tiny operating system

• small number of mipsy system calls for I/O and memory allocation

• access is via the syscall instruction
• MIPS programs running on real hardware also use syscall
• on Linux syscall, passes execution to operating system code
• Linux operating system code carries out request specified in $v0 and $a0

• mipsy system calls are designed for students writing tiny MIPS programs without library functions
• e.g system call 1 - print an integer, system call 5 read an integer

• system calls on real operating systems are more general

• instead system call might be read n bytes, write n bytes
• users don’t normally access system calls directly
• users call library functions e.g. printf & fgets which make system calls, usually via other functions

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 5 / 68

Experimenting with Linux System Calls

• like mipsy every Linux system call has a number, e.g system call 2 is write bytes to a file
• Linux provides 400+ system calls

$ cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h
...
#define __NR_read 0
#define __NR_write 1
#define __NR_open 2
#define __NR_close 3
#define __NR_stat 4
...
#define __NR_pidfd_getfd 438
#define __NR_faccessat2 439
#define __NR_process_madvise 440

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 6 / 68

System Calls to Manipulate files

Some important Unix system calls:

• 0 — read — read some bytes from a file descriptor
• 1 — write— write some bytes to a file descriptor
• 2 — open — open a file system object, returning a file descriptor
• 3 — close — stop using a file descriptor
• 4 — stat — get file system metadata for a pathname
• 8 — lseek — move file descriptor to a specified offset within a file
• above system calls manipulate files as a stream of bytes accessed via a file descriptor

• file descriptors are small integers
• really index to a per-process array maintained by operating system

• On Unix-like systems: a file is sequence (array) of zero or more bytes.
• no meaning for bytes associated with file

• file metadata doesn’t record that it is e.g. ASCII, MP4, JPG, …
• Unix-like files are just bytes

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 7 / 68

Using a system call to print a message to stdout

• the C function syscall allows to make a Linux system call without writing assembler
• syscall itself is written partly/entirely in assembler

• e.g.: https://code.woboq.org/userspace/glibc/sysdeps/unix/sysv/linux/x86_64/syscall.S.html

• syscall is not normally used by programmers in regular C code
• most system calls have their own C wrapper function, these wrapper function are safer & more convenient
• e.g. the write system call has a wrapper C function called write

• we only use syscall to experiment & learn

char bytes[13] = "Hello, Zac!\n";
// argument 1 to syscall is the system call number, 1 is write
// remaining arguments are specific to each system call
// write system call takes 3 arguments:
// 1) file descriptor, 1 == stdout
// 2) memory address of first byte to write
// 3) number of bytes to write
syscall(1, 1, bytes, 12); // prints Hello, Zac! on stdout

source code for hello_syscalls.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 8 / 68

Using system calls to copy a file #1 - opening files
// cp <file1> <file2> with syscalls and no error handling
int main(int argc, char *argv[]) {

// system call number 2 is open, takes 3 arguments:
// 1) address of zero-terminated string containing file pathname
// 2) bitmap indicating whether to write, read, ... file
// O_WRONLY | O_CREAT == 0x41 == write to file, creating if necessary
// 3) permissions if file will be newly created
// 0644 == readable to everyone, writeable by owner
long read_file_descriptor = syscall(2, argv[1], O_RDONLY, 0);
long write_file_descriptor = syscall(2, argv[2], O_WRONLY | O_CREAT, 0644);

source code for cp_syscalls.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 9 / 68

Using system calls to copy a file #2 - copying the bytes
while (1) {

// system call number 0 is read - takes 3 arguments:
// 1) file descriptor
// 2) memory address to put bytes read
// 3) maximum number of bytes read
// returns number of bytes actually read
char bytes[4096];
long bytes_read = syscall(0, read_file_descriptor, bytes, 4096);
if (bytes_read <= 0) {

break;
}
// system call number 1 is write - takes 3 arguments:
// 1) file descriptor
// 2) memory address to take bytes from
// 3) number of bytes to written
// returns number of bytes actually written
syscall(1, write_file_descriptor, bytes, bytes_read);

}

source code for cp_syscalls.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 10 / 68

C Library Wrappers for System Calls

• On Unix-like systems there are C library functions corresponding to each system call,
• e.g. open, read, write, close
• the syscall function is not used in normal coding

• These functions are not portable
• C used on many non-Unix operating systems with different system calls

