
COMP1521 23T2 — Concurrency, Parallelism, Threads

https://www.cse.unsw.edu.au/~cs1521/23T2/

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 1 / 49

Concurrency + Parallelism

Concurrency vs Parallelism

Flynn’s taxonomy

Threads in C

What can go wrong?

Synchronisation with mutexes

What can still go wrong?

Atomics

Lifetimes + Thread barriers

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 2 / 49

Concurrency? Parallelism?
Concurrency:
multiple computations in overlapping time periods …
does not have to be simultaneous

Parallelism:
multiple computations executing simultaneously

Common classifications of types of parallelism (Flynn’s taxonomy):

SISD: Single Instruction, Single Data (“no parallelism”)
e.g. our code in mipsy

SIMD: Single Instruction, Multiple Data (“vector processing”):
multiple cores of a CPU executing (parts of) same instruction
e.g., GPUs rendering pixels

MISD: Multiple Instruction, Single Data (“pipelining”):
data flows through multiple instructions; very rare in the real world
e.g., fault tolerance in space shuttles (task replication), sometimes A.I.

MIMD: Multiple Instruction, Multiple Data (“multiprocessing”)
multiple cores of a CPU executing different instructions

Both parallelism and concurrency need to deal with synchronisation.
https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 3 / 49

Distributed Parallel Computing: Parallelism Across Many Computers

Parallelism can also occur between multiple computers!

Example: Map-Reduce is a popular programming model for

manipulating very large data sets
on a large network of computers — local or distributed

spread across a rack, data center or even across continents

The map step filters data and distributes it to nodes

data distributed as (key, value) pairs
each node receives a set of pairs with common key

Nodes then perform calculation on received data items.

The reduce step computes the final result

by combining outputs (calculation results) from the nodes

There also needs a way to determine when all calculations completed.

(Beyond the scope of COMP1521!)

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 4 / 49

Data Parallel Computing: Parallelism Across An Array
multiple, identical processors
each given one element of a data structure from main memory
each performing same computation on that element: SIMD
results copied back to data structure in main memory

But not totally independent: need to synchronise on completion
Graphics processing units (GPUs) provide this form of parallelism

used to compute the same calculation for every pixel in an image quickly
popularity of computer gaming has driven availablity of powerful hardware
there are tools & libraries to run some general-purpose programs on GPUs
if the algorithm fits this model, it might run 5-10x faster on a GPU
e.g., GPUs used heavily for neural network training (deep learning)

beyond the scope of COMP1521!
https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 5 / 49

Parallelism Across Processes

One method for creating parallelism:
create multiple processes, each doing part of a job.

child executes concurrently with parent
runs in its own address space
inherits some state information from parent, e.g. open fd’s

Processes have some disadvantages:

process switching is expensive
each require a significant amount of state — memory usage
communication between processes potentially limited and/or slow

But one big advantage:

separate address spaces make processes more robust.

The web server providing the class website uses process-level parallelism

An android phone will have several hundred processes running.

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 6 / 49

Threads: Parallelism within Processes

Threads allow us parallelism within a process.
Threads allow simultaneous execution.
Each thread has its own execution state
often called Thread control block (TCB).
Threads within a process share address space:

threads share code: functions
threads share global/static variables
threads share heap: malloc

But a separate stack for each thread:
local variables not shared

Threads in a process share file descriptors, signals.

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 7 / 49

Threading with POSIX Threads (pthreads)

POSIX Threads is a widely-supported threading model.
supported in most Unix-like operating systems, and beyond

Describes an API/model for managing threads (and synchronisation).

#include <pthread.h>

More recently, ISO C:2011 has adopted a pthreads-like model…
less well-supported generally, but very, very similar.

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 8 / 49

pthread_create(3): create a new thread

int pthread_create (
pthread_t *thread,
const pthread_attr_t *attr,
void *(*thread_main)(void *),
void *arg);

Starts a new thread running the specified thread_main(arg).

Information about newly-created thread stored in thread.