• POSIX standardizes a few of these functions
• some non-Unix systems provide implementations of these functions

• but better to use functions from standard C library, available everywhere
• e.g fopen, fgets, fputc from stdio.h
• on Unix-like systems these will call open, read, write
• on other platforms, will call other low-level functions

• but sometimes we need to use lower level non-portable functions
• e.g. a database implementations need precise control over I/O operations

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 11 / 68

Extra Types for File System Operations

Unix-like (POSIX) systems add some extra file-system-related C types in these include files:

#include <sys/types.h>
#include <sys/stat.h>

• off_t — offsets within files
• typically int64_t - signed to allow backward references

• size_t — number of bytes in some object
• typically uint64_t - unsigned since objects can’t have negative size

• ssize_t — sizes of read/written bytes
• typically uint64_t - similar to size_t, but signed to allow for error values

• struct stat — file system object metadata
• stores information about file, not its contents
• requires other types: ino_t, dev_t, time_t, uid_t, …

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 12 / 68

C library wrapper for open system call

int open(char *pathname, int flags)

• open file at pathname, according to flags

• flags is a bit-mask defined in <fcntl.h>
• O_RDONLY — open for reading
• O_WRONLY — open for writing
• O_APPEND — append on each write
• O_RDWR — open object for reading and writing
• O_CREAT — create file if doesn’t exist
• O_TRUNC — truncate to size 0

• flags can be combined e.g. (O_WRONLY|O_CREAT)

• if successful, return file descriptor (small non-negative int)

• if unsuccessful, return -1 and set errno to value indicating reason

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 13 / 68

errno - why did that system call fail?

• C library has an interesting way of returning error information

• functions typically return -1 to indicate error

• and set errno to integer value indicating reason for error

• these integer values are #define-d in errno.h

• see man errno for more infomation

• convenient function perror() looks at errno and prints message with reason

• or strerror() converts errno integer value to string describing reason for error

• errno looks like int global variable
• C library designed before multi-threaded systems in common use
• errno can not really be a global variable on multi-threaded platform
• each thread needs a separate errno
• clever workaround: errno #defined to function which returns address of variable for this thread

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 14 / 68

C library wrapper for read system call

ssize_t read(int fd, void *buf, size_t count)

• read (up to) count bytes from fd into buf
• buf should point to array of at least count bytes
• read does (can) not check buf points to enough space

• if successful, number of bytes actually read is returned

• 0 returned, if no more bytes to read

• -1 returned if error and errno set to reason

• associated with a file descriptor is a current position in file

• next call to read() will return next bytes from file

• repeated calls to reads will yield entire contents of file

• can also modify this current position with lseek()

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 15 / 68

C library wrapper for write system call

ssize_t write(int fd, const void *buf, size_t count)

• attempt to write count bytes from buf into

stream identified by file descriptor fd

• if successful, number of bytes actually written is returned

• if unsuccessful, returns -1 and set errno

• does (can) not check buf points to count bytes of data

• associated with a file descriptor is a current position in file

• next call to write will follow bytes already written

• file often created by repeated calls to write

• can also modify this current position with lseek

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 16 / 68

Hello write!

// hello world implemented with libc
#include <unistd.h>
int main(void) {

char bytes[13] = "Hello, Zac!\n";
// write takes 3 arguments:
// 1) file descriptor, 1 == stdout
// 2) memory address of first byte to write
// 3) number of bytes to write
write(1, bytes, 12); // prints Hello, Zac! on stdout
return 0;

}

source code for hello_libc.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 17 / 68

C library wrapper for close system call

int close(int fd)

• release open file descriptor fd
• if successful, return 0
• if unsuccessful, return -1 and set errno

• could be unsuccessful if fd is not an open file descriptor
• e.g. if fd has already been closed

• number of file descriptors may be limited (maybe to 1024)
• limited number of file open at any time, so use close()

An aside: removing a file e.g. via rm

• removes the file’s entry from a directory

• but the file (inode and data) persist until
• all references to the file (inode) from other directories are removed
• all processes accessing the file close() their file descriptor

• after this, the operating system reclaims the space used by the files
https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 18 / 68