Thread has attributes specified in attr (NULL if you want no special attributes).

Returns 0 if OK, -1 otherwise and sets errno

analogous to posix_spawn(3)

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 9 / 49

pthread_join(3): wait for, and join with, a terminated thread

int pthread_join (pthread_t thread, void **retval);

waits until thread terminates

if thread already exited, does not wait

thread return/exit value placed in *retval

if main returns, or exit(3) called, all threads terminated

program typically needs to wait for all threads before exiting

analogous to waitpid(3)

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 10 / 49

pthread_exit(3): terminate calling thread

void pthread_exit (void *retval);

terminates the execution of the current thread (and frees its resources)

retval returned — see pthread_join(3)

analagous to exit(3)

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 11 / 49

Example: two_threads.c — creating two threads #1

#include <pthread.h>
#include <stdio.h>
// This function is called to start thread execution.
// It can be given any pointer as an argument.
void *run_thread(void *argument) {

int *p = argument;
for (int i = 0; i < 10; i++) {

printf("Hello this is thread #%d: i=%d\n", *p, i);
}
// A thread finishes when either the thread's start function
// returns, or the thread calls `pthread_exit(3)'.
// A thread can return a pointer of any type --- that pointer
// can be fetched via `pthread_join(3)'
return NULL;

}
source code for two_threads.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 12 / 49

Example: two_threads.c — creating two threads #2

int main(void) {
// Create two threads running the same task, but different inputs.
pthread_t thread_id1;
int thread_number1 = 1;
pthread_create(&thread_id1, NULL, run_thread, &thread_number1);
pthread_t thread_id2;
int thread_number2 = 2;
pthread_create(&thread_id2, NULL, run_thread, &thread_number2);
// Wait for the 2 threads to finish.
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}
source code for two_threads.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 13 / 49

Example: n_threads.c — creating many threads

int n_threads = strtol(argv[1], NULL, 0);
assert(0 < n_threads && n_threads < 100);
pthread_t thread_id[n_threads];
int argument[n_threads];
for (int i = 0; i < n_threads; i++) {

argument[i] = i;
pthread_create(&thread_id[i], NULL, run_thread, &argument[i]);

}
// Wait for the threads to finish
for (int i = 0; i < n_threads; i++) {

pthread_join(thread_id[i], NULL);
}
return 0;

}
source code for n_threads.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 14 / 49

Example: thread_sum.c — dividing a task between threads (i)

struct job {
long start, finish;
double sum;

};
void *run_thread(void *argument) {

struct job *j = argument;
long start = j->start;
long finish = j->finish;
double sum = 0;
for (long i = start; i < finish; i++) {

sum += i;
}
j->sum = sum;

source code for thread_sum.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 15 / 49

Example: thread_sum.c — dividing a task between threads (ii)

printf("Creating %d threads to sum the first %lu integers\n"
"Each thread will sum %lu integers\n",
n_threads, integers_to_sum, integers_per_thread);

pthread_t thread_id[n_threads];
struct job jobs[n_threads];
for (int i = 0; i < n_threads; i++) {

jobs[i].start = i * integers_per_thread;
jobs[i].finish = jobs[i].start + integers_per_thread;
if (jobs[i].finish > integers_to_sum) {

jobs[i].finish = integers_to_sum;
}
// create a thread which will sum integers_per_thread integers
pthread_create(&thread_id[i], NULL, run_thread, &jobs[i]);

}
source code for thread_sum.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 16 / 49

Example: thread_sum.c — dividing a task between threads (iii)

double overall_sum = 0;
for (int i = 0; i < n_threads; i++) {

pthread_join(thread_id[i], NULL);
overall_sum += jobs[i].sum;

}
printf("\nCombined sum of integers 0 to %lu is %.0f\n", integers_to_sum,

overall_sum);
return 0;
source code for thread_sum.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 17 / 49

thread_sum.c performance

Seconds to sum the first 1e+10 (10,000,000,000) integers using double arithmetic,
with 𝑁 threads, on some different machines…

host 1 2 4 12 24 50 500

5800X 6.6 3.3 1.6 0.8 0.6 0.6 0.6
3900X 6.9 3.6 1.8 0.6 0.3 0.3 0.3
i5-4590 8.6 4.3 2.2 2.2 2.2 2.2 2.2
E7330 12.9 6.3 3.2 1.0 0.9 0.9 0.8
IIIi 136.6 68.4 68.6 68.4 68.5 68.6 68.6

5800X: AMD Ryzen 5800X; 8 cores, 16 threads, 3.8 GHz, 2020
3900X: AMD Ryzen 3900X; 12 cores, 24 threads, 3.8 GHz, 2019
i5-4590: Intel Core i5-4590; 4 cores, 4 threads, 3.3 GHz, 2014
E7330: Intel Xeon E7330; 4 sockets, 4 cores, 4 threads, 2.4 GHz, 2007
IIIi: Sun UltraSPARC IIIi; 2 sockets, 1 core, 1 thread, 1.5 GHz, 2003

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 18 / 49

Example: two_threads_broken.c — shared mutable state gonna hurt you

int main(void) {
pthread_t thread_id1;
int thread_number = 1;
pthread_create(&thread_id1, NULL, run_thread, &thread_number);
thread_number = 2;
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, run_thread, &thread_number);
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}
source code for two_threads_broken.c

variable thread_number will probably change in main, before thread 1 starts executing…
⟹ thread 1 will probably print Hello this is thread 2 … ?!

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 19 / 49

Example: bank_account_broken.c — unsafe access to global variables (i)

int bank_account = 0;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
// execution may switch threads in middle of assignment
// between load of variable value
// and store of new variable value
// changes other thread makes to variable will be lost
nanosleep(&(struct timespec){ .tv_nsec = 1 }, NULL);
// RECALL: shorthand for `bank_account = bank_account + 1`
bank_account++;

}
return NULL;

}
source code for bank_account_broken.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 20 / 49

Example: bank_account_broken.c — unsafe access to global variables (ii)

int main(void) {
// create two threads performing the same task
pthread_t thread_id1;
pthread_create(&thread_id1, NULL, add_100000, NULL);
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, add_100000, NULL);
// wait for the 2 threads to finish
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
// will probably be much less than $200000
printf("Andrew's bank account has $%d\n", bank_account);
return 0;

}
source code for bank_account_broken.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 21 / 49

Global Variables and Race Conditions

Incrementing a global variable is not an atomic operation.

(atomic, from Greek — “indivisible”)

int bank_account;

void *thread(void *a) {
// ...
bank_account++;
// ...

}

la $t0, bank_account
lw $t1, ($t0)
addi $t1, $t1, 1
sw $t1, ($t0)
.data
bank_account: .word 0

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 22 / 49

Global Variables and Race Condition

If, initially, bank_account = 42, and two threads increment simultaneously…

la $t0, bank_account
{| bank_account = 42 |}
lw $t1, ($t0)
{| $t1 = 42 |}
addi $t1, $t1, 1
{| $t1 = 43 |}
sw $t1, ($t0)
{| bank_account = 43 |}

la $t0, bank_account
{| bank_account = 42 |}
lw $t1, ($t0)
{| $t1 = 42 |}
addi $t1, $t1, 1
{| $t1 = 43 |}
sw $t1, ($t0)
{| bank_account = 43 |}

Oops! We lost an increment.

Threads do not share registers or stack (local variables)…
but they do share global variables.

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 23 / 49

Global Variable: Race Condition

If, initially, bank_account = 100, and two threads change it simultaneously…

la $t0, bank_account
{| bank_account = 100 |}
lw $t1, ($t0)
{| $t1 = 100 |}
addi $t1, $t1, 100
{| $t1 = 200 |}
sw $t1, ($t0)
{| bank_account = ...? |}

la $t0, bank_account
{| bank_account = 100 |}
lw $t1, ($t0)
{| $t1 = 100 |}
addi $t1, $t1, -50
{| $t1 = 50 |}
sw $t1, ($t0)
{| bank_account = 50 or 200 |}

This is a critical section.