Using libc system call wrappers to copy a file

int main(int argc, char *argv[]) {
// copy bytes one at a time from pathname passed as
// command-line argument 1 to pathname given as argument 2
int read_file_descriptor = open(argv[1], O_RDONLY);
int write_file_descriptor = open(argv[2], O_WRONLY | O_CREAT, 0644);

source code for cp_libc_one_byte.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 19 / 68

Using libc system call wrappers to copy a file
int write_file_descriptor = open(argv[2], O_WRONLY | O_CREAT, 0644);
while (1) {

char bytes[1];
ssize_t bytes_read = read(read_file_descriptor, bytes, 1);
if (bytes_read <= 0) {

break;
}
write(write_file_descriptor, bytes, 1);

}

source code for cp_libc_one_byte.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 20 / 68

C library wrapper for lseek system call

off_t lseek(int fd, off_t offset, int whence)

• change the current position in stream indicated by fd
• offset is in units of bytes, and can be negative
• whence can be one of …

• SEEK_SET — set file position to offset from start of file
• SEEK_CUR — set file position to offset from current position
• SEEK_END — set file position to offset from end of file

• seeking beyond end of file leaves a gap which reads as 0’s
• seeking back beyond start of file sets position to start of file
• for example:

lseek(fd, 42, SEEK_SET); // move to after 42nd byte in file
lseek(fd, 58, SEEK_CUR); // 58 bytes forward from current position
lseek(fd, -7, SEEK_CUR); // 7 bytes backward from current position
lseek(fd, -1, SEEK_END); // move to before last byte in file

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 21 / 68

stdio.h - C Standard Library I/O Functions

• system calls provide operations to manipulate files.

• libc provides a non-portable low-level API to manipulate files

• stdio.h provides a portable higher-level API to manipulate files.

• stdio.h is part of standard C library

• available in every C implementation that can do I/O

• stdio.h functions are portable, convenient & efficient

• use stdio.h functions for file operations unless you have a good reason not to
• e.g .program with special I/O requirements like a database implementation

• on Unix-like systems they will call open()/read()/write()/…
• but with buffering for efficiency

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 22 / 68

stdio.h - fopen()

FILE *fopen(const char *pathname, const char *mode)

• fopen() is stdio.h equivalent to open()

• mode is string of 1 or more characters including:
• r open text file for reading.
• w open text file for writing truncated to 0 zero length if it exists created if does not exist
• a open text file for writing writes append to it if it exists created if does not exist

• fopen returns a FILE * pointer
• FILE is stdio.h equivalent to file descriptors
• FILE is an opaque struct - we can not access fields
• FILE stores file descriptor
• FILE may also for efficiency store buffered data,

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 23 / 68

stdio.h - fclose()

int fclose(FILE *stream)

• fclose() is stdio.h equivalent to close()

• call fclose() as soon as finished with stream

• number of streams open at any time is limited (to maybe 1024)

• stdio functions for efficiency may delay calling write()
• only calls write() when it has enough data (perhaps 4096 bytes)
• also calls write() if needed when program exits or fclose()

• so last data may not be written until fclose or program exit

• good practice to call fclose as soon as finished using stream

• fflush(stream) forces any buffered data to be written

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 24 / 68

stdio.h - read and writing
int fgetc(FILE *stream) // read a byte
int fputc(int c, FILE *stream) // write a byte

char *fputs(char *s, FILE *stream) // write a string
char *fgets(char *s, int size, FILE *stream) // read a line

int fscanf(FILE *stream, const char *format, ...) // formatted input
int fprintf(FILE *stream, const char *format, ...) // formatted output

// read/write array of bytes (fgetc/fputc + loop often better)
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

• fputs/fgets, fscanf/fprintf can not be used for binary data because may contain zero bytes
• can use text (ASCII/Unicode) but can not use to e.g. read a jpg

• scanf/fscanf/sscanf often avoided in serious code
• but fine while learning to code

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 25 / 68

stdio.h - convenience functions for stdin/stdout

• as we often read/write to stdin/stdout stdio.h provides convenience functions, we can use:

int getchar() // fgetc(stdin)
int putchar(int c) // fputc(c, stdout)

int puts(char *s) // fputs(s, stdout)

int scanf(char *format, ...) // fscanf(stdin, format, ...)
int printf(char *format, ...) // fprintf(stdout, format, ...)

char *gets(char *s); // NEVER USE - major security vulnerability
// string may overflow array

// also NEVER USE %s with scanf - similarly major security vulnerability
scanf("%s", array);

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 26 / 68

stdio.h - using fputc to output bytes

char bytes[] = "Hello, stdio!\n"; // 15 bytes
// write 14 bytes so we don't write (terminating) 0 byte
for (int i = 0; i < (sizeof bytes) - 1; i++) {

fputc(bytes[i], stdout);
}
// or as we know bytes is 0-terminated
for (int i = 0; bytes[i] != '\0'; i++) {

fputc(bytes[i], stdout);
}
// or if you prefer pointers
for (char *p = &bytes[0]; *p != '\0'; p++) {

fputc(*p, stdout);
}

source code for hello_stdio.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 27 / 68

stdio.h - using fputs, fwrite & fprintf to output bytes

char bytes[] = "Hello, stdio!\n"; // 15 bytes

// fputs relies on bytes being 0-terminated
fputs(bytes, stdout);
// write 14 1 byte items
fwrite(bytes, 1, (sizeof bytes) - 1, stdout);
// %s relies on bytes being 0-terminated
fprintf(stdout, "%s", bytes);

source code for hello_stdio.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 28 / 68

stdio.h - creating a file

// create file "hello.txt" containing 1 line: Hello, Zac!
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {

FILE *output_stream = fopen("hello.txt", "w");
if (output_stream == NULL) {

perror("hello.txt");
return 1;

}
fprintf(output_stream, "Hello, Zac!\n");
// fclose will flush data to file, best to close file ASAP
// optional here as fclose occurs automatically on exit
fclose(output_stream);
return 0;

}

source code for create_file_fopen.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 29 / 68

stdio.h - using fgetc to copy a file
FILE *input_stream = fopen(argv[1], "r");
if (input_stream == NULL) {

perror(argv[1]); // prints why the open failed
return 1;

}
FILE *output_stream = fopen(argv[2], "w");
if (output_stream == NULL) {

perror(argv[2]);
return 1;

}
int c; // not char!
while ((c = fgetc(input_stream)) != EOF) {

fputc(c, output_stream);
}
fclose(input_stream); // optional here as fclose occurs
fclose(output_stream); // automatically on exit

source code for cp_fgetc.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 30 / 68

I/O Performance & Buffering - libc

$ clang -O3 cp_libc_one_byte.c -o cp_libc_one_byte
$ dd bs=1M count=10 </dev/urandom >random_file
10485760 bytes (10 MB, 10 MiB) copied, 0.183075 s, 57.3 MB/s
$ time ./cp_libc_one_byte random_file random_file_copy
real 0m5.262s
user 0m0.432s
sys 0m4.826s

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 31 / 68

I/O Performance & Buffering - stdio

$ clang -O3 cp_fgetc.c -o cp_fgetc
$ time ./cp_fgetc random_file random_file_copy
real 0m0.059s
user 0m0.042s
sys 0m0.009s

• at the user level copies 1 byte at time using fgetc/fputc
• much faster that coping 1 byte at time using read/write

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 32 / 68

Copying Multiple Bytes Per Time with System Calls
// copy bytes one at a time from pathname passed as
// command-line argument 1 to pathname given as argument 2
int read_file_descriptor = open(argv[1], O_RDONLY);
int write_file_descriptor = open(argv[2], O_WRONLY | O_CREAT, 0644);
while (1) {

char bytes[1];
ssize_t bytes_read = read(read_file_descriptor, bytes, 1);
if (bytes_read <= 0) {

break;
}
write(write_file_descriptor, bytes, 1);

}

source code for cp_libc_one_byte.c

• much slower than previous version which copies 4096 bytes at a time

$ clang -O3 cp_libc.c -o cp_libc
$ time ./cp_libc random_file random_file_copy
real 0m0.008s
user 0m0.001s
sys 0m0.007s

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 33 / 68

I/O Performance & Buffering - stdio buffering

• assume stdio buffering size (BUFSIZ) is 4096 (typical)
• first fgetc() calls requests 4096 bytes via read()

• returns 1 byte stores remaining 4095 bytes in an array, the input buffer

• next 4095 fgetc() calls return a byte from (input buffer) and do not to call read()
• 4097th fgetc() call requests 4096 bytes via read()
• returns 1 byte, stores remaining 4095 bytes in the (input buffer)
• and so on
• first 4095 fputc() calls put bytes in an array, the (output buffer)
• 4096th fputc() calls write() for all 4096 bytes in the output buffer
• and so on
• output buffer* emptied by exit or main returning
• program can explicitly force empty of output buffer with fflush() call
• main reason - system calls are expensive