We don’t want two processes in the critical section — we must establish mutual exclusion.

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 24 / 49

pthread_mutex_lock(3), pthread_mutex_unlock(3): Mutual Exclusion

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

We associate a mutex with the resource we want to protect.
in the case the resources is access to a global variable

For a particular mutex, only one thread can be running between _lock and _unlock
Other threads attempting to pthread_mutex_lock will block (wait) until the first thread executes
pthread_mutex_unlock

For example:

pthread_mutex_lock (&bank_account_lock);
andrews_bank_account += 1000000;
pthread_mutex_unlock (&bank_account_lock);

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 25 / 49

Example: bank_account_mutex.c — guard a global with a mutex

int bank_account = 0;
pthread_mutex_t bank_account_lock = PTHREAD_MUTEX_INITIALIZER;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
pthread_mutex_lock(&bank_account_lock);
// only one thread can execute this section of code at any time
bank_account = bank_account + 1;
pthread_mutex_unlock(&bank_account_lock);

}
return NULL;

}
source code for bank_account_mutex.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 26 / 49

Mutex the world!

Mutexes solve all our data race problems!

Why not just protect everything with a mutex?

Python does! The global interpreter lock (GIL).

Hard to exploit parallelism within Python

mutexes are slow

and other things can go wrong?

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 27 / 49

Concurrent Programming is Complex

Concurrency is really complex with many issues beyond this course:

Data races thread behaviour depends on unpredictable ordering;
can produce difficult bugs or security vulnerabilities

Deadlock threads stopped because they are wait on each other

Livelock threads running without making progress

Starvation threads never getting to run

If these topics sound interesting at all to you, consider COMP3231/3891 ([Extended] Operating Systems)!

Advanced reading: cs3231 Deadlocks slides

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 28 / 49

Example: bank_account_deadlock.c — deadlock with two resources (i)

void *andrew_send_zac_money(void *argument) {
for (int i = 0; i < 100000; i++) {

pthread_mutex_lock(&andrews_bank_account_lock);
pthread_mutex_lock(&zacs_bank_account_lock);
if (andrews_bank_account > 0) {

andrews_bank_account--;
zacs_bank_account++;

}
pthread_mutex_unlock(&zacs_bank_account_lock);
pthread_mutex_unlock(&andrews_bank_account_lock);

}
return NULL;

}
source code for bank_account_deadlock.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 29 / 49

Example: bank_account_deadlock.c — deadlock with two resources (ii)

void *zac_send_andrew_money(void *argument) {
for (int i = 0; i < 100000; i++) {

pthread_mutex_lock(&zacs_bank_account_lock);
pthread_mutex_lock(&andrews_bank_account_lock);
if (zacs_bank_account > 0) {

zacs_bank_account--;
andrews_bank_account++;

}
pthread_mutex_unlock(&andrews_bank_account_lock);
pthread_mutex_unlock(&zacs_bank_account_lock);

}
return NULL;

}
source code for bank_account_deadlock.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 30 / 49

Example: bank_account_deadlock.c — deadlock with two resources (iii)

int main(void) {
// create two threads sending each other money
pthread_t thread_id1;
pthread_create(&thread_id1, NULL, andrew_send_zac_money, NULL);
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, zac_send_andrew_money, NULL);
// threads will probably never finish
// deadlock will likely likely occur
// with one thread holding andrews_bank_account_lock
// and waiting for zacs_bank_account_lock
// and the other thread holding zacs_bank_account_lock
// and waiting for andrews_bank_account_lock
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}
source code for bank_account_deadlock.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 31 / 49

Avoiding Deadlock

A simple rule can avoid deadlock in many programs

All threads should acquire locks in same order

also best to release in reverse order (if possible)

Previous program deadlocked because one thread executed:

pthread_mutex_lock(&andrews_bank_account_lock);
pthread_mutex_lock(&zacs_bank_account_lock);

and the other thread executed:

pthread_mutex_lock(&zacs_bank_account_lock);
pthread_mutex_lock(&andrews_bank_account_lock);

Deadlock avoided if same order used in both threads, e.g

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 32 / 49

Atomics!

Atomic instructions allow a small subset of operations on data, that are guaranteed to execute atomically! For
example,

fetch_add: n += value

fetch_sub: n -= value

fetch_and: n &= value

fetch_or: n |= value

fetch_xor: n ^= value

compare_exchange:

if (n == v1) {
n = v2;

}
return n;

Complete list: https://en.cppreference.com/w/c/atomic

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 33 / 49

Atomics!

With mutexes, a program can lock mutex A, and then (before unlocking A) lock some mutex B.

multiple mutexes can be locked simultaneously.

Atomic instructions are (by definition!) atomic, so there’s no equivalent to the above problem.

Goodbye deadlocks!

Atomics are a fundamental tool for lock-free/wait-free programming.

Non-blocking: If a thread fails or is suspended, it cannot cause failure or suspension of another thread.

Lock-free: non-blocking + the system (as a whole) always makes progress.

Wait-free: lock-free + every thread always makes progress.

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 34 / 49

Example: bank_account_atomic.c — safe access to a global variable

#include <stdatomic.h>
atomic_int bank_account = 0;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
// NOTE: This *cannot* be `bank_account = bank_account + 1`,
// as that will not be atomic!
// However, `bank_account++` would be okay
// and, `atomic_fetch_add(&bank_account, 1)` would also be okay
bank_account += 1;

}
return NULL;

}
source code for bank_account_atomic.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 35 / 49

What’s the catch with atomics?

Specialised hardware support is required

essentially all modern computers provide atomic support
may be missing on more niche / embedded systems.

Although faster and simpler than traditional locking, there is still a performance penalty using atomics (and
increases program complexity).

Can be incredibly tricky to write correct code at a low level (e.g. memory ordering, which we won’t cover in
COMP1521).

Some issues can arise in application; e.g. ABA problem.

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 36 / 49

Final issue: data lifetime

When sharing data with a thread, we can only pass the address of our data.

This presents a lifetime issue

what if by the time the thread reads the data, that data no longer exists?

How have we avoided this so far?

What kind of code could trigger this issue?

How can this issue be avoided?

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 37 / 49

Data lifetime: avoiding so far

so far we have put data in local variables in main

local variables live until their function returns

main has created threads by calling ‘pthread_create

main has waited for all threads to finish by calling pthread_join

so main “outlives” all the created threads.

hence the local variables in main outlive the threads
so the data we pass to each thread will be valid for the entire lifetime of each thread.

but what if we pass data with a lifetime shorter than the thread lifetime?

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 38 / 49

Data lifetime: triggering the issue

pthread_t create_thread(void) {
int super_special_number = 0x42;
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, &super_special_number);
// super_special_number is destroyed when create_thread returns
// but the thread just created may still be running and access it
return thread_handle;

}
source code for thread_data_broken.c

void *my_thread(void *data) {
int number = *(int *)data;
sleep(1);
// should print 0x42, probably won't
printf("The number is 0x%x!\n", number);
return NULL;

}
source code for thread_data_broken.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 39 / 49

Data lifetime: solving our problem – malloc

stack memory is automatically cleaned up when a function returns

in mipsy $sp returns to its orignal value
local variable are destroyed
the lifetime of a local variable ends with return

when function create_thread return super_special_number is destroyed -which is causing us
problems.

the function say_hello makes this obvious

it changes the stack memory which used to hold super_special_number (by using it for greeting)

we’ve solved this problem before in COMP1[59]11 by using malloc

the programmer controls the lifetime of memory allocated with malloc
it lives until free is called
the thread can call free when it is finished with the data

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 40 / 49

Data lifetime: solving our problem – malloc

pthread_t function_creates_thread(void) {
int *super_special_number = malloc(sizeof(int));
*super_special_number = 0x42;
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, super_special_number);
return thread_handle;

}
source code for thread_data_malloc.c

void *my_thread(void *data) {
int number = *(int *)data;
sleep(1);
printf("The number is 0x%x!\n", number);
free(data);
return NULL;

}
source code for thread_data_malloc.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 41 / 49

Data lifetime: solving our problem – barriers (advanced topic)

Another solution is to force both the calling thread and the newly created thread to wait for each other.