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 34 / 68

stdio.h - other operations

int fseek(FILE *stream, long offset, int whence);

• fseek() is stdio equivalent to lseek(), just like lseek():

• offset is in units of bytes, and can be negative

• whence can be one of …
• SEEK_SET — set file position to offset from start of file
• SEEK_CUR — set file position to offset from current position
• SEEK_END — set file position to offset from end of file

• for example:

fseek(stream, 42, SEEK_SET); // move to after 42nd byte in file
fseek(stream, 58, SEEK_CUR); // 58 bytes forward from current position
fseek(stream, -7, SEEK_CUR); // 7 bytes backward from current position
fseek(stream, -1, SEEK_END); // move to before last byte in file

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 35 / 68

Using fseek to read the last byte then the first byte of a file

FILE *input_stream = fopen(argv[1], "rb");
// move to a position 1 byte from end of file
// then read 1 byte
fseek(input_stream, -1, SEEK_END);
printf("last byte of the file is 0x%02x\n", fgetc(input_stream));
// move to a position 0 bytes from start of file
// then read 1 byte
fseek(input_stream, 0, SEEK_SET);
printf("first byte of the file is 0x%02x\n", fgetc(input_stream));

source code for fseek.c

• NOTE: important error checking is missing above

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 36 / 68

Using fseek to read bytes in the middle of a file

// move to a position 41 bytes from start of file
// then read 1 byte
fseek(input_stream, 41, SEEK_SET);
printf("42nd byte of the file is 0x%02x\n", fgetc(input_stream));
// move to a position 58 bytes from current position
// then read 1 byte
fseek(input_stream, 58, SEEK_CUR);
printf("100th byte of the file is 0x%02x\n", fgetc(input_stream));

source code for fseek.c

• NOTE: important error checking is missing above

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 37 / 68

Using fseek to change a random file bit

FILE *f = fopen(argv[1], "r+"); // open for reading and writing
fseek(f, 0, SEEK_END); // move to end of file
long n_bytes = ftell(f); // get number of bytes in file
srandom(time(NULL)); // initialize random number

// generator with current time
long target_byte = random() % n_bytes; // pick a random byte
fseek(f, target_byte, SEEK_SET); // move to byte
int byte = fgetc(f); // read byte
int bit = random() % 8; // pick a random bit
int new_byte = byte ^ (1 << bit); // flip the bit
fseek(f, -1, SEEK_CUR); // move back to same position
fputc(new_byte, f); // write the byte
fclose(f);

source code for fuzz.c

• random changes to search for errors/vulnerabilities called fuzzing

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 38 / 68

Using fseek to create a gigantic sparse file (advanced topic)

// Create a 16 terabyte sparse file
// https://en.wikipedia.org/wiki/Sparse_file
// error checking omitted for clarity
#include <stdio.h>
int main(void) {

FILE *f = fopen("sparse_file.txt", "w");
fprintf(f, "Hello, Andrew!\n");
fseek(f, 16L * 1000 * 1000 * 1000 * 1000, SEEK_CUR);
fprintf(f, "Goodbye, Andrew!\n");
fclose(f);
return 0;

}

source code for create_gigantic_file.c

• almost all the 16Tb are zeros which the file system doesn’t actually store

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 39 / 68

stdio.h - I/O to strings

stdio.h provides useful functions which operate on strings

// sscanf like scanf, but input comes from char array **str**
int sscanf(const char *str, const char *format, ...);

// snprintf is like printf, but output goes to char array str
// handy for creating strings passed to other functions
// size contains size of str
int snprintf(char *str, size_t size, const char *format, ...);

// also sprintf - more convenient - but can overflow str
// major security vulnerability - DO NOT USE
int sprintf(char *str, const char *format, ...); // DO NOT USE

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 40 / 68

What Really are Files and Directories?

• file systems manage persistent stored data e.g. on magnetic disk or SSD

• On Unix-like systems:
• a file is sequence (array) of zero or more bytes.
• no meaning for bytes associated with file

• file metadata doesn’t record that it is e.g. ASCII, MP4, JPG, …
• Unix-like files are just bytes

• a directory is an object containing zero or more files or directories.