The calling thread shouldn’t proceed until the new thread has had a chance to read the data.

The new thread shouldn’t proceed too far before letting the calling thread keep moving – could stall
performance!

We can implement this cross-thread waiting with barriers.

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 42 / 49

Data lifetime: solving our problem – barriers (advanced topic)

pthread_t function_creates_thread(void) {
pthread_barrier_t barrier;
pthread_barrier_init(&barrier, NULL, 2);
struct thread_data data = {

.barrier = &barrier,

.number = 0x42,
};
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, &data);
pthread_barrier_wait(&barrier);
return thread_handle;

}
source code for thread_data_barrier.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 43 / 49

Data lifetime: solving our problem – barriers (advanced topic)

void *my_thread(void *data) {
struct thread_data *thread_data = (struct thread_data *)data;
int number = thread_data->number;
pthread_barrier_wait(thread_data->barrier);
sleep(1);
printf("The number is 0x%x!\n", number);
return NULL;

}
source code for thread_data_barrier.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 44 / 49

Aside, COMP6991

If topics such as:

Data races (e.g. bank account without protection)
Lifetime (e.g. the previous example)
Safety through types (e.g. prevent accessing data without locking mutex)

sound interesting to you, you may want to consider COMP6991 (Solving Modern Programming Problems with Rust)!

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 45 / 49

Aside, pending time: Semaphores (advanced topic)

Semaphores are a more general synchronisation mechanism than mutexes.

#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);

sem_init(3) initialises sem to value.

sem_wait(3) — classically P

if sem > 0, then sem ∶= sem − 1 and continue…
otherwise, wait until sem > 0

sem_post(3) — classically V, also signal

sem ∶= sem + 1 and continue…

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 46 / 49

Example: Allow n threads to access a resource (advanced topic)

Common example: Web servers often launch 1 thread per incoming connection.

If a lot of connections come in all at once, the system could have huge slowdowns due to the enormous amount of
threads created.

So, only allow the web server to be dealing with n connections at any particular time.

#include <semaphore.h>
sem_t sem;
sem_init (&sem, 0, n);

sem_wait (&sem);
// only n threads can be executing here simultaneously
sem_post (&sem);

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 47 / 49

Example: bank_account_sem.c: guard a global with a semaphore (i)

sem_t bank_account_semaphore;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
// decrement bank_account_semaphore if > 0
// otherwise wait until > 0
sem_wait(&bank_account_semaphore);
// only one thread can execute this section of code at any time
// because bank_account_semaphore was initialized to 1
bank_account = bank_account + 1;
// increment bank_account_semaphore
sem_post(&bank_account_semaphore);

}
return NULL;

}
source code for bank_account_sem.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 48 / 49

Example: bank_account_sem.c: guard a global with a semaphore (ii)

int main(void) {
// initialize bank_account_semaphore to 1
sem_init(&bank_account_semaphore, 0, 1);
// create two threads performing the same task
pthread_t thread_id1;
pthread_create(&thread_id1, NULL, add_100000, NULL);
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, add_100000, NULL);
// wait for the 2 threads to finish
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
// will always be $200000
printf("Andrew's bank account has $%d\n", bank_account);
sem_destroy(&bank_account_semaphore);
return 0;

}
source code for bank_account_sem.c

https://www.cse.unsw.edu.au/~cs1521/23T2/ COMP1521 23T2 — Concurrency, Parallelism, Threads 49 / 49