• file systems maintain metadata for files & directories, e.g. permissions

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 41 / 68

Unix-like Files & Directories

• Unix-like filenames are sequences of 1 or more bytes.
• filenames can contain any byte except 0x00 and 0x2F
• 0x00 bytes (ASCII ‘\0’) used to terminate filenames
• 0x2F bytes (ASCII ‘/’) used to separate components of pathnames.
• maximum filename length, depends on file system, typically 255

• Two filenames can not be used - they have a special meaning:

• . current directory

• .. parent directory

• Some programs (shell, ls) treat filenames starting with . specially.

• Unix-like directories are sets of files or directories

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 42 / 68

Unix/Linux Pathnames

• Files & directories accessed via pathnames, e.g: /home/z5555555/lab07/main.c

• absolute pathnames start with a leading / and give full path from root
• e.g. /usr/include/stdio.h, /cs1521/public_html/

• every process (running program) has a current working directory (CWD)
• this is an absolute pathname

• shell command pwd prints current working directory

• relative pathname do not start with a leading /
• e.g. ../../another/path/prog.c, ./a.out, main.c

• relative pathnames appended to current working directory of process using them

• Assume process current working directory is /home/z5555555/lab07/
• main.c translated to absolute path /home/z5555555/lab07/main.c
• ../a.out translated to absolute path /home/z5555555/lab07/../a.out
• which is equivalent to absolute path /home/z5555555/a.out

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 43 / 68

Everything is a File

• Originally files only managed data stored on a magnetic disk.

• Unix philosophy is: Everything is a File.

• File system used to access:

• files

• directories (folders)

• storage devices (disks, SSD, …)

• peripherals (keyboard, mouse, USB, …)

• system information

• inter-process communication

• network

• …

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 44 / 68

Unix/Linux File System

• Unix/Linux file system is tree-like
• Exception: if you follow symbolic links it is a graph.

• and you may infinitely loop attempting to traverse a file system
• but only if you follow symbolic links

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 45 / 68

File Metadata

Metadata for file system objects is stored in inodes, which hold

• location of file contents in file systems
• file type (regular file, directory, …)
• file size in bytes
• file ownership
• file access permissions - who can read, write, execute the file
• timestamps - times of file was created, last accessed, last updated

File system implementations often add complexity to improve performance

• e.g. very small files might be stored in an inode itself

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 46 / 68

File Inodes

• unix-like file systems effectively have a large array of inodes containg metadata

• an inode’s index in this array is its inode-number (or i-number)

• inode-number uniquely identify files within a filesystem
• just a zid uniquely identifies a student within UNSW

• directories are effectively a list of (name, inode-number) pairs

• ls -i prints inode-numbers

$ ls -i file.c
109988273 file.c
$

• note there is usually more than one file systems mounted on a Unix-like system
• each file-systems has a separate set of inode-numbers
• files on different file-systems could have the same inode-number

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 47 / 68

File Access: Behind the Scenes

Access to files by name proceeds (roughly) as…

• open directory and scan for name

• if not found, “No such file or directory”

• if found as (name,inumber), access inode table inodes[inumber]

• collect file metadata and…

• check file access permissions given current user/group
• if don’t have required access, “Permission denied”

• collect information about file’s location and size
• update access timestamp

• use data in inode to access file contents

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 48 / 68

Hard Links & Symbolic Links

File system links allow multiple paths to access the same file

• Hard links
• multiple names referencing the same file (inode)
• the two entries must be on the same filesystem
• all hard links to a file have equal status
• file destroyed when last hard link removed
• can not create a (extra) hard link to directories

• Symbolic links (symlinks)
• point to another path name
• acessing the symlink (by default) accesses the file being pointed to
• symbolic link can point to a directory
• symbolic link can point to a pathname on another filesystems
• symbolic links don’t have permissions (not needed - they are just a pointer)

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 49 / 68

Hard Links & Symbolic Links

$ echo 'Hello Andrew' >hello
$ ln hello hola # create hard link
$ ln -s hello selamat # create symbolic link
$ ls -l hello hola selamat
-rw-r--r-- 2 andrewt 13 Oct 23 16:18 hello
-rw-r--r-- 2 andrewt 13 Oct 23 16:18 hola
lrwxrwxrwx 1 andrewt 5 Oct 23 16:20 selamat -> hello
$ cat hello
Hello Andrew
$ cat hola
Hello Andrew
$ cat selamat
Hello Andrew

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 50 / 68

C library wrapper for stat system call

int stat(const char *pathname, struct stat *statbuf)

• returns metadata associated with pathname in statbuf
• metadata returned includes:

• inode number
• type (file, directory, symbolic link, device)
• size of file in bytes (if it is a file)
• permissions (read, write, execute)
• times of last access/modification/status-change

• returns -1 and sets errno if metadata not accessible

int fstat(int fd, struct stat *statbuf)

• same as stat() but gets data via an open file descriptor

int lstat(const char *pathname, struct stat *statbuf)`

• same as stat() but doesn’t follow symbolic links

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 51 / 68

definition of struct stat

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number */
mode_t st_mode; /* File type and mode */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for filesystem I/O */
blkcnt_t st_blocks; /* Number of 512B blocks allocated */
struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

};

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 52 / 68

st_mode field of struct stat

st_mode is a bitwise-or of these values (& others):

S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 FIFO
S_IRUSR 0000400 owner has read permission
S_IWUSR 0000200 owner has write permission
S_IXUSR 0000100 owner has execute permission
S_IRGRP 0000040 group has read permission
S_IWGRP 0000020 group has write permission
S_IXGRP 0000010 group has execute permission
S_IROTH 0000004 others have read permission
S_IWOTH 0000002 others have write permission
S_IXOTH 0000001 others have execute permission

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 53 / 68

Using stat

struct stat s;
if (stat(pathname, &s) != 0) {

perror(pathname);
exit(1);

}
printf("ino = %10ld # Inode number\n", s.st_ino);
printf("mode = %10o # File mode \n", s.st_mode);
printf("nlink =%10ld # Link count \n", (long)s.st_nlink);
printf("uid = %10u # Owner uid\n", s.st_uid);
printf("gid = %10u # Group gid\n", s.st_gid);
printf("size = %10ld # File size (bytes)\n", (long)s.st_size);
printf("mtime =%10ld # Modification time (seconds since 1/1/70)\n",

(long)s.st_mtime);

source code for stat.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 54 / 68

mkdir

int mkdir(const char *pathname, mode_t mode)

• create a new directory called pathname with permissions mode
• if pathname is e.g. a/b/c/d

• all of the directories a, b and c must exist
• directory c must be writeable to the caller
• directory d must not already exist

• the new directory contains two initial entries
• . is a reference to itself
• .. is a reference to its parent directory

• returns 0 if successful, returns -1 and sets errno otherwise
• for example:

mkdir("newDir", 0755);

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 55 / 68

Example of using mkdir to create directories

#include <stdio.h>
#include <sys/stat.h>
// create the directories specified as command-line arguments
int main(int argc, char *argv[]) {

for (int arg = 1; arg < argc; arg++) {
if (mkdir(argv[arg], 0755) != 0) {

perror(argv[arg]); // prints why the mkdir failed
return 1;

}
}
return 0;

}

source code for mkdir.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 56 / 68

POSIX functions to access directory contents

#include <sys/types.h>
#include <dirent.h>

// open a directory stream for directory name
DIR *opendir(const char *name);

// return a pointer to next directory entry
struct dirent *readdir(DIR *dirp);

// close a directory stream
int closedir(DIR *dirp);

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 57 / 68

Using opendir/readdir to print directory contents

int main(int argc, char *argv[]) {
for (int arg = 1; arg < argc; arg++) {

DIR *dirp = opendir(argv[arg]);
if (dirp == NULL) {

perror(argv[arg]); // prints why the open failed
return 1;

}
struct dirent *de;
while ((de = readdir(dirp)) != NULL) {

printf("%ld %s\n", de->d_ino, de->d_name);
}
closedir(dirp);

}

source code for list_directory.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 58 / 68

Other useful Linux (POSIX) functions

chmod(char *pathname, mode_t mode) // change permission of file/...

unlink(char *pathname) // remove a file/directory/...

rename(char *oldpath, char *newpath) // rename a file/directory

chdir(char *path) // change current working directory

getcwd(char *buf, size_t size) // get current working directory

link(char *oldpath, char *newpath) // create hard link to a file

symlink(char *target, char *linkpath) // create a symbolic link

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 59 / 68

file permissions

• file permissions are separated into three types:

• **read * - permission to get bytes of file
• **write* - permission to change bytes of file
• **execute* - permission to execute file

• read/write/execute often represented as bits of an octal digit

• file permissions are specified for 3 groups of users:

• owner - permissions for the file owner
• group - permissions for users in the group of the file
• other - permissions for any other user

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 60 / 68

changing file permissions

// first argument is mode in octal
mode_t mode = strtol(argv[1], &end, 8);
// check first argument was a valid octal number
if (argv[1][0] == '\0' || end[0] != '\0') {

fprintf(stderr, "%s: invalid mode: %s\n", argv[0], argv[1]);
return 1;

}
for (int arg = 2; arg < argc; arg++) {

if (chmod(argv[arg], mode) != 0) {
perror(argv[arg]); // prints why the chmod failed
return 1;

}
}

source code for chmod.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 61 / 68

removing files

// remove the specified files
int main(int argc, char *argv[]) {

for (int arg = 1; arg < argc; arg++) {
if (unlink(argv[arg]) != 0) {

perror(argv[arg]); // prints why the unlink failed
return 1;

}
}
return 0;

}

source code for rm.c

$ dcc rm.c
$./a.out rm.c
$ ls -l rm.c
ls: cannot access 'rm.c': No such file or directory

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 62 / 68

renaming a file
// rename the specified file
int main(int argc, char *argv[]) {

if (argc != 3) {
fprintf(stderr, "Usage: %s <old-filename> <new-filename>\n",

argv[0]);
return 1;

}
char *old_filename = argv[1];
char *new_filename = argv[2];
if (rename(old_filename, new_filename) != 0) {

fprintf(stderr, "%s rename %s %s:", argv[0], old_filename,
new_filename);

perror("");
return 1;

}
return 0;

}

source code for rename.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 63 / 68

cd-ing up one directory at a time
// use repeated chdir("..") to climb to root of the file system
char pathname[PATH_MAX];
while (1) {

if (getcwd(pathname, sizeof pathname) == NULL) {
perror("getcwd");
return 1;

}
printf("getcwd() returned %s\n", pathname);
if (strcmp(pathname, "/") == 0) {

return 0;
}
if (chdir("..") != 0) {

perror("chdir");
return 1;

}
}

source code for getcwd.c
https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 64 / 68

making a 1000-deep directory (advanced)
for (int i = 0; i < 1000;i++) {

char dirname[256];
snprintf(dirname, sizeof dirname, "d%d", i);
if (mkdir(dirname, 0755) != 0) {

perror(dirname);
return 1;

}
if (chdir(dirname) != 0) {

perror(dirname);
return 1;

}
char pathname[1000000];
if (getcwd(pathname, sizeof pathname) == NULL) {

perror("getcwd");
return 1;

}
printf("\nCurrent directory now: %s\n", pathname);

}

source code for nest_directories.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 65 / 68

creating 1000 hard links to a file - creating the file (advanced)

int main(int argc, char *argv[]) {
char pathname[256] = "hello.txt";
// create a target file
FILE *f1;
if ((f1 = fopen(pathname, "w")) == NULL) {

perror(pathname);
return 1;

}
fprintf(f1, "Hello Andrew!\n");
fclose(f1);

source code for many_links.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 66 / 68

creating 1000 hard links to a file - checking the file (advanced)

for (int i = 0; i < 1000; i++) {
printf("Verifying '%s' contains: ", pathname);
FILE *f2;
if ((f2 = fopen(pathname, "r")) == NULL) {

perror(pathname);
return 1;

}
int c;
while ((c = fgetc(f2)) != EOF) {

fputc(c, stdout);
}
fclose(f2);

source code for many_links.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 67 / 68

creating 1000 hard links to a file (creating a link)
char new_pathname[256];
snprintf(new_pathname, sizeof new_pathname,

"hello_%d.txt", i);
printf("Creating a link %s -> %s\n",

new_pathname, pathname);
if (link(pathname, new_pathname) != 0) {

perror(pathname);
return 1;

}
}
return 0;

}

source code for many_links.c

https://www.cse.unsw.edu.au/~cs1521/223T32T3/ COMP1521 23T3 — Files 68 / 68

